JPS63241842A - Color cathode-ray tube - Google Patents

Color cathode-ray tube

Info

Publication number
JPS63241842A
JPS63241842A JP62074401A JP7440187A JPS63241842A JP S63241842 A JPS63241842 A JP S63241842A JP 62074401 A JP62074401 A JP 62074401A JP 7440187 A JP7440187 A JP 7440187A JP S63241842 A JPS63241842 A JP S63241842A
Authority
JP
Japan
Prior art keywords
grid
electron beam
voltage
ray tube
color cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074401A
Other languages
Japanese (ja)
Inventor
Takashi Katsuma
敬 勝間
Hideo Mori
英男 森
Toshio Shimaougi
利雄 島扇
Naoaki Umetsu
梅津 直明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62074401A priority Critical patent/JPS63241842A/en
Priority to DE88104669T priority patent/DE3882408T2/en
Priority to EP88104669A priority patent/EP0284990B1/en
Priority to KR1019880003461A priority patent/KR910000924B1/en
Priority to CN88101755A priority patent/CN1038796C/en
Publication of JPS63241842A publication Critical patent/JPS63241842A/en
Priority to US07/484,004 priority patent/US4967120A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • H01J29/62Electrostatic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4834Electrical arrangements coupled to electrodes, e.g. potentials
    • H01J2229/4837Electrical arrangements coupled to electrodes, e.g. potentials characterised by the potentials applied
    • H01J2229/4841Dynamic potentials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4844Electron guns characterised by beam passing apertures or combinations
    • H01J2229/4848Aperture shape as viewed along beam axis
    • H01J2229/4858Aperture shape as viewed along beam axis parallelogram
    • H01J2229/4865Aperture shape as viewed along beam axis parallelogram rectangle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4844Electron guns characterised by beam passing apertures or combinations
    • H01J2229/4848Aperture shape as viewed along beam axis
    • H01J2229/4858Aperture shape as viewed along beam axis parallelogram
    • H01J2229/4865Aperture shape as viewed along beam axis parallelogram rectangle
    • H01J2229/4868Aperture shape as viewed along beam axis parallelogram rectangle with rounded end or ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4844Electron guns characterised by beam passing apertures or combinations
    • H01J2229/4848Aperture shape as viewed along beam axis
    • H01J2229/4872Aperture shape as viewed along beam axis circular

Abstract

PURPOSE:To completely remove the deflection aberration and obtain high resolution over the whole area of a screen surface by forming nonrotating symmetrical lenses and applying the voltage increasing in response to the electron beam deflection quantity in grids made of three members. CONSTITUTION:An electron beam from a cathode 1 is focused by a sub-lens formed between grids G4, G35, G6 and a main lens formed by G6, G7 and hits the surface of a fluorescent screen. G35 is provided with three members, the members 38, 40 have circular electron beam passing holes 41, 41 and a horizontally long groove hole 42 on the mating face with the member 39, and the member 39 has a vertically long electron beam passing hole 43. The fixed voltage is applied to the member 39 so as to form a nonrotating symmetrical lens in whlch the ratio between the vertical diameter and the horizontal diameter of the electron beam cross section outgoing from G35 is made larger than that of the electron beam cross section incoming to G35. The voltage increasing in response to an increase of the electron beam deflection quantity is applied to the members 38, 40.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はカラー陰極線管に関し、特にその電子銃に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a color cathode ray tube, and particularly to an electron gun thereof.

(従来の技術) 一般にカラー陰極線管は、3電子銃が一列に配置された
インライン形電子銃方式が主流でおる。
(Prior Art) In general, color cathode ray tubes are mainly based on an in-line electron gun system in which three electron guns are arranged in a row.

このインライン形電子銃方式のカラー陰極線管の解像度
特性を劣化させる原因として、電子ビームを螢光体スク
リーン面の中央部から周辺部へ偏向した場合に、螢光体
スクリーン面上のビームスポットが大きくなる偏向収差
がある。この偏向収差は2つの異なる偏向収差の重ね合
わせからなる。
The reason for the deterioration of the resolution characteristics of this in-line electron gun type color cathode ray tube is that when the electron beam is deflected from the center of the phosphor screen surface to the periphery, the beam spot on the phosphor screen surface becomes large. There is a deflection aberration. This deflection aberration consists of a superposition of two different deflection aberrations.

一つは、電子銃から螢光体スクリーン面にいたる電子ビ
ーム軌道が電子ビームの備向塁の増大に伴ない長大とな
るため、螢光体スクリーン面の中央部で径小かつ真円の
ビームスポットが得られる最適フォーカス電圧に保った
としても、螢光体スクリーン面の周辺部ではビームポッ
トがオーバーフォーカスの状態となる偏向収差である。
One is that the electron beam trajectory from the electron gun to the phosphor screen surface becomes elongated as the electron beam radius increases, resulting in a small-diameter, perfectly circular beam at the center of the phosphor screen surface. Even if the focus voltage is maintained at the optimum focus voltage that allows a spot to be obtained, the deflection aberration causes the beam pot to be in an over-focus state at the periphery of the phosphor screen surface.

(以下これを第1の偏向収差と呼ぶ。) もう一つは、偏向磁界の非斉一性によって生じる偏向収
差である。すなわち、インライン形電子銃方式のカラー
陰極線管では、水平偏向磁界を第4図(2)の如くビン
クッション形状とし、垂直偏向磁界分布を第4図0の如
くバレル形状に各々歪ませた非斉一磁界とすることによ
り、3電子ビーム(21)、 (22)、 (23)を
自己集中(セルフコンバージェンス)させている。この
非斉一磁界中を通過した電子ビームは水平方向に発散作
用を、垂直方向に収束作用を受け、水平方向に長大な偏
平した断面形状となり、螢光体スクリーン面の特に周辺
部において非円形の歪んだビームスポットとなる。
(Hereinafter, this will be referred to as the first deflection aberration.) The other is the deflection aberration caused by the non-uniformity of the deflection magnetic field. That is, in an in-line electron gun type color cathode ray tube, the horizontal deflection magnetic field is shaped like a bottle cushion as shown in Figure 4 (2), and the vertical deflection magnetic field is distorted into a barrel shape as shown in Figure 4 (0). By creating a magnetic field, the three electron beams (21), (22), and (23) are self-converged. The electron beam that has passed through this non-uniform magnetic field is diverging in the horizontal direction and converging in the vertical direction, resulting in a long, flat cross-sectional shape in the horizontal direction, and a non-circular shape, especially at the periphery of the phosphor screen surface. This results in a distorted beam spot.

(以下これを第2の偏向収差と呼ぶ。)前記2つの偏向
収差を重ね合わせた状態の電子ビームの軌道を第5図に
示す。螢光体スクリーン面(至)の中央部で最適フォー
カス電圧に保つと、螢光体スクリーン面(至)の周辺部
に偏向した場合、非斉一偏向磁界により電子ビームが受
ける前記水平方向の発散作用は、螢光体スクリーン面(
至)のビームスポットがアンダーフォーカスとなるよう
作用する。このため、霞子ビーム偏向饋の増大に伴い電
子ビーム軌道が長大となることによるビームスポットの
オーバーフォーカスを軽減する向きに作用する。従って
、電子ビームの水平方向の収束面(至)は螢光体スクリ
ーン面(至)から少し内側の位置に形成され、僅かにオ
ーバーフォーカスとなる。一方、前記垂直方向の収束作
用はビームスポットをよりオーバーフォーカスとなるよ
う作用する。このため、電子ビームの垂直方向の収束面
■は、前記水平方向の収束面(至)よりもざらに内側に
位置し、著しくオーバーフォーカスとなる。この結果、
螢光体スクリーン面の中央部に生成されるビームスポッ
トが第6図(24)に示すような真円となるのに対し、
周辺部に生成されるビームスポットは第6図(25)に
示すように、高輝度のコア部(26)と低輝度のハロ一
部(27)とからなる非円形に歪み、螢光体スクリーン
面周辺部での解像度は著しく劣化する。
(Hereinafter, this will be referred to as the second deflection aberration.) FIG. 5 shows the trajectory of the electron beam in a state where the two deflection aberrations are superimposed. When the optimum focus voltage is maintained at the center of the phosphor screen surface, when the electron beam is deflected toward the periphery of the phosphor screen surface, the horizontal divergence effect on the electron beam due to the non-uniform deflection magnetic field will be reduced. is the phosphor screen surface (
(to) becomes under-focused. For this reason, it acts in the direction of reducing overfocus of the beam spot due to the elongation of the electron beam trajectory as the Kasushi beam deflection increases. Therefore, the horizontal convergence plane (to) of the electron beam is formed at a position slightly inside from the phosphor screen surface (to), resulting in slight overfocus. On the other hand, the vertical convergence effect acts to make the beam spot more overfocused. Therefore, the vertical convergence surface (2) of the electron beam is located roughly inside the horizontal convergence surface (to), resulting in significant overfocus. As a result,
While the beam spot generated at the center of the phosphor screen is a perfect circle as shown in Figure 6 (24),
The beam spot generated at the periphery is distorted into a non-circular shape consisting of a high-brightness core part (26) and a low-brightness halo part (27), as shown in FIG. 6 (25), and the phosphor screen The resolution at the periphery of the surface deteriorates significantly.

このような螢光体スクリーン面周辺部のビームスポット
形状の歪みを補正する手段として、特開昭61−742
46@公報に示された技術が提案されているすなわち、
第7図に示すように、陰極■、第1グリッド■、第2グ
リッド(3)、第3グリッド(イ)、第4グリッド■、
第5グリッド■、第6グリッド■より成るクオドラポテ
ンシャル形電子銃において、前記第4グリッドθGを第
1部材■、第2部材(9)、第3部材0Φの3枚構成す
る。前記第1部材(8)および第3部材0Φは3個の円
形の電子ビーム通過孔■を有し、前記第2部材0水平方
向に長い矩形状の電子ビーム通過孔(至)を有している
。そして、前記第1部材(8)および第3部材0Φには
、一定の電圧v2が印加され、前記第2部材0には電子
ビームの偏向量に応じて変化するダイナミック電圧VD
を印加する。前記ダイナミツト電圧VDは、電子ビーム
の偏向台が零の時点では、前記電圧V2と同一値をとり
、偏向量の増大に伴い電圧v2から徐々に減少する。従
って、電子ビームが回向を受けた場合にのみ前記第4グ
リッドを、構成する3つの部材(8)、 (9)、 Q
Φの問罪回転対称レンズが構成される。
As a means for correcting the distortion of the beam spot shape in the peripheral area of the phosphor screen surface, Japanese Patent Laid-Open No. 61-742
The technology shown in Publication No. 46@ is proposed, that is,
As shown in FIG. 7, the cathode ■, the first grid ■, the second grid (3), the third grid (A), the fourth grid ■,
In a quadra potential electron gun consisting of a fifth grid (2) and a sixth grid (2), the fourth grid θG is composed of three members: a first member (2), a second member (9), and a third member 0Φ. The first member (8) and the third member 0Φ have three circular electron beam passing holes, and the second member 0 has a horizontally long rectangular electron beam passing hole. There is. A constant voltage v2 is applied to the first member (8) and the third member 0Φ, and a dynamic voltage VD that changes depending on the amount of deflection of the electron beam is applied to the second member 0.
Apply. The dynamite voltage VD takes the same value as the voltage V2 when the electron beam deflection stage is zero, and gradually decreases from the voltage V2 as the amount of deflection increases. Therefore, the three members (8), (9), and Q that constitute the fourth grid are formed only when the electron beam is deflected.
A rotationally symmetric lens of Φ is constructed.

前記公報に示された技術によれば、前記非回転対称レン
ズは、ここを通過する電子ビームに対して垂直方向で強
く、水平方向で弱い集束作用を与えるため、第5グリッ
ド■と第6グリッド■のとの間で形成さけるメインレン
ズに入射する電子ビームは、水平方向に長い楕円に偏行
した断面形状となるとしている。第7図の電極形状から
容易に判るように、このような非回転対称レンズ作用を
売るためには、ダイナミック電圧Volt向台の増大に
伴い減少することが必要である。ダイナミック電圧VD
の減少は、第3グリッド乃至第5グリッドによって形成
されるユニポテンシャルレンズを強め、電子ビームは螢
光体スクリーン面の周辺部で強いオーバーフォーカス状
態となる。すなわち、第7図の電極形状は必然的に前述
の第1の偏向収差の増大をもたらし、螢光体スクリーン
面の周辺部でのフを一カスをむしろ劣化させる。ざらに
、前記楕円断面形状の電子ビームがメインレンズに入射
すると、レンズの球面収差のために水平方向で強く垂直
方向で弱い集束作用が働らくため、前述した非斉−偏向
磁界内で電子ビームにおよぼす水平方向の発散作用と垂
直方向の収束作用を打ち消すように作用する。この結果
、前述の偏向収差が軽減され、螢光体スクリーン面周辺
部での解像度の劣化を抑えることができるとしている。
According to the technique disclosed in the above publication, the non-rotationally symmetrical lens has a strong focusing effect in the vertical direction and a weak focusing effect in the horizontal direction on the electron beam passing through it, so that the fifth grid (2) and the sixth grid The electron beam that enters the main lens formed between (2) and (2) has a cross-sectional shape that is polarized into a horizontally long ellipse. As can be easily seen from the electrode shape in FIG. 7, in order to achieve such a non-rotationally symmetrical lens effect, it is necessary that the dynamic voltage Volt decrease as the voltage increases. Dynamic voltage VD
This decrease strengthens the unipotential lens formed by the third to fifth grids, and the electron beam becomes strongly overfocused at the periphery of the phosphor screen surface. That is, the electrode shape shown in FIG. 7 inevitably causes an increase in the first deflection aberration mentioned above, and rather deteriorates the scum in the peripheral area of the phosphor screen surface. Roughly speaking, when the electron beam with the elliptical cross section is incident on the main lens, the spherical aberration of the lens causes a focusing effect that is strong in the horizontal direction and weak in the vertical direction. It acts to cancel out the horizontal divergence effect and vertical convergence effect on the As a result, the aforementioned deflection aberration is reduced, and it is possible to suppress deterioration of resolution in the peripheral area of the phosphor screen surface.

しかしながら、前記公報に記述されているように、前記
非回転対称レンズにおいて垂直方向の収束作用を水平方
向の収束作用よりも強めた場合には、ビームスポットは
垂直方向でよりオーバーフォーカスの状態となり偏向収
差を打ち消すことはできず、逆に第2の偏向収差をも増
大させる方向に作用する。このため螢光体スクリーン面
周辺部の解像度はざらに著しく劣化する。
However, as described in the above-mentioned publication, when the vertical convergence effect of the non-rotationally symmetric lens is made stronger than the horizontal convergence effect, the beam spot becomes more overfocused in the vertical direction and is deflected. The aberration cannot be canceled out, but on the contrary acts in the direction of increasing the second deflection aberration as well. As a result, the resolution of the periphery of the phosphor screen surface deteriorates considerably.

前記公報の提案とは逆に、前記第4グリッドの第2部材
■に印加する電圧をダイナミク電圧VDとして、第9図
に示すような偏向電流(28)に同期して変化する電圧
(29)、すなわち、偏向静か零の時点では前記電圧v
2と同一値をとり、偏向量の増大に伴い電圧V2から徐
々に増大するような電圧とすることにより、偏向収差を
軽減することができる。この状態での電子ビームの軌道
を第8図に示す。すなわち、電子ビームが偏向を受けた
場合、前記第4グリッドの3つの部材(ハ)、0,00
間に非回転対称レンズ0Φが形成される。一方、前記第
3グリッドに)と前記第4グリッドの第1部材(ハ)と
の間および前記第4グリッド第3部材0Φと前記第5グ
リッド■との間の各々に回転対称レンズ(ロ)が形成さ
れる。前記非回転対称レンズCΦは、電子ビームの水平
方向に弱い収束作用を及ぼし、垂直方向に発散作用を及
ぼす。このため、前記非回転対称レンズOΦを通過した
電子ビームは垂直方向に長い楕円形状の断面形状となる
Contrary to the proposal in the above publication, the voltage applied to the second member (2) of the fourth grid is a dynamic voltage VD, and the voltage (29) changes in synchronization with the deflection current (28) as shown in FIG. , that is, at the time of quiet zero deflection, the voltage v
By setting the voltage to have the same value as V2 and gradually increase from voltage V2 as the amount of deflection increases, deflection aberration can be reduced. FIG. 8 shows the trajectory of the electron beam in this state. That is, when the electron beam is deflected, the three members (c) of the fourth grid are 0,00
A non-rotationally symmetric lens 0Φ is formed in between. On the other hand, a rotationally symmetrical lens (b) is provided between the third grid) and the first member (c) of the fourth grid, and between the third member 0Φ of the fourth grid and the fifth grid (b). is formed. The rotationally non-rotationally symmetrical lens CΦ exerts a weak convergence effect on the electron beam in the horizontal direction and a divergence effect in the vertical direction. Therefore, the electron beam that has passed through the rotationally asymmetric lens OΦ has an elliptical cross-sectional shape that is elongated in the vertical direction.

前記垂直方向の発散作用は、螢光体スクリーン面■上に
ビームスポットがアンダーフォーカスとなるよう作用す
るため、前述の第2の偏向収差によりビームスポットの
垂直方向がオーバーフォーカスとなるのを打ち消すこと
ができる。従って、電子ビームの垂直方向の収束面■を
螢光体スクリーン面(至)より近づけることができる。
The vertical diverging effect acts so that the beam spot becomes underfocused on the phosphor screen surface, so it cancels out the overfocusing of the beam spot in the vertical direction due to the second deflection aberration mentioned above. Can be done. Therefore, the vertical convergence surface (1) of the electron beam can be brought closer than the phosphor screen surface (to).

一方、前記水平方向の弱い収束作用はビームスポットを
わずかにオーバーフォーカスとなるよう作用するため、
水平方向の収束面(イ)は螢光体スクリーン面(至)か
らさらに電子銃側に移動する。この結果、第8図に示す
ように螢光体スクリーン面(至)の周辺部での電子ビー
ムの水平方向ゐ収束面(ト)と垂直方向の収束面[相]
と一致させることができるため、偏向収差を軽減するこ
とができる。
On the other hand, the weak convergence effect in the horizontal direction acts to slightly overfocus the beam spot, so
The horizontal converging surface (a) moves further from the phosphor screen surface (to) toward the electron gun. As a result, as shown in FIG.
Therefore, deflection aberration can be reduced.

しかしながらこの場合でも、第8図に示すように、螢光
体スクリーン面(至)の周辺部での電子ビームの水平方
向の収束面(至)と垂直方向の収束面■とを一致させた
場合、その収束面は螢光体スクリーン面(至)より電子
銃側に位コするため、ビームスポットは水平方向、垂直
方向共にオーバーフォーカスの状態となるに、ビームス
ポット径は最小とはならない。これは、非回転対称レン
ズ0ftlが回転対称レンズ(ロ)に比べてはるかに弱
く、前述の第2の偏向収差の補償作用を適度にとった場
合、第1の偏向収差の補償が不充分となるためである。
However, even in this case, as shown in Figure 8, if the horizontal convergence plane (to) and the vertical convergence plane (■) of the electron beam at the periphery of the phosphor screen surface (to) coincide with each other, Since the converging surface is located closer to the electron gun than the phosphor screen surface, the beam spot is overfocused in both the horizontal and vertical directions, but the beam spot diameter is not the minimum. This is because the non-rotationally symmetric lens 0ftl is much weaker than the rotationally symmetric lens (b), and if the aforementioned second deflection aberration is moderately compensated, the first deflection aberration is insufficiently compensated. To become.

従って、螢光体スクリーン面の周辺部での解像度の改善
は不充分となる。この方式で解像度をざらに改善するた
めには、例えば偏向量の増大に伴って前2第5グリッド
0の電圧を高め、メインレンズ00の収束作用を弱めて
第21の偏向収差を強く補償するいわゆるダイナミック
フォーカス方式を併用する必要がある。しかしながらこ
れは、電圧変調回路がダイナミック電圧VD以外にも必
要となること、ざらにはダイナミックフォーカス回路は
規準電圧が少なくとも数として耐電圧補醜が必要となる
ことからカラー陰極線管駆動装置のコストアップとなる
Therefore, the improvement in resolution at the periphery of the phosphor screen surface is insufficient. In order to roughly improve the resolution with this method, for example, as the amount of deflection increases, the voltage of the front 2nd and 5th grid 0 is increased, the convergence effect of the main lens 00 is weakened, and the 21st deflection aberration is strongly compensated for. It is necessary to use a so-called dynamic focus method. However, this increases the cost of the color cathode ray tube drive device because the voltage modulation circuit requires something other than the dynamic voltage VD, and moreover, the dynamic focus circuit requires at least a withstand voltage correction for the reference voltage. becomes.

(発明が解決しようとする問題点) 以上のように、従来は水平方向と垂直方向の収束面を一
致させたとしても、螢光体スクリーン面より電子銃側に
位置するため、特に周辺部の解像度を改善しなければな
らず、この解像度を改善するためにはコストアップにな
るなどの問題を有している。
(Problems to be Solved by the Invention) As described above, even if the horizontal and vertical convergence planes are made to coincide, they are located closer to the electron gun than the phosphor screen surface. The resolution must be improved, and there are problems such as an increase in cost in order to improve the resolution.

本発明は、前述のような従来技術の欠点に鑑みなされた
ものであり、その目的は螢光体スクリーン面の全域にお
いて高い解像度を得ることのできるカラー陰極線管を提
供することにある。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and its object is to provide a color cathode ray tube that can obtain high resolution over the entire phosphor screen surface.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 陰極、第1グリッド、第2グリッド、第3グリッド、第
4グリッド、第5グリッドおよび第6グリッドからなる
インライン形電子銃を具備するカラー陰極線管で第4グ
リッドが、管軸方向に第1材、第2部材および第3部材
に3分割されていて、第4グリッドから射出される電子
ビーム断面の垂直方向径と水平方向径との比が、第4グ
リッドに入射する電子ビーム断面の垂直方向径との比よ
りも大きくなる非回転対称レンズを形成するように、前
記第2部材には一定電圧が印加され、前記第1部材およ
び第3部材には電子ビーム偏向酊の増大に伴なって増大
する電圧が印加されるカラー陰極線管である。
(Means for solving the problem) A color cathode ray tube equipped with an in-line electron gun consisting of a cathode, a first grid, a second grid, a third grid, a fourth grid, a fifth grid, and a sixth grid. The grid is divided into three parts in the tube axis direction into a first member, a second member, and a third member, and the ratio of the vertical diameter to the horizontal diameter of the cross section of the electron beam emitted from the fourth grid is the fourth member. A constant voltage is applied to the second member, and a constant voltage is applied to the first member and the third member so as to form a non-rotationally symmetric lens that is larger than the vertical diameter of the cross section of the electron beam incident on the grid. This is a color cathode ray tube to which a voltage that increases as the electron beam deflection increases is applied.

第4グリッドの第1部材および第3部材は円形の電子ビ
ーム通過孔とすると共に前記第4グリッドの第2部材と
の対向面は、一つの水平方向に長い溝孔を設け、第4グ
リッドの第2部材は、垂直方向に長い電子ビーム通過孔
とすることができる。
The first and third members of the fourth grid are circular electron beam passing holes, and the surface of the fourth grid facing the second member is provided with one horizontally long slot. The second member may be a vertically elongated electron beam passage hole.

第4グリッドの第1部材および第3部材は、円形の電子
ビーム通過孔とし、前記第4グリッドの第2部材は、垂
直方向に長い電子ビーム通過孔とすることができる。
The first member and the third member of the fourth grid may be circular electron beam passing holes, and the second member of the fourth grid may be a vertically elongated electron beam passing hole.

第4グリッドの第1部材および第3部材は、円形の電子
ビーム通過孔とすると共に、前記第4グリッドの第2部
材との対向面は一つの水平方向に長い溝孔とし、前記第
4グリッドの第2部材は円形の電子ビーム通過孔とする
ことができる。
The first member and the third member of the fourth grid are circular electron beam passing holes, and the surface facing the second member of the fourth grid is one horizontally long slot, and the fourth grid The second member may be a circular electron beam passage hole.

(作 用) 本発明によれば、カラー陰極線管における偏向収差を完
全に除去し、螢光体スクリーン面周辺部の解像度の劣化
を大幅に改善することができる。
(Function) According to the present invention, it is possible to completely eliminate deflection aberration in a color cathode ray tube, and to significantly improve resolution deterioration in the peripheral area of the phosphor screen surface.

(実施例〉 以下、本発明の実施例を図面を用いて具体的に説明する
(Example) Hereinafter, an example of the present invention will be specifically described using the drawings.

第1図は本発明の一実施例であるインライン配列された
クオドラポテンシャル形カラー陰橘線管用電子銃の概略
構成を示す斜視図、第2図■および(ハ)は第1図の要
部のN極部材を示す平面図または断面図である。陰極■
から放射された重子ビームは、第3グリッドに)、第4
グリッド(35)、そして第5グリッド■間に形成され
るサブレンズと、第5グリッド0と第6グリッド■に形
成されるメインレンズにより集束されて螢光体スクリー
ン面(図示せず)上に射突する。そして、前記第4グリ
ッド(35)は3つの部材より成り、第1部材(38)
および第3部材(40)は、円形の電子ビーム通過孔 
゛(41)を有すると共に、第2部材(39)との対向
面に水平方向に長い溝孔(42)を有する。また、第2
部材(39)は垂直方向に長い電子ビーム通過孔(43
)を有する。
FIG. 1 is a perspective view showing a schematic configuration of an inline-arranged quadra potential type color cathode ray tube electron gun, which is an embodiment of the present invention, and FIGS. FIG. Cathode■
The deuteron beam emitted from the third grid), the fourth grid
The light is focused by the grid (35), the sub-lens formed between the fifth grid ①, and the main lens formed between the fifth grid 0 and the sixth grid ① onto the phosphor screen surface (not shown). To shoot. The fourth grid (35) consists of three members, the first member (38)
and the third member (40) has a circular electron beam passage hole.
(41), and a horizontally long slot (42) on the surface facing the second member (39). Also, the second
The member (39) has a vertically long electron beam passage hole (43).
).

動作時に各電極に印加される代表的直流地電位を示すと
、陰極Q)50乃至150V、第1グリッド■Ov1第
2グリy ト(3) Boo乃至800V、第3グリッ
ド(イ)および第5グリッド08kV(VF)、第6グ
リッド■27kV (Va)であり、また第4グリッド
(35)の第2部材(39)には第2グリッド■と同一
の直流電位600乃至800V(V2)が印カロされる
Typical DC ground potentials applied to each electrode during operation are as follows: cathode Q) 50 to 150V, first grid Ov1 second grid (3) Boo to 800V, third grid (a) and fifth grid The grid voltage is 08 kV (VF), the sixth grid ■ is 27 kV (Va), and the second member (39) of the fourth grid (35) is marked with the same DC potential of 600 to 800 V (V2) as the second grid ■. It's called out.

第1部材(38)および第3部材(40)には第9図に
示すうな偏向電流(28)に同期して変化するダイナミ
ック電圧VD (29)が印加される。この場合の電子
ビームの軌道を第3図に示す。前記ダイナミック電圧V
o (29)は電子ビームの偏向台が雰の場合に゛はv
2と同一値をとるため、第4グリッドの3つの部材(3
8)、 (39)、 (40)間には非回転対称レンズ
0eは形成されず、第3グリッドに)と第4グリッドの
第1部材(38)との間および第4グリッドの第3部材
(40)と第5グリッド0との間に回転対称のサブレン
ズ(ロ)が形成される。電子ご−が偏向された場合には
、前記ダイナミック電圧Vp (29)はv2よりも高
い値となり、かつ偏向量の増大に伴って増大する。この
ため、第4グリッドの3つの部材(38)、 (39)
、 (40)間には非回転対称レンズが形成されると共
に前記回転対称のサブレンズ(ロ)はその収束作用が弱
められる。前記非回転対称レンズ08は、電子ビームの
断面形状が垂直方向に長い楕円形状となるように作用す
る。従って、電子ビームの水平方向の収束面(至)と垂
直方向の収束面(イ)を一致させることができる(第2
の偏向収差補償作用)。ざらに、前記回転対称のサブレ
ンズ(ロ)が弱められるため、水平方向および垂直方向
が同時にアンダーフォーカスとなる作用を受け、両方向
共に収束面が螢光体スクリーン面側に移動する。
A dynamic voltage VD (29) that changes in synchronization with the deflection current (28) as shown in FIG. 9 is applied to the first member (38) and the third member (40). The trajectory of the electron beam in this case is shown in FIG. The dynamic voltage V
o (29) is v when the electron beam deflection table is in the atmosphere.
2, the three members of the fourth grid (3
8), (39), (40), the non-rotationally symmetrical lens 0e is not formed between the third grid) and the first member (38) of the fourth grid, and the third member of the fourth grid. A rotationally symmetrical sub-lens (b) is formed between (40) and the fifth grid 0. When electrons are deflected, the dynamic voltage Vp (29) has a value higher than v2, and increases as the amount of deflection increases. Therefore, the three members (38), (39) of the fourth grid
, (40), a rotationally non-rotationally symmetrical lens is formed, and the convergence effect of the rotationally symmetrical sub-lens (b) is weakened. The non-rotationally symmetrical lens 08 acts so that the cross-sectional shape of the electron beam becomes an ellipse that is elongated in the vertical direction. Therefore, the horizontal convergence plane (to) and the vertical convergence plane (a) of the electron beam can be made to coincide (second
(deflection aberration compensation effect). Roughly speaking, since the rotationally symmetrical sub-lens (b) is weakened, it is simultaneously underfocused in the horizontal and vertical directions, and the converging surface in both directions moves toward the phosphor screen surface.

この結果、水平方向および垂直方向の両方向の収束面を
同時に螢光体スクリーン面に一致させることができる(
第1の偏向収差補償作用)。本実施例の場合、第3図に
示されたサブレンズ(ロ)の電子ビーム強度が強いため
、この第1の偏向収差補償作用は必要充分な強さとなり
得る。従って、唯一のダイナミック電圧VDで第1及び
第2の偏向収差補償作用を共に最適とすることができる
。その結果、螢光体スクリーン面の周辺部における偏向
収差が完全に除去され、ビームスポットが最小となるた
め、周辺部の解像度を著しく向上することができる。
As a result, both the horizontal and vertical focusing surfaces can be aligned with the phosphor screen surface at the same time (
(first deflection aberration compensation action). In the case of this embodiment, since the electron beam intensity of the sub-lens (b) shown in FIG. 3 is strong, this first deflection aberration compensation effect can be sufficiently strong. Therefore, both the first and second deflection aberration compensation functions can be optimized using only one dynamic voltage VD. As a result, the deflection aberration at the periphery of the phosphor screen surface is completely eliminated and the beam spot is minimized, so that the resolution at the periphery can be significantly improved.

、実験によると、螢光体スクリーン面の対角方向周辺部
への電子ビーム偏向時におけるダイナミック電圧VDの
最適値は、第4グリッドの第2部材に印加される直′F
、電圧■2を基準として約500Vであった。一方前記
直流電圧V2G、t600乃至800Vであるから、ダ
イナミック電圧VDの最大値は、約1300V以下と比
較的低いので、電圧供給構成は何ら特別の配慮をする必
要がなく、従って耐電圧を含めた信頼性が高い。
According to experiments, the optimum value of the dynamic voltage VD when deflecting the electron beam to the diagonal periphery of the phosphor screen surface is determined by the directivity 'F' applied to the second member of the fourth grid.
, the voltage was approximately 500V based on voltage (2). On the other hand, since the DC voltage V2G is t600 to 800V, the maximum value of the dynamic voltage VD is relatively low, about 1300V or less, so there is no need to take any special consideration to the voltage supply configuration, and therefore Highly reliable.

更に、本発明の効果は、次のような構成でも満足できる
。第10図に示すように、第4グリッドの第1部材(4
8)および第3部材(50)は円形の電子ビーム通過孔
(51)を有し、第2部材(49)は垂直方向に長い電
子ビーム通過孔(53)を有する。この場合にも前)′
11の実施例と同様に、第1部材(48)および第3部
材(50)に、第9図に示すダイナミック電圧VD (
29)を印加し、第2部材(49)に一定の電圧v2を
印加すればよい。
Furthermore, the effects of the present invention can also be satisfied with the following configuration. As shown in FIG. 10, the first member (4
8) and the third member (50) have a circular electron beam passage hole (51), and the second member (49) has a vertically long electron beam passage hole (53). In this case also before)′
Similarly to the eleventh embodiment, a dynamic voltage VD ( shown in FIG. 9) is applied to the first member (48) and the third member (50).
29) and apply a constant voltage v2 to the second member (49).

また、第11図に示すように、第4グリッドの第1部材
(58)及び第3部材(60)は、円形の電子ビーム通
過孔(61)と共に第2部材(59)の対向面に水平方
向に長い溝孔(62)を有し、第2部材(59)に円形
の電子ビーム通過孔(61)を有するような構成におい
ても同様である。
Further, as shown in FIG. 11, the first member (58) and the third member (60) of the fourth grid are horizontal to the opposite surface of the second member (59) together with the circular electron beam passage hole (61). The same applies to a configuration in which the second member (59) has a slot (62) long in the direction and a circular electron beam passage hole (61) in the second member (59).

なお、本実施例では第4グリッドの第2部材(59)に
印加する電圧v2を第2グリッド■に印加する電圧と同
一としているが、本発明はこれに制限されるものではな
く、一定の電圧でおれば同様の効果を得ることができる
Note that in this embodiment, the voltage v2 applied to the second member (59) of the fourth grid is the same as the voltage applied to the second grid (2), but the present invention is not limited to this; A similar effect can be obtained using voltage.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように構成されるため、偏向磁界の非斉
一性に起因した偏向収差と、偏向台の増大に伴い電子銃
から螢光体スクリーン面にいたる電子ビームの軌道の長
大化に起因する鍋内収差とを1種類の比較的低いダイナ
ミック電圧の印加により除去することができ、螢光体ス
クリーン面の全域で良好な解像度を得ることができる。
Since the present invention is configured as described above, deflection aberrations are caused by the nonuniformity of the deflection magnetic field, and by the elongation of the trajectory of the electron beam from the electron gun to the phosphor screen surface due to the increase in the number of deflection tables. The pot aberrations caused by the phosphor screen can be eliminated by applying one type of relatively low dynamic voltage, and good resolution can be obtained over the entire phosphor screen surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるカラー陰極線管の電子銃の分解斜
視図、第2図■、(4)は、第1図の要部の平面図また
は断面図、第3図は本発明によるカラー陰極線管の電子
ビームの軌道を説明する図、第4図(9)、υは水平お
よび垂直偏向磁界分布を示すす模式図、第5図はカラー
陰極線管にあける偏向収差を説明するためのビーム軌道
を示す図、第6図は螢光体スクリーン面上のビームスポ
ット形状を説明するための模式図、第7図は従来のカラ
ー陰極線管の電子銃の分解斜視図、第8図は従来のカラ
ー陰極線管における電子ビーの軌道を示す図、第9図は
偏向電流とダイナミック電圧との関係を示す信号波形図
、第10図及び第11図は本発明による実施例を示す電
子銃の要部の電極構成を示す斜視図である。 (1)・・・・・・陰  極(2)・・・・・・第1グ
リッド(3)・・・・・・第2グリッド (4)・・・
・・・第3グリッド(4)・・・・・・第4グリッド 
(6)・・・・・・第5グリッド(7)・・・・・・第
6グリッド (8) 、 (38)、 (4B)、 (58)・・・
・・・第1部材(9) 、 (39)、 (49)、 
(59)・・・・・・第2部材(10)、 (40)、
 (50)、 (60)・・・・・・第3部材代理人 
弁理士 則 近 憲 佑 同  大胡典夫 第7図 第8図
FIG. 1 is an exploded perspective view of an electron gun for a color cathode ray tube according to the present invention, FIG. Figure 4 (9) is a diagram explaining the trajectory of the electron beam in the tube, υ is a schematic diagram showing the horizontal and vertical deflection magnetic field distribution, and Figure 5 is the beam trajectory to explain the deflection aberration created in a color cathode ray tube. Figure 6 is a schematic diagram for explaining the beam spot shape on the phosphor screen surface, Figure 7 is an exploded perspective view of a conventional color cathode ray tube electron gun, and Figure 8 is a conventional color cathode ray tube. FIG. 9 is a signal waveform diagram showing the relationship between deflection current and dynamic voltage. FIGS. 10 and 11 are diagrams showing the main parts of an electron gun according to an embodiment of the present invention. FIG. 3 is a perspective view showing an electrode configuration. (1)...Cathode (2)...First grid (3)...Second grid (4)...
...3rd grid (4)...4th grid
(6)...5th grid (7)...6th grid (8), (38), (4B), (58)...
...first member (9), (39), (49),
(59)... Second member (10), (40),
(50), (60)...Third member agent
Patent Attorney Norio Chika Yudo Norio Ogo Figure 7 Figure 8

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも陰極、第1グリッド、第2グリッド、
第3グリッド、第4グリッド、第5グリッドおよび第6
グリッドからなるインライン形電子銃を具備してなるカ
ラー陰極線管において、前記第4グリッドは、管軸方向
に第1部材、第2部材および第3部材に3分割され、こ
の第4グリッドから射出される電子ビーム断面の垂直方
向径と水平方向径との比が、第4グリッドに入射する電
子ビーム断面の垂直方向径と水平方向径との比よりも大
きくなる非回転対称レンズを形成するように、前記第2
部材には一定電圧が印加され、前記第1部材および第3
部材には電子ビーム偏向量の増大に伴なって増大する電
圧が印加されることを特徴とするカラー陰極線管。
(1) At least a cathode, a first grid, a second grid,
3rd grid, 4th grid, 5th grid and 6th grid
In a color cathode ray tube equipped with an in-line electron gun consisting of a grid, the fourth grid is divided into three parts in the tube axis direction into a first member, a second member, and a third member, and the electron beam is emitted from the fourth grid. to form a non-rotationally symmetric lens in which the ratio of the vertical diameter to the horizontal diameter of the electron beam cross section incident on the fourth grid is larger than the ratio of the vertical diameter to the horizontal diameter of the electron beam cross section incident on the fourth grid. , said second
A constant voltage is applied to the members, and the first member and the third member
A color cathode ray tube characterized in that a voltage that increases as the amount of electron beam deflection increases is applied to the member.
(2)前記第4グリッドの第1部材および第3部材は円
形の電子ビーム通過孔を有すると共に前記第4グリッド
の第2部材との対向面に、少なくとも一つの水平方向に
長い溝孔を有し、第4グリッドの第2部材は、垂直方向
に長い電子ビーム通過孔を有する特許請求の範囲第1項
記載のカラー陰極線管。
(2) The first member and the third member of the fourth grid have circular electron beam passing holes, and at least one horizontally long slot on the surface facing the second member of the fourth grid. 2. The color cathode ray tube according to claim 1, wherein the second member of the fourth grid has a vertically long electron beam passage hole.
(3)前記第4グリッドの第1部材および第3部材は、
円形の電子ビーム通過孔を有し、前記第4グリッドの第
2部材は、垂直方向に長い電子ビーム通過孔を有する特
許請求の範囲第1項記載のカラー陰極線管。
(3) The first member and the third member of the fourth grid are
2. The color cathode ray tube according to claim 1, wherein the second member of the fourth grid has a circular electron beam passage hole, and the second member of the fourth grid has a vertically elongated electron beam passage hole.
(4)前記第4グリッドの第1部材および第3部材は、
円形の電子ビーム通過孔を有すると共に、前記第4グリ
ッドの第2部材との対向面には少なくとも一つの水平方
向に長い溝孔を有し、前記第4グリッドの第2部材円形
の電子ビーム通過孔を有する特許請求の範囲第1項記載
のカラー陰極線管。
(4) The first member and the third member of the fourth grid are
The second member of the fourth grid has a circular electron beam passage hole and at least one horizontally long slot on the surface facing the second member of the fourth grid, and the fourth grid has a circular electron beam passage hole. A color cathode ray tube according to claim 1, which has holes.
JP62074401A 1987-03-30 1987-03-30 Color cathode-ray tube Pending JPS63241842A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62074401A JPS63241842A (en) 1987-03-30 1987-03-30 Color cathode-ray tube
DE88104669T DE3882408T2 (en) 1987-03-30 1988-03-23 Electron gun for a color picture tube.
EP88104669A EP0284990B1 (en) 1987-03-30 1988-03-23 Improvement of an electron gun assembly of a color cathode ray tube
KR1019880003461A KR910000924B1 (en) 1987-03-30 1988-03-29 Color cathode ray tube
CN88101755A CN1038796C (en) 1987-03-30 1988-03-30 Improvement of electron gun assembly of color cathode ray tube
US07/484,004 US4967120A (en) 1987-03-30 1990-02-23 Electron gun assembly of color ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074401A JPS63241842A (en) 1987-03-30 1987-03-30 Color cathode-ray tube

Publications (1)

Publication Number Publication Date
JPS63241842A true JPS63241842A (en) 1988-10-07

Family

ID=13546132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074401A Pending JPS63241842A (en) 1987-03-30 1987-03-30 Color cathode-ray tube

Country Status (6)

Country Link
US (1) US4967120A (en)
EP (1) EP0284990B1 (en)
JP (1) JPS63241842A (en)
KR (1) KR910000924B1 (en)
CN (1) CN1038796C (en)
DE (1) DE3882408T2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970008564B1 (en) * 1989-11-21 1997-05-27 엘지전자 주식회사 Color cathode-ray tube of electron gun
JP3053845B2 (en) * 1990-06-07 2000-06-19 株式会社日立製作所 Cathode ray tube
US5164640A (en) * 1990-12-29 1992-11-17 Samsung Electron Devices Co., Ltd. Electron gun for cathode ray tube
KR940005500B1 (en) * 1991-12-17 1994-06-20 삼성전관 주식회사 Electron gun for c-crt
US5170101A (en) * 1991-12-30 1992-12-08 Zenith Electronics Corporation Constant horizontal dimension symmetrical beam in-line electron gun
JPH06251722A (en) * 1993-02-24 1994-09-09 Hitachi Ltd Cathode-ray tube
JPH0721936A (en) 1993-06-30 1995-01-24 Hitachi Ltd Cathode-ray tube
KR970009209B1 (en) * 1994-01-22 1997-06-07 Lg Electronics Inc In-line type electron gun for crt
TW256927B (en) * 1994-03-01 1995-09-11 Hitachi Seisakusyo Kk
JPH0831333A (en) * 1994-07-19 1996-02-02 Hitachi Ltd Color cathode-ray tube
US5977727A (en) * 1997-05-09 1999-11-02 Imaging & Sensing Technology Corporation Electron beam profile and energy shaping lens
KR100274880B1 (en) * 1998-12-11 2001-01-15 김순택 Dynamic Focus Gun for Color Cathode Ray Tubes
JP2000251757A (en) * 1999-02-26 2000-09-14 Toshiba Corp Cathode ray tube
US6987367B2 (en) * 2003-06-10 2006-01-17 Kabushiki Kaisha Toshiba Cathode-ray tube

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL185815B (en) * 1954-03-11 Bayer Ag PROCEDURE FOR CONTROLLING MICRO-ORGANISMS AND FORMED PRODUCTS, WHOLE OR PARTLY CONSISTING OF MATERIAL, TREATED IN ACCORDANCE WITH THIS PROCEDURE.
US4288718A (en) * 1979-05-24 1981-09-08 Zenith Radio Corporation Means and method for beam spot distortion compensation in TV picture tubes
JPS6142841A (en) * 1984-08-02 1986-03-01 Matsushita Electronics Corp Color picture tube
JPS6174246A (en) * 1984-09-20 1986-04-16 Toshiba Corp Electron gun for color picture tube
JPH0719541B2 (en) * 1985-04-30 1995-03-06 株式会社日立製作所 In-line color picture tube
NL8600117A (en) * 1986-01-21 1987-08-17 Philips Nv COLOR IMAGE TUBE WITH REDUCED DEFLECTION DEFOCUSING.
JP2569027B2 (en) * 1986-12-05 1997-01-08 株式会社日立製作所 Electron gun for color picture tube

Also Published As

Publication number Publication date
DE3882408T2 (en) 1993-11-11
CN1038796C (en) 1998-06-17
US4967120A (en) 1990-10-30
DE3882408D1 (en) 1993-08-26
CN1031777A (en) 1989-03-15
EP0284990B1 (en) 1993-07-21
EP0284990A2 (en) 1988-10-05
EP0284990A3 (en) 1989-05-17
KR910000924B1 (en) 1991-02-18
KR880011869A (en) 1988-10-31

Similar Documents

Publication Publication Date Title
JP3576217B2 (en) Picture tube device
JPH0831333A (en) Color cathode-ray tube
JPS63241842A (en) Color cathode-ray tube
JP2000188068A (en) Color cathode ray tube
JPS6139347A (en) Electromagnetic deflection type cathode-ray tube device
JPH05225930A (en) Electron gun for color cathode-ray tube use
JPH067145U (en) Electron gun for color cathode ray tube
JPH1021847A (en) Electron gun for color cathod-ray tube
US6555975B2 (en) Cathode-ray tube apparatus
JPH0560211B2 (en)
JP3315173B2 (en) Color picture tube equipment
JP3734327B2 (en) Color cathode ray tube equipment
JPH06275212A (en) Electron gun for cathode-ray tube
JP2804051B2 (en) Color picture tube equipment
JP2878731B2 (en) Color picture tube equipment
KR100232156B1 (en) Electron gun for color crt
JPH09219156A (en) Electron gun for color cathode-ray tube
JP2004516635A5 (en)
JPH06233151A (en) Dynamic focus electron gun
JPH02135650A (en) Color cathode-ray tube
KR940010984B1 (en) Electron gun for c-crt
JP2002008559A (en) Cathode ray tube device
JP2001307655A (en) Color cathode-ray tube device
JP2001015045A (en) Picture tube device
JP2004039300A (en) Electron gun for cathode-ray tube, and cathode-ray tube