JPS58198832A - Cathode-ray tube device - Google Patents

Cathode-ray tube device

Info

Publication number
JPS58198832A
JPS58198832A JP8196482A JP8196482A JPS58198832A JP S58198832 A JPS58198832 A JP S58198832A JP 8196482 A JP8196482 A JP 8196482A JP 8196482 A JP8196482 A JP 8196482A JP S58198832 A JPS58198832 A JP S58198832A
Authority
JP
Japan
Prior art keywords
focusing
electrode
electrodes
voltage
electrode system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8196482A
Other languages
Japanese (ja)
Other versions
JPH021341B2 (en
Inventor
Masao Natsuhara
夏原 眞佐男
Hiroshi Suzuki
弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP8196482A priority Critical patent/JPS58198832A/en
Publication of JPS58198832A publication Critical patent/JPS58198832A/en
Publication of JPH021341B2 publication Critical patent/JPH021341B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4834Electrical arrangements coupled to electrodes, e.g. potentials
    • H01J2229/4837Electrical arrangements coupled to electrodes, e.g. potentials characterised by the potentials applied
    • H01J2229/4841Dynamic potentials

Abstract

PURPOSE:To obtain good resolution all over a screen by a method wherein in the first part of a focusing electrode system consisting of the first - third grid electrodes, any one of them is made to be a beam pass hole of an axially asymmetrical type while the fixed focusing voltage is applied to the first and the third electrodes and the dynamic voltage is applied to the second electrode. CONSTITUTION:In an electron gun 9 consisting of three electrodes 10'-10''' arranged on a horizontal straight line, that is, a control electrode 11, an acceleration electrode system 12, the first part and the last part focusing electrode systems 13 and 14, the first focusing electrode system 13 consists of the first - the third grid electrodes 15-17 along an electron beam passage. Said first and third electrodes 15 and 17 are made to have each group of three cylindrical beam passage holes 18'-18''' and 19'-19''' while the second electrode 16 is made to have the vertically long rectangular beam passage holes 20'-20'''. Further a fixed focusing voltage Vfoc is applied to the first and the third electrodes 15 and 17 while the dynamic voltage V'foc, which changes according to a beam deflection quantity, is made to be applied to the second electrode 16.

Description

【発明の詳細な説明】 本発明は、陰極線管装置に関し、螢光体スクリーン面上
の全域において良好な解像度が得られるように構成した
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode ray tube device, which is constructed so that good resolution can be obtained over the entire area on the phosphor screen surface.

一般に、陰極線管装置の解像度は、螢光体スクリーン面
上に生じるビームスポット(輝点)の犬2ベー〕 きさおよび形状に依存し、高い解像度を得るためには、
ビームスポットはできるだけ小さくかつ歪みのないこと
が重要である。また、カラー陰極線管装置では、3電子
ビームによるビームスポットが螢光体スクリーン面上の
任意の一点で正しく集中することが解像度の面で重要で
あり、このことから、インライン形カラー陰極管を使用
するものでは、水平偏向磁界分布を第1図(a)に示す
ようなビンクッション状に、そして、垂直偏向磁界分布
を第1図(b)に示すようなバレル状にそれぞれ歪ませ
ることによって、3電子ビーム1,2.3を自己集中(
セルフコンバージェンス)サセテイル。
In general, the resolution of a cathode ray tube device depends on the size and shape of the beam spot (bright spot) generated on the phosphor screen surface, and in order to obtain high resolution,
It is important that the beam spot be as small as possible and without distortion. In addition, in color cathode ray tube devices, it is important from the viewpoint of resolution that the beam spot of the three electron beams be correctly concentrated at any one point on the phosphor screen surface, and for this reason, an in-line type color cathode tube is used. In this case, the horizontal deflection magnetic field distribution is distorted into a bottle cushion shape as shown in Fig. 1(a), and the vertical deflection magnetic field distribution is distorted into a barrel shape as shown in Fig. 1(b). 3 Self-focusing of electron beams 1, 2.3 (
self-convergence) sassetail.

しかし、このような自己集中方式を採用すると、3電子
ビームの集中性は良好となっても、3電子ビームの断面
形状がビーム偏向角の増大に伴って歪み、螢光体スクリ
ーン面上のとくに周辺部に現われるビームスポットに、
第2図に示す傾向の歪みを生じやすくなる。すなわち、
螢光体スクリーン面4の中央部に現われるビームスポッ
ト5が真円となるのに対し、周辺部に現われるビームス
ポ3ベージ ソト6は、水平方向に長い楕円状の高輝度コア部7のほ
かに、垂直方向に長い低輝度ヘイズ部8が付随するかた
ちとなり、とくにスクリーン周力部において高い解像度
を得ることが困難になる。
However, when such a self-concentration method is adopted, even though the concentration of the three electron beams is good, the cross-sectional shape of the three electron beams becomes distorted as the beam deflection angle increases, causing problems especially in areas on the phosphor screen surface. The beam spot that appears on the periphery,
This tends to cause distortions as shown in FIG. That is,
The beam spot 5 that appears at the center of the phosphor screen surface 4 is a perfect circle, whereas the beam spot 3 that appears at the periphery has a high-intensity core part 7 that is long in the horizontal direction and has a vertical elliptical shape. A long low-luminance haze portion 8 accompanies the screen, making it difficult to obtain high resolution, especially in the screen circumferential portion.

なお、前述のようなビームスポット形状の歪みは、自己
集中方式における偏向ヨークが3電子ビームに対して第
1図(a) 、 (b)に示すような非斉一磁界を与え
ることに原因し、偏向磁界内の電子ビームは、電子銃内
で付与された集束を水平方向において弱められ、垂直方
向において強められることになる。
The above-mentioned distortion of the beam spot shape is caused by the fact that the deflection yoke in the self-focusing method applies a non-uniform magnetic field to the three electron beams as shown in FIGS. 1(a) and (b). The electron beam within the deflection magnetic field will have its focus imparted within the electron gun weakened in the horizontal direction and strengthened in the vertical direction.

本発明は、前述のような従来の欠点を除去するためにな
されたもので、つぎに本発明の陰極線管装置を図面に示
した実施例とともに説明する。
The present invention has been made to eliminate the above-mentioned drawbacks of the conventional art. Next, a cathode ray tube device of the present invention will be described with reference to embodiments shown in the drawings.

第3図において、電子銃9ば、水平−直線」−に配列さ
れた3個の陰極1o、10,10、制御電極11、加速
電極系12、iQ段集束電極系13および後段集束・電
極系14を有し、前段集束系13は、電子ビーム通路に
沿って順次に配列された第1、第2および第3の格子電
極15,16.17からなる。第4図に示すように、第
1および第3の格子電極15.17は、各3個の円形の
電子ビーム通過孔18’、18,18;19,19.1
9を有し、第2の格子電極16id縦長矩形状の電子ビ
ーム通過孔20,20.20を有している。そして、第
1および第3の格子電極15.17には一定の集束電圧
Vfocが与えられ、第2の格子電極16には、ビーム
偏向量に応じて変化するグイナミソク電圧v/fo0が
与えられる。
In FIG. 3, there is an electron gun 9, three cathodes 1o, 10, 10 arranged horizontally in a straight line, a control electrode 11, an accelerating electrode system 12, an iQ-stage focusing electrode system 13, and a rear-stage focusing/electrode system. 14, and the pre-focusing system 13 consists of first, second and third grid electrodes 15, 16, 17 arranged sequentially along the electron beam path. As shown in FIG. 4, the first and third grid electrodes 15.17 each have three circular electron beam passing holes 18', 18, 18; 19, 19.1.
9, and the second grid electrode 16id has vertically elongated rectangular electron beam passing holes 20, 20.20. A constant focusing voltage Vfoc is applied to the first and third grid electrodes 15, 17, and a Guinamisok voltage v/fo0 that changes depending on the amount of beam deflection is applied to the second grid electrode 16.

グイナミソク電圧Vfocは、第5図に実線21捷たは
一点鎖線22で示すように偏向電流23がW(7)とき
、つまり、ビームスポットが螢光面スクリーン面の中央
部に現われるとき、電圧vfocとと同一の値をとり、
偏向電流の増減に伴って電圧vfooから徐々に下降捷
たは上昇する。したがって、ビームスポットが螢光体ス
クリーン面の中央部に現われるとき、第1.第2および
第3の格子電極15,16.17は同一電位VfOCと
なり、これらの格子電極間にはレンズ電界が生成されず
、第2の格子電極16の電子ビーム通過孔20′。
When the deflection current 23 is W(7) as shown by the solid line 21 or the dashed-dotted line 22 in FIG. 5, that is, when the beam spot appears at the center of the fluorescent screen surface, the voltage Vfoc takes the same value as and
As the deflection current increases or decreases, the voltage vfoo gradually decreases or increases. Therefore, when the beam spot appears in the center of the phosphor screen surface, the first . The second and third grid electrodes 15, 16, 17 are at the same potential VfOC, so that no lens electric field is generated between these grid electrodes, and the electron beam passage hole 20' of the second grid electrode 16.

5べ− 20,20が非円形であるにもかかわらず、電子ビーム
に対して軸非対称電界が作用せず、スクリーン面中央部
において真円形のビームスポットが得られる。
Despite the fact that the electron beams 20, 20 are non-circular, no axis-asymmetric electric field acts on the electron beam, and a perfectly circular beam spot is obtained at the center of the screen surface.

一方、ビーム偏向量の増大に伴って電圧v/focがV
focから下降捷たは上列すると、一定の集束電圧Vf
ocが印加されている第1および第3の格子電極15.
17と第2の格子電極16との間にレンズ電界が生成さ
れる。このレンズ電界は、第2の格子電極16の電子ビ
ーム通過孔20’、20’。
On the other hand, as the amount of beam deflection increases, the voltage v/foc decreases to V
When descending or ascending from foc, a constant focusing voltage Vf
oc is applied to the first and third grid electrodes 15.
A lens electric field is generated between the grid electrode 17 and the second grid electrode 16. This lens electric field is applied to the electron beam passing holes 20', 20' of the second grid electrode 16.

20″が軸非対称形であることから、ここを通過する3
電子ビームはそれぞれ軸非対称性の集束作用を受ける。
Since 20″ is asymmetrical, 3 passing through this
Each electron beam is subjected to an axially asymmetric focusing action.

第2の格子電格16の電子ビーム通過孔20’、20”
、20′″が、第4図に示すような縦長矩形または縦長
楕円形の場合、ここを通過する3電子ビームは、水平方
向で強く垂直方向で弱い集束作用を、レンズ24’、2
4“、24“′により受ける。電子ビームは、さらに後
段集束電極系14で生成される軸対称の集束レンズ25
’、2♂。
Electron beam passing holes 20', 20'' of second grid electric grid 16
, 20'' are vertically long rectangles or vertically long ellipses as shown in FIG.
4", 24"'. The electron beam is further passed through an axially symmetrical focusing lens 25 generated by a subsequent focusing electrode system 14.
', 2♂.

25″により集束されるが、軸非対称のレンズ6ベーン 24 、24 、24  と軸対称の集束レンズ25′
25'', but the axially asymmetric lens 6 vanes 24 , 24 , 24 and the axially symmetrical focusing lens 25'
.

25.25  とを等測的に合成した3個のレンズの一
つけ、第6図に合成レンズ26として代表的に示すよう
に水平方向で強く、垂直方向で弱い軸非対称のレンズと
なる。このため、電子ビーム27が合成レンズ26を通
過するとき、水平方向で強く、垂直方向で弱い集束作用
を受け、垂直方向のフォーカス点28は水平方向のフォ
ーカス点29よりも遠い点に生じる。この現象は、偏向
磁界内での電子ビームが前述のようにビーム偏向量の増
大に伴い水平方向で弱く、垂直方向で強く集束されるの
を打ち消すように作用する。
25.25 are combined isometrically into one of three lenses, resulting in an axially asymmetric lens that is strong in the horizontal direction and weak in the vertical direction, as typically shown in FIG. 6 as a composite lens 26. Therefore, when the electron beam 27 passes through the combining lens 26, it receives a strong focusing effect in the horizontal direction and a weak focusing effect in the vertical direction, and the vertical focus point 28 occurs at a point farther than the horizontal focus point 29. This phenomenon acts to cancel out the fact that the electron beam within the deflection magnetic field is focused weakly in the horizontal direction and strongly focused in the vertical direction as the amount of beam deflection increases, as described above.

この結果、水平方向に大きく偏向された電子ビームによ
るビームスポットといえども、これを真円に近づけるこ
とが可能となシ、螢光体スクリーン面のとくに左右両側
および対角線上領域の解像度が高められる。螢光体スク
リーン面の上部中間付近に現われるビームスポットの歪
みはもともと軽微であるから、螢光体スクリーン面上の
全域において非常に鮮明な再生画像を得ることができる
As a result, even though the beam spot is caused by an electron beam that is largely deflected in the horizontal direction, it is possible to make it close to a perfect circle, and the resolution of the phosphor screen surface is increased, especially on both the left and right sides and in the diagonal area. . Since the distortion of the beam spot appearing near the upper middle of the phosphor screen surface is originally slight, a very clear reproduced image can be obtained over the entire area on the phosphor screen surface.

7ベー 以上は、本発明をインライン形カラー陰極線管装置に適
用した実施例につき述べたが、本発明の1]的とすると
ころは、非斉−偏向磁界内で匍1自作用を受けた電子ビ
ームによるビームスポットの形状歪みを補正する点にあ
り、1ビーム捷たは2ビームで動作する陰極線管装置に
も前述と同様に適用できる。
Above, an embodiment in which the present invention is applied to an in-line color cathode ray tube device has been described, but the object of the present invention is to collect electrons subjected to self-effect in an asymmetric deflection magnetic field. The purpose of this method is to correct the shape distortion of the beam spot caused by the beam, and it can be applied to cathode ray tube devices that operate with one beam or two beams in the same manner as described above.

なお、本実施例では、前段集束レンズ系を構成する第2
の格子電極の電子ビーム通過孔を軸非対称形状としたが
、第1.第2および第3の格子電極のいずれか一つの格
子電極の電子ビーム通過孔のみを軸非対称形状となし、
その他の格子電極の電子ビーム通過孔を円形となしても
、前述と同様のビームスポット歪み補正効果を得ること
ができる。
In addition, in this example, the second focusing lens system constituting the front stage focusing lens system
The electron beam passing hole of the grid electrode in 1. was made into an axially asymmetrical shape. Only the electron beam passing hole of one of the second and third grid electrodes has an axially asymmetric shape;
Even if the electron beam passage holes of other grid electrodes are circular, the same beam spot distortion correction effect as described above can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は非斉一偏向磁界分布と3電
子ビームとの関係を示す図、第2′商は自己集中方式を
採用したカラー陰極線管装置の螢光体スクリーン面」二
に現われるビームスポットの形状歪みを模式的に示す図
、第3図は本発明を実施したインライン形カラー陰極線
管装置の電子銃部の側断面図、第4図は同カラー陰極線
管装置の前段集束電極系の斜視図、第5図は偏向電流と
グイナミソク電圧との関係を示す信号波形図、第6図は
前段集束レンズと後段集束レンズとを合成した合成レン
ズによる電子ビームの集束状態を説明するための線図で
ある。 10’、1d”、1d”・・・・・・陰極、11・・・
・・・制御電極、12・・・・・・加速電極系、13・
・・・・・前段集束電極系、14・・・・・・後段集束
電極系、15・・・・・・第1の格子電極、16・・・
・・・第2の格子電極、17・・・・・・第3の格子電
極、18’、’18”、18″′、19’、19“、1
d“。 2d、20“、2d//・・・・・・電子ビーム通過孔
、Vfoc・・・・・・一定の集束電圧、Vfoc・・
・・・・グイナミソク電圧。 代理人の氏名 弁理士 中 尾 赦 男 ほか1名第1
区 ((lノ テ fl)) 第2図 ; 第4図 5図 第6図 手続補正書 1事件の表示 昭和57年特許願第81964  号 2発明の名称 陰極線管装置 3補正をする者 事件との関係      特   許   出  願 
 人任 所  大阪府門真市太字門真1006番地名 
称 (584)松下電子工業株式会社代表者     
  三   山   清   −4代理人 〒571 住 所  大阪府門真市大字門真1006番地〔連絡先
電話(東京)453−3111特許分室〕6補正の対象 明細書の発明の詳細な説明の欄 図面 6、補正の内容 (1)明細書第4頁第12行の「螢光面」を1螢光体」
に補正し捷す。 (2)図面第3図を別紙のとおりに補正します。 11・11
Figures 1 (a) and (b) are diagrams showing the relationship between the nonuniform deflection magnetic field distribution and three electron beams, and the 2' quotient is the phosphor screen surface of a color cathode ray tube device that uses the self-focusing method. FIG. 3 is a side sectional view of the electron gun section of an in-line color cathode ray tube device in which the present invention is implemented, and FIG. 4 is a front-stage focusing diagram of the same color cathode ray tube device. A perspective view of the electrode system, Figure 5 is a signal waveform diagram showing the relationship between the deflection current and the voltage, and Figure 6 explains the focusing state of the electron beam by a composite lens that combines the front-stage focusing lens and the rear-stage focusing lens. This is a diagram for 10', 1d", 1d"... cathode, 11...
...control electrode, 12...acceleration electrode system, 13.
...Front-stage focusing electrode system, 14... Back-stage focusing electrode system, 15... First grid electrode, 16...
...Second grid electrode, 17...Third grid electrode, 18', '18', 18''', 19', 19'', 1
d". 2d, 20", 2d//... Electron beam passing hole, Vfoc... Constant focusing voltage, Vfoc...
... Guinamisoku voltage. Name of agent: Patent attorney Masao Nakao and 1 other person No. 1
Ward ((lnotefl)) Figure 2; Figure 4, Figure 5, Figure 6, Procedural Amendment 1 Display of Case 1981 Patent Application No. 81964 2 Name of Invention Cathode Ray Tube Device 3 Person Who Makes Amendment Case and Related patent applications
Appointment Address: Bold 1006 Kadoma, Kadoma City, Osaka Prefecture
(584) Representative of Matsushita Electronic Industries Co., Ltd.
Kiyoshi Miyama -4 Agent 571 Address 1006 Oaza Kadoma, Kadoma City, Osaka [Contact phone number (Tokyo) 453-3111 Patent Branch] 6 Detailed description of the invention in the specification subject to amendment Drawing 6, Amendment Contents (1) The ``fluorescent surface'' on page 4, line 12 of the specification is 1 fluorescent substance.''
Correct and cut. (2) Amend Figure 3 of the drawing as shown in the attached sheet. 11.11

Claims (1)

【特許請求の範囲】[Claims] 加速電極系と後段集束電極系との間に配設された前段集
束電極系が、第1.第2および第3の格子電極からなり
、前記第1および第3の格子電極に一定の集束電圧を印
加し、前記第2の格子電極にはビーム偏向量の増大に伴
って前記一定の集束電圧から徐々に下降または上昇する
グイナミノク電圧を印加し、前記第1.第2および第3
の格子電極のうちの少なくとも一つが軸非対称形の電子
ビーム通過孔を有していることを特徴とする陰極線管装
置。
The first focusing electrode system is disposed between the accelerating electrode system and the second focusing electrode system. A constant focusing voltage is applied to the first and third grating electrodes, and the constant focusing voltage is applied to the second grating electrode as the amount of beam deflection increases. Apply a voltage that gradually decreases or increases from the first point. 2nd and 3rd
A cathode ray tube device characterized in that at least one of the grid electrodes has an axially asymmetric electron beam passage hole.
JP8196482A 1982-05-14 1982-05-14 Cathode-ray tube device Granted JPS58198832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8196482A JPS58198832A (en) 1982-05-14 1982-05-14 Cathode-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8196482A JPS58198832A (en) 1982-05-14 1982-05-14 Cathode-ray tube device

Publications (2)

Publication Number Publication Date
JPS58198832A true JPS58198832A (en) 1983-11-18
JPH021341B2 JPH021341B2 (en) 1990-01-11

Family

ID=13761183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8196482A Granted JPS58198832A (en) 1982-05-14 1982-05-14 Cathode-ray tube device

Country Status (1)

Country Link
JP (1) JPS58198832A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139347A (en) * 1984-07-30 1986-02-25 Matsushita Electronics Corp Electromagnetic deflection type cathode-ray tube device
DE3614700A1 (en) * 1985-04-30 1986-11-06 Hitachi, Ltd., Tokio/Tokyo CATHODE RAY TUBE
JPS62172635A (en) * 1986-01-21 1987-07-29 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Color display tube
JPS62237645A (en) * 1986-04-08 1987-10-17 Mitsubishi Electric Corp Electron gun
DE3741202A1 (en) * 1986-12-05 1988-06-09 Hitachi Ltd Electron beam generator for a picture tube (television tube)
US5126625A (en) * 1989-12-31 1992-06-30 Samsung Electron Devices Co., Ltd. Multistep focusing electron gun for cathode ray tube
US6002201A (en) * 1996-01-08 1999-12-14 Hitachi, Ltd. Cathode ray tube with reduced astigmatism and curvature of field
KR100316548B1 (en) * 1993-08-25 2002-04-24 에스. 씨 첸 Dynamic Off-axis Defocus Compensation for Deflection Lens CRTs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563949A (en) * 1979-06-22 1981-01-16 Toshiba Corp Color picture tube device
JPS5750748A (en) * 1980-09-11 1982-03-25 Matsushita Electronics Corp Cathode ray tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563949A (en) * 1979-06-22 1981-01-16 Toshiba Corp Color picture tube device
JPS5750748A (en) * 1980-09-11 1982-03-25 Matsushita Electronics Corp Cathode ray tube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139347A (en) * 1984-07-30 1986-02-25 Matsushita Electronics Corp Electromagnetic deflection type cathode-ray tube device
JPH0360146B2 (en) * 1984-07-30 1991-09-12 Matsushita Electronics Corp
DE3614700A1 (en) * 1985-04-30 1986-11-06 Hitachi, Ltd., Tokio/Tokyo CATHODE RAY TUBE
JPS62172635A (en) * 1986-01-21 1987-07-29 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Color display tube
JPS62237645A (en) * 1986-04-08 1987-10-17 Mitsubishi Electric Corp Electron gun
DE3741202A1 (en) * 1986-12-05 1988-06-09 Hitachi Ltd Electron beam generator for a picture tube (television tube)
US5126625A (en) * 1989-12-31 1992-06-30 Samsung Electron Devices Co., Ltd. Multistep focusing electron gun for cathode ray tube
KR100316548B1 (en) * 1993-08-25 2002-04-24 에스. 씨 첸 Dynamic Off-axis Defocus Compensation for Deflection Lens CRTs
US6002201A (en) * 1996-01-08 1999-12-14 Hitachi, Ltd. Cathode ray tube with reduced astigmatism and curvature of field

Also Published As

Publication number Publication date
JPH021341B2 (en) 1990-01-11

Similar Documents

Publication Publication Date Title
USRE34339E (en) Cathode ray tube
JPS6199249A (en) Picture tube apparatus
JPS6139347A (en) Electromagnetic deflection type cathode-ray tube device
JPS59111237A (en) Cathode ray tube device
JPS58198832A (en) Cathode-ray tube device
JPS63241842A (en) Color cathode-ray tube
JPS5953656B2 (en) cathode ray tube equipment
JPS58192252A (en) Cathode-ray tube device
JPS59214139A (en) Color picture tube device
JPH0665004B2 (en) Electron gun device
JPH1092332A (en) Electron gun for color cathode ray tube
JPH0138348B2 (en)
JP2690913B2 (en) Color picture tube
JP2684996B2 (en) In-line color cathode ray tube
JPH0560211B2 (en)
JPS58192250A (en) Cathode-ray tube device
JPH021340B2 (en)
JPS58204448A (en) Cathode-ray tube device
JP2765577B2 (en) In-line type color picture tube
JP3310518B2 (en) Electron gun for color cathode ray tube
JP2960498B2 (en) Color picture tube equipment
JPH0216536B2 (en)
JPS58818B2 (en) color picture tube
JP3056497B2 (en) Color picture tube equipment
JPH0158824B2 (en)