JPS5953562B2 - Power plant equipment cooling water control method and device - Google Patents

Power plant equipment cooling water control method and device

Info

Publication number
JPS5953562B2
JPS5953562B2 JP12386779A JP12386779A JPS5953562B2 JP S5953562 B2 JPS5953562 B2 JP S5953562B2 JP 12386779 A JP12386779 A JP 12386779A JP 12386779 A JP12386779 A JP 12386779A JP S5953562 B2 JPS5953562 B2 JP S5953562B2
Authority
JP
Japan
Prior art keywords
cooling water
cooler
power plant
pressure
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12386779A
Other languages
Japanese (ja)
Other versions
JPS5647813A (en
Inventor
修身 滝田
節雄 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12386779A priority Critical patent/JPS5953562B2/en
Publication of JPS5647813A publication Critical patent/JPS5647813A/en
Publication of JPS5953562B2 publication Critical patent/JPS5953562B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Flow Control (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、発電所の各機器の冷却水の制御方法とその装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for controlling cooling water for various equipment in a power plant.

〔発明の背景〕[Background of the invention]

発電所のポンプ、モータ、発電機等の各機器は運転によ
つて発熱するので、各機器の安定運転の為には、これら
の発生熱を吸収し各機器の温度が過昇せぬよう冷却する
必要があり、このため機器冷却水装置を設けている。
Each device in a power plant, such as pumps, motors, and generators, generates heat during operation, so in order to ensure stable operation of each device, it is necessary to absorb the generated heat and cool each device to prevent its temperature from rising too high. Therefore, an equipment cooling water system is installed.

機器冷却水装置は、冷却水をポンプにより汲上げ、冷却
水冷却器を通して規定温度まで冷却し、かつ規定圧力に
減圧した機器付属の冷却器に供給する。
The equipment cooling water system uses a pump to pump up cooling water, cools it to a specified temperature through a cooling water cooler, and supplies it to a cooler attached to the equipment, which has been reduced to a specified pressure.

機器付属の冷却した水は、冷却水源に戻し、再びポンプ
によつて汲上げ冷却水として循還させるよう計画されて
いることが多い。第1図は、従来の発電所機器冷却水の
制御装置を説明するための冷却水系統図である。
It is often planned that the cooled water attached to the equipment is returned to the cooling water source and pumped up again by a pump to be circulated as cooling water. FIG. 1 is a cooling water system diagram for explaining a conventional power plant equipment cooling water control device.

冷却水は冷却水ポンプ2a又は2bにより、冷却水冷却
器3に送られて水温を低下させ、更に冷却水温度調節弁
31の作用により、冷却水冷却器バイパス配管13を通
過する冷却前の冷却水と混合して規定温度に調節される
。冷却水温度調節弁31の下流には、冷却水温度調節計
41が配設されている。規定温度に調節された冷却水は
、更に冷却水圧力調節弁32によつて、規定圧力に減圧
され、冷却水供給母管14に送られる。規定圧力は、手
動にて設定可能なるよう手動設定機能を備えた冷却水圧
力調節計42が冷却水圧力調節弁32の下流に配設され
ている。冷却水は、冷却水供給母管14から分岐してそ
れぞれ温度調節弁33a、33b及び33cを経て、主
タービン油冷却器4、発電機水素冷却器5及びタービン
駆動式給水ポンプ冷却器6に送られる。また冷却水は、
冷却水供給母管]4から分岐し直ちに雑機器冷却器7,
7″に送られる。これらの各機器冷却器を冷却した冷却
水は、冷却水戻り母管15を通つて冷却水ポンプ2に戻
つて、再び冷却水として循環される。符号1はヘツドタ
ンクをあられし、冷却水が温度によつて膨脹、収縮の影
響を吸収する機能をもつている。ところで、第1図に示
す各機器は5台示されて,おり、その内で温度調節弁3
3a,33b,・・・・・・を有する機器が3台示され
ているが、実際は、大容量発電所の内で冷却水を必要と
する機器は約40台で、その必要冷却水量は約2200
T/H程度であつて、各機器の内で機器自身の発熱量に
応じて、機器付属の冷却器水量を自動的に調節する温度
調節弁を有するものの台数が全台数の約10%あり、そ
の水量は約1600T/Hで、約73%に達する。
The cooling water is sent to the cooling water cooler 3 by the cooling water pump 2a or 2b to lower the water temperature, and further, by the action of the cooling water temperature control valve 31, the cooling water is cooled before passing through the cooling water cooler bypass piping 13. It is mixed with water and adjusted to a specified temperature. A cooling water temperature controller 41 is disposed downstream of the cooling water temperature control valve 31 . The cooling water adjusted to the specified temperature is further reduced in pressure to the specified pressure by the cooling water pressure regulating valve 32 and sent to the cooling water supply main pipe 14. A cooling water pressure regulator 42 having a manual setting function is disposed downstream of the cooling water pressure regulating valve 32 so that the specified pressure can be set manually. The cooling water is branched from the cooling water supply main pipe 14 and sent to the main turbine oil cooler 4, the generator hydrogen cooler 5, and the turbine-driven feedwater pump cooler 6 via temperature control valves 33a, 33b, and 33c, respectively. It will be done. In addition, the cooling water
[Cooling water supply main pipe] Branched from 4 and immediately connected to miscellaneous equipment cooler 7,
7". The cooling water that has cooled each of these equipment coolers passes through the cooling water return main pipe 15, returns to the cooling water pump 2, and is circulated again as cooling water. Reference numeral 1 refers to the head tank. However, the cooling water has the function of absorbing the effects of expansion and contraction depending on the temperature.By the way, there are five units of each device shown in Figure 1, and three of them are temperature control valves.
3a, 33b, etc. are shown, but in reality, there are approximately 40 devices in a large-capacity power plant that require cooling water, and the required amount of cooling water is approximately 2200
Approximately 10% of the total number of devices is T/H and has a temperature control valve that automatically adjusts the amount of water in the cooler attached to the device according to the amount of heat generated by the device itself. The amount of water is about 1600T/H, which is about 73%.

このため、前記の自動温度調節弁を有する機器が運転を
停止している場合には、発電所の必要冷却水量は定格量
の27%となり、この結果、冷却水ポンプの吐出量が減
少し、これによつてポンプ揚程が上昇し、配管及び各冷
却器内の通水流量の減少によりシステム圧力損失が減少
する。このため前記冷却水圧力調節弁32の出入口差圧
が上昇し、流量の減少と相まつて調節弁開度が減少し(
全開時の13%)、僅かな弁開度の変化によつても大幅
な流量変化となり、この大幅な流量の変化は冷却圧力調
節弁32の下流の圧力変動を大きくし、冷却水圧力制御
がハンチング現象を発生させることとなり、冷却供給装
置の自動運転が困難となつたり圧力変動が大きすぎる場
合には、各調節弁32,33a,33b,33c又は圧
力調節計42が損傷する問題がある。〔発明の目的〕 本発明の目的は、この問題を解決し、発電所の起動時、
停止時においても圧力調節弁32の制御水量を多くして
、冷却水圧力の変動を最少限におさえて、安全に運転を
継続することができる発電所機器冷却水の制御方法と、
この方法を実施するための装置を提供することにある。
For this reason, if the equipment with the automatic temperature control valve is out of operation, the amount of cooling water required for the power plant will be 27% of the rated amount, and as a result, the discharge amount of the cooling water pump will decrease. This increases the pump head and reduces system pressure loss by reducing the water flow rate in the piping and each cooler. For this reason, the differential pressure at the inlet and outlet of the cooling water pressure control valve 32 increases, and together with the decrease in flow rate, the opening degree of the control valve decreases (
(13% when fully open), even a slight change in the valve opening will result in a large change in flow rate, and this large change in flow rate will increase the pressure fluctuation downstream of the cooling pressure control valve 32, making it difficult to control the cooling water pressure. If a hunting phenomenon occurs and automatic operation of the cooling supply device becomes difficult or pressure fluctuations are too large, there is a problem that each control valve 32, 33a, 33b, 33c or pressure regulator 42 may be damaged. [Object of the invention] The object of the present invention is to solve this problem and to
A method for controlling cooling water for power plant equipment that can increase the amount of water to be controlled by the pressure regulating valve 32 even during shutdown, minimize fluctuations in cooling water pressure, and safely continue operation;
The object of the present invention is to provide an apparatus for carrying out this method.

〔発明の概要〕[Summary of the invention]

かかる目的を達成するための本発明の発電所機器冷却水
の制御方法及びその装置は、安定起動弁を開いて冷却水
を前記冷却器の上流より下流へバイパスさせる方法及び
この方法を実施するための装置であつて、前記冷却器の
上流と下流とを結ぶ配管と、この配管に設けられてあつ
て、前記冷却器の必要水量が少ないときに開く安定起動
弁とを備えたことを特徴とする。
To achieve this object, the power plant equipment cooling water control method and device of the present invention include a method for opening a stable start valve to bypass cooling water from upstream to downstream of the cooler, and for carrying out this method. The device is characterized by comprising a pipe connecting upstream and downstream of the cooler, and a stable start valve provided in the pipe and opened when the amount of water required for the cooler is small. do.

つまり、冷却水圧力調節弁は、圧力調節弁を流れる冷却
水量が多い状態では、冷却水量に変動があつても、下流
側の調整された圧力が変動することが少いことに着目し
、発電所のタービン、発電所が作動していない時には、
冷却器に並列に挿入した安全起動弁を開いて、調節弁を
通る冷却水量を増大させるようにした。
In other words, the cooling water pressure control valve focuses on the fact that when there is a large amount of cooling water flowing through the pressure control valve, even if there is a fluctuation in the amount of cooling water, the adjusted pressure on the downstream side is less likely to fluctuate. When the local turbines and power plants are not operating,
A safety activation valve inserted in parallel to the cooler was opened to increase the amount of cooling water passing through the control valve.

これにより圧力調節弁のハンチングがなくなり、調節弁
の下流の圧力が安定する。〔発明の実施例〕 以下、本発明の一実止例を添付した図面を参照しつつ詳
細に説明する。
This eliminates hunting of the pressure regulating valve and stabilizes the pressure downstream of the regulating valve. [Embodiments of the Invention] Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第2図は本発明の発電所機器冷却水の制御方法を実施す
るための装置を示し、従来の発電所機器の冷却水系統と
異なる点は、冷却水供給母管14上にあつて各機器付属
の冷却器群8の上流側と、冷却水戻り母管15上にあつ
て前記冷却器群8の下流側とを安定起動配管16で結ん
でおり、この安定起動配管16には、安定起動弁36及
び流量調整オリフイス37が配設されていることである
FIG. 2 shows an apparatus for carrying out the method for controlling cooling water for power plant equipment according to the present invention, and the difference from the conventional cooling water system for power plant equipment is that each equipment is on the cooling water supply main pipe 14. The upstream side of the attached cooler group 8 and the downstream side of the cooler group 8 on the cooling water return main pipe 15 are connected by a stable start pipe 16. A valve 36 and a flow rate regulating orifice 37 are provided.

更に、主タービン及び発電機が停止中であるときは、主
タービン油冷却器4、発電機水素冷却器5及びタービン
駆動式冷却ポンプ6よりの熱発生がないから、各冷却器
の温度調節弁33a,33b,33Cは全閉して冷却水
の流入を遮断させる。このとき、第3図に示す制御回路
によつて安定起動弁36は開かれるようになつている。
第3図の制御ロジツクをさらに詳しく説明すると、同図
において、各冷却器への冷却水の必要量が少くなり冷却
水圧力調節弁32の弁開度が規定値以下になると、0R
ロジツク回路A及び゛0Rロジツク回路Cにより安全起
動弁36を開かせる。一旦0Rロジツク回路Aの出力が
あれば、調整弁36の開度が規定値以上になつても発電
機併入(つまり発電機が負荷運転状態にあること)の条
件が成立しない限り、安全起動弁36は開の状態を保つ
ようになつている。更に、主ターピンターニング中(主
タービン、発電機が作動状態にないとき)の条件が成立
すれば、0Rロジツク回路Cにより安全起動弁36は開
かれるようになつている。
Furthermore, when the main turbine and generator are stopped, there is no heat generation from the main turbine oil cooler 4, generator hydrogen cooler 5, and turbine-driven cooling pump 6, so the temperature control valve of each cooler 33a, 33b, and 33C are fully closed to cut off the inflow of cooling water. At this time, the stable start valve 36 is opened by the control circuit shown in FIG.
To explain the control logic in FIG. 3 in more detail, in the same figure, when the amount of cooling water required for each cooler decreases and the opening degree of the cooling water pressure regulating valve 32 becomes less than the specified value, 0R
The safety activation valve 36 is opened by the logic circuit A and the 0R logic circuit C. Once there is an output from the 0R logic circuit A, even if the opening degree of the regulating valve 36 exceeds the specified value, the system will safely start up as long as the conditions for generator connection (that is, the generator is in load operation) are not met. Valve 36 is adapted to remain open. Furthermore, if conditions are met during main turbine turning (when the main turbine and generator are not in operation), the safety start valve 36 is opened by the OR logic circuit C.

尚、第3図のワイプアウトロジツクWは、発電機併入の
条件が成立したとき、この回路が開かれることを意味し
ている。さて、主ターピンターニング沖は各冷却器の温
度調節弁33a,33b,33cが全閉して冷却水の流
入が遮断し、第3図の制御ロジツクにより前記安定起動
弁36が開き、冷却水供給母管14,の冷却水を安定起
動配管16のオリフイス37を通して、冷却水戻り母管
15に流すことにより冷却水圧力調節弁32に通水流量
を増加させる。
Note that the wipeout logic W in FIG. 3 means that this circuit is opened when the conditions for the addition of a generator are met. Now, the temperature control valves 33a, 33b, 33c of each cooler are fully closed to block the inflow of cooling water, and the stable start valve 36 is opened by the control logic shown in FIG. By flowing the cooling water in the main pipe 14 through the orifice 37 of the stable startup pipe 16 and into the cooling water return main pipe 15, the flow rate of water flowing through the cooling water pressure control valve 32 is increased.

すなわち、第4図において、縦軸は冷却水流量Qを、最
大値100として%であられしており、横軸は原点から
D区間は雑機器のみの運転状況をあられし、E区間はタ
ービンを運転している状況をあられし、この区間内の数
字は発電機の最高出力を100として各出力を%で示し
た数字であるとすると、発電機が出力運転を始めるまで
は冷却水圧力調整弁32の通水流量は、50%であつて
直線Fで示され、以後出力運転中は各冷却器の温度調節
弁33a,33b,33cの自動調節によつて通水流量
は、50%から100%までの間に変化する曲線Gであ
られされる。この座標を使つて従来の通水流量をあられ
すと、図中二点鎖線H,Iのように、タービンが運転開
始前の雑機器のみの運転時には、通水流量は27%を示
し、かつタービンが運転開始とともにこの値は50%に
急激に上昇する。すなわち、二点鎖線Hは、従来のター
ビン及び発,電機停止時の冷却水量であつて雑機器の冷
却水量に等しく、また前記実線Fとこの二点鎖線Hとの
差1は、冷却水安定起動弁の通水量に等しい。また符号
Jは冷却水量を自動的に調節する温度調節弁付の機器冷
却器の冷却水量であつて、前季雑機器の冷却水量Hとの
和は、冷却水ポンプ設計点Pより若干下まるように構成
されている。第5図において、横軸に冷却水量Qを%で
あられし、縦軸に冷却水圧力pをKg/Cm2であられ
したもので、Aは冷却水ポンプ2a,2bの吐出圧力特
性、Bは、圧力調節弁32の入口圧力特性、Cは同じく
出口圧力特性、Dは、戻り母管15の圧力特性を示して
いる。
That is, in Fig. 4, the vertical axis shows the cooling water flow rate Q as a percentage with the maximum value of 100, the horizontal axis shows the operating status of only miscellaneous equipment in section D from the origin, and section E shows the operating status of the turbine. Considering the operating conditions, and assuming that the numbers in this section are numbers indicating each output as a percentage, with the maximum output of the generator as 100, the cooling water pressure regulating valve is closed until the generator starts output operation. The water flow rate of No. 32 is 50%, which is shown by the straight line F. After that, during output operation, the water flow rate is varied from 50% to 100% by automatic adjustment of the temperature control valves 33a, 33b, and 33c of each cooler. The curve G varies between % and %. When calculating the conventional water flow rate using these coordinates, as shown by the two-dot chain lines H and I in the figure, when the turbine is operating only miscellaneous equipment before starting operation, the water flow rate is 27%, and This value rises rapidly to 50% when the turbine starts operating. That is, the two-dot chain line H is the amount of cooling water when conventional turbines, generators, and electric machines are stopped, and is equal to the amount of cooling water for miscellaneous equipment.The difference of 1 between the solid line F and this two-dot chain line H indicates that the cooling water is stable. Equal to the flow rate of the starting valve. Also, the symbol J is the amount of cooling water in the equipment cooler equipped with a temperature control valve that automatically adjusts the amount of cooling water, and the sum with the amount of cooling water H for miscellaneous equipment in the previous season is slightly lower than the cooling water pump design point P. It is configured as follows. In Fig. 5, the horizontal axis shows the cooling water amount Q in %, and the vertical axis shows the cooling water pressure p in Kg/Cm2, where A is the discharge pressure characteristic of the cooling water pumps 2a and 2b, and B is: Similarly, C indicates the inlet pressure characteristic of the pressure regulating valve 32, C indicates the outlet pressure characteristic, and D indicates the pressure characteristic of the return main pipe 15.

特性曲線AとBとの差Nは、冷却水ポンプ2a,2bの
吐出側から調節弁32入口までの管路の抵抗損失を表わ
し、ここを流れる流量が増大するにつれて損失が大きく
なることを示している。特性曲線CとDとの差Tは、圧
力調節計42に与えられた設定圧力であつて、この実施
例においては、0.5kg/Cnl2に設定されている
。Lは、戻り母管15から冷却水ポンプ2a,2b(7
)吸込側に至る管路の圧力損失を表わしている。特性曲
線BとCとの差は、調節弁32の出入口差圧を示してお
り、冷却水量0のときは入口圧力6kg/c]N2と出
口圧力25kg/Cm2との差3.5kg/Cnl2で
あつたものが、冷却水量Qが27%,50%,100%
と変化するにつれ、差圧Mは、差圧M1=3.4kg/
Cm・,M2=2.9kg/Cm2,M3=0.7kg
/Cnl2のように減少する。
The difference N between the characteristic curves A and B represents the resistance loss in the pipe from the discharge side of the cooling water pumps 2a, 2b to the inlet of the control valve 32, and indicates that the loss increases as the flow rate increases. ing. The difference T between the characteristic curves C and D is the set pressure given to the pressure regulator 42, and in this embodiment is set to 0.5 kg/Cnl2. L is the cooling water pump 2a, 2b (7) from the return main pipe 15.
) represents the pressure loss in the pipeline leading to the suction side. The difference between characteristic curves B and C indicates the differential pressure at the inlet and outlet of the control valve 32, and when the amount of cooling water is 0, the inlet pressure is 6 kg/c] The difference between N2 and outlet pressure 25 kg/Cm2 is 3.5 kg/Cnl2. For hot items, cooling water amount Q is 27%, 50%, 100%
As the pressure changes, the differential pressure M1=3.4kg/
Cm・, M2=2.9kg/Cm2, M3=0.7kg
/Cnl2.

ここで符号Kはヘツドタンクの静水頭を示している。第
6図は、調節弁の開度を一定に保つたときの弁の入口と
出口の圧力差Pと流量Qの関係を示したもので、Wは開
度13%、xは開度24%、Yは開度80%の特性を示
している。
Here, the symbol K indicates the hydrostatic head of the head tank. Figure 6 shows the relationship between the pressure difference P between the inlet and outlet of the control valve and the flow rate Q when the opening of the control valve is kept constant, where W is the opening of 13% and x is the opening of 24%. , Y indicates the characteristic of an opening degree of 80%.

すなわち冷却水量に対する調節弁出入口差圧pの変化を
示しているが、W特性において、冷却水量の変化量a1
を全冷却水量の±1%としたときの調節弁出入口差圧の
変化量P1は、約1kg/Cnl2の値を示している。
同様に、曲線xは圧力調節弁開度24%とした場合の特
性曲線で、冷却水量の変化量A2を全冷却水量の±1%
としたときの調節弁出入口差圧の変化量P2は、約0.
4kg/Cm・の値を示しており、W特性に比し約1/
2以下におさえることができることを示している。第6
図の特性は、調節弁の開度を一定にしておき、流量が変
動したときの出口と入口の差圧がどう変るかを見たもの
であるが、調節弁32は、その機能から、圧力調節計4
2の検出圧力が設定された圧力に一致するように調節弁
32の開度を調節するものであるが、低開度状態で所定
の圧力になるよう調節弁の開度を調整した場合、調節弁
の僅かな開度変化で下流側圧力は大巾に変化してしまい
、制御の安定性が得られない問題がある。
In other words, it shows the change in the differential pressure p at the inlet and outlet of the control valve with respect to the amount of cooling water, but in the W characteristic, the amount of change a1 in the amount of cooling water
The amount of change P1 in the differential pressure at the inlet and outlet of the control valve when is set to ±1% of the total amount of cooling water shows a value of about 1 kg/Cnl2.
Similarly, curve x is a characteristic curve when the pressure control valve opening degree is 24%, and the amount of change A2 in the amount of cooling water is ±1% of the total amount of cooling water.
When this happens, the amount of change P2 in the differential pressure at the inlet and outlet of the control valve is approximately 0.
It shows a value of 4 kg/Cm・, which is about 1/1 compared to the W characteristic.
This shows that it is possible to keep it to 2 or less. 6th
The characteristics shown in the figure are obtained by keeping the opening degree of the control valve constant and looking at how the differential pressure between the outlet and inlet changes when the flow rate fluctuates. Controller 4
The opening degree of the control valve 32 is adjusted so that the detected pressure in step 2 matches the set pressure. There is a problem in that the pressure on the downstream side changes greatly due to a slight change in the opening degree of the valve, making it difficult to obtain control stability.

特に、第5図にM1で示す如く、調整弁32によつて、
大きな差圧M1を与えるような場合この傾向が著しい。
本発明者等は、冷却水量は、発電所の主タービン及び発
電機の停止時には極端に少く (最大流量の約27%)
なることに鑑み、このような運転条件にある場合のみ安
全起動弁を開くようにした。
In particular, as shown by M1 in FIG.
This tendency is remarkable when a large differential pressure M1 is applied.
The inventors discovered that the amount of cooling water is extremely small (approximately 27% of the maximum flow rate) when the main turbine and generator of the power plant are stopped.
In consideration of this, we decided to open the safety start valve only under these operating conditions.

安全起動弁36に直列にオリフイス37が挿入され、こ
のオリフイス37は弁36が開いたとき、安全起動配管
16中を第5図のIの流量が流れるようにその大きさを
設定している。したがつて、本発明においては、圧力調
節弁32には、いかなる状態であつても第5図のH+1
つまり50%の流量が流れることになるので、調節弁の
開度は24%近辺にあつて、流量の変化による調節弁出
口圧力の変化は小さいものとなる。
An orifice 37 is inserted in series with the safety start valve 36, and the size of the orifice 37 is set so that a flow rate I in FIG. 5 flows through the safety start piping 16 when the valve 36 is opened. Therefore, in the present invention, the pressure regulating valve 32 has the pressure H+1 in FIG.
In other words, since 50% of the flow rate will flow, the opening degree of the control valve will be around 24%, and the change in the control valve outlet pressure due to the change in flow rate will be small.

〔発明の効果〕以上、本発明によれば、発電所の必要冷
却水量が少ない場合においても、冷却水圧力の変動を最
小限におさえて、安全に運転を継続することができる。
[Effects of the Invention] As described above, according to the present invention, even when the required amount of cooling water in a power plant is small, fluctuations in cooling water pressure can be kept to a minimum and operation can be continued safely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の発電所機器冷却水装置を示した系統図、
第2図は本発明の一実施例を示す同系統図、第3図は前
記実施例に適用される安定起動弁の制御系統図、第4図
は発電機出力と冷却水流量との関係図、第5図は冷却水
量と冷却水圧力との関係図、第6図は冷却水流量と冷却
水圧力調節弁出入口差圧の関係図である。 2・・・冷却水ポンプ、3・・・冷却水冷却器、8・・
・各機器付属の冷却群、16・・・安定起動配管、32
・・・冷却水圧力調節弁、33a,33b,33c・・
・温度調節弁、36・・・安定起動弁。
Figure 1 is a system diagram showing a conventional power plant equipment cooling water system.
Fig. 2 is a system diagram showing one embodiment of the present invention, Fig. 3 is a control system diagram of the stable start valve applied to the embodiment, and Fig. 4 is a diagram of the relationship between generator output and cooling water flow rate. , FIG. 5 is a diagram showing the relationship between the amount of cooling water and the pressure of the cooling water, and FIG. 6 is a diagram showing the relationship between the flow rate of the cooling water and the differential pressure at the outlet and outlet of the cooling water pressure regulating valve. 2... Cooling water pump, 3... Cooling water cooler, 8...
・Cooling group attached to each device, 16... Stable startup piping, 32
...Cooling water pressure control valve, 33a, 33b, 33c...
- Temperature control valve, 36... stable start valve.

Claims (1)

【特許請求の範囲】 1 冷却水ポンプから吐出される冷却水が、冷却水圧力
調節弁により、発電所機器の付属冷却器の冷却水入口側
と出側の差圧を一定に保持されて前記付属冷却器に供給
される発電所機器冷却水の制御方法において、前記付属
冷却器の必要水量が少ないときに、安定起動弁を開いて
冷却水を然記冷却器の上流より下流へバイパスさせ、前
記冷却水圧力調節弁の調節水量を多くして、冷却水圧力
の変動を極力少なくしたことを特徴とする発電所機器冷
却水の制御方法。 2 発電所機器に付属する冷却器と、この冷却器に冷却
水を供給する冷却水ポンプと、冷却器の入口側と出口側
との冷却水圧力差を一定に保持する冷却水圧力調節弁と
を有する発電所機器冷却水の制御装置において、前記調
節弁の下流側にあつて、前記付属冷却器の上流と下流と
を結んでいて、前記付属冷却器の必要水量が少ないとき
に開く安定起動弁を有する配管を備え、前記冷却水圧力
調節弁の調節水量を多くして、冷却水圧力の変動を極力
少なくしたことを特徴とする発電所機器冷却水の制御装
置。
[Scope of Claims] 1. The cooling water discharged from the cooling water pump is maintained at a constant differential pressure between the cooling water inlet side and the outlet side of the attached cooler of the power plant equipment by the cooling water pressure control valve. A method for controlling power plant equipment cooling water supplied to an auxiliary cooler, when the amount of water required by the auxiliary cooler is small, opening a stable start valve to bypass the cooling water from upstream to downstream of the auxiliary cooler; A method for controlling cooling water for power plant equipment, characterized in that fluctuations in cooling water pressure are minimized by increasing the amount of water regulated by the cooling water pressure regulating valve. 2 A cooler attached to power plant equipment, a cooling water pump that supplies cooling water to the cooler, and a cooling water pressure control valve that maintains a constant cooling water pressure difference between the inlet and outlet sides of the cooler. In the power plant equipment cooling water control device, the control valve is located on the downstream side of the control valve, connects the upstream and downstream of the attached cooler, and opens when the amount of water required by the attached cooler is small. 1. A power plant equipment cooling water control device, comprising a pipe having a valve, and increasing the amount of water regulated by the cooling water pressure regulating valve to minimize fluctuations in cooling water pressure.
JP12386779A 1979-09-28 1979-09-28 Power plant equipment cooling water control method and device Expired JPS5953562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12386779A JPS5953562B2 (en) 1979-09-28 1979-09-28 Power plant equipment cooling water control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12386779A JPS5953562B2 (en) 1979-09-28 1979-09-28 Power plant equipment cooling water control method and device

Publications (2)

Publication Number Publication Date
JPS5647813A JPS5647813A (en) 1981-04-30
JPS5953562B2 true JPS5953562B2 (en) 1984-12-26

Family

ID=14871336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12386779A Expired JPS5953562B2 (en) 1979-09-28 1979-09-28 Power plant equipment cooling water control method and device

Country Status (1)

Country Link
JP (1) JPS5953562B2 (en)

Also Published As

Publication number Publication date
JPS5647813A (en) 1981-04-30

Similar Documents

Publication Publication Date Title
CN102543235B (en) System of controlling steam generator level during main feed-water control valve transfer for nuclear power plant
US4207842A (en) Mixed-flow feedwater heater having a regulating device
US6082095A (en) Fuel supply control unit for gas turbine
CN107165687A (en) A kind of flexibility cuts off the extraction for heat supply system and control method of low pressure (LP) cylinder
KR20200115025A (en) Power plant and output increase control method of power plant
US5435122A (en) Temperature control method and apparatus for the air supply in PFBC plants
JPS60222511A (en) Thermal power generating equipment
JPS5953562B2 (en) Power plant equipment cooling water control method and device
JPS61101608A (en) Load control of steam turbine in complex cycle generation plant
JP3212895B2 (en) Gas turbine fuel supply device and control device therefor
JPH10292902A (en) Main steam temperature controller
CN220229639U (en) Stable pressure moisturizing device and system
CN218644350U (en) ORC power generation system working medium pump automatic protection control system
GB2176248A (en) Turbine control
KR102253055B1 (en) Hydro Power Generation using surplus water of circulation water pump
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPS5948696A (en) Steam distributing device of reactor plant
CN117386511A (en) TCA cooling water control method and system
JPS6112195B2 (en)
JP2632147B2 (en) Combined cycle plant
JP3040029B2 (en) Auxiliary steam supply method for combined cycle power plant
JPH0968003A (en) Cooling water unit for turbine auxiliary machine
JP2001012487A (en) Bearing cooling device
JPS59110811A (en) Steam turbine plant
JPS6079107A (en) Turbine starting method