JPS60222511A - Thermal power generating equipment - Google Patents

Thermal power generating equipment

Info

Publication number
JPS60222511A
JPS60222511A JP6059085A JP6059085A JPS60222511A JP S60222511 A JPS60222511 A JP S60222511A JP 6059085 A JP6059085 A JP 6059085A JP 6059085 A JP6059085 A JP 6059085A JP S60222511 A JPS60222511 A JP S60222511A
Authority
JP
Japan
Prior art keywords
pressure
pump
valve
liquefied
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6059085A
Other languages
Japanese (ja)
Other versions
JPS6213490B2 (en
Inventor
Kiyoshi Sasaki
佐々木 亀代司
Yoshio Okabayashi
岡林 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6059085A priority Critical patent/JPS60222511A/en
Publication of JPS60222511A publication Critical patent/JPS60222511A/en
Publication of JPS6213490B2 publication Critical patent/JPS6213490B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps
    • F01K9/023Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable a pump to be prevented from a trouble before its occurrence, by providing an automatic regulating valve parallelly to an operating valve in a turbine bypass passage and regulating the pressure of a liquefied thermal medium in a suction side of the pump so as to be higher than the saturated pressure through a pressure regulating meter. CONSTITUTION:An equipment, in its operation from a vaporizing mode to a thermal power generating mode, closes a valve 20 and starts a pump 7 at a point of time the liquid level of a liquefied thermal medium in a condenser 2 increases. The equipment, detecting this liquefied thermal medium in a suction side of the pump for the temperature by a temperature detector 29 while for the pressure by a pressure regulating meter 28, obtains the saturated temperature in an arithmetic device 30 and controls an automatic regulating valve 31 to be opened and closed by the pressure regulating meter 28 applying the higher pressure as the preset value. Accordingly, a trouble of the pump can be prevented before the occurrence by holding the pressure in the suction side of the pump 7 to the saturated pressure or more and eliminating the generation of cavitation of the pump. Further starting efficiency is improved by reducing a starting time to a necessary minimum limit.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、液化天然ガスなどの低温液化ガスの保有する
冷熱を利用して電気エネルギを取出す冷熱発電設備tこ
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to cold power generation equipment that extracts electrical energy by utilizing the cold heat possessed by low-temperature liquefied gas such as liquefied natural gas.

〔発明の背景〕[Background of the invention]

冷熱発電設備の運転モードとしては、低温液化ガスの気
化のみを行う気化モードと発電を行う冷熱発電モードと
があり、運転順序としては、まず、気化モード運転に入
った後に冷熱発電モードへ移行するのが一般的である。
There are two operating modes for cold power generation equipment: a vaporization mode that only vaporizes low-temperature liquefied gas, and a cold power generation mode that generates electricity.The operating order is that the system first enters the vaporization mode and then shifts to the cold power generation mode. is common.

従来の冷熱発電設備例を第1図により説明する。An example of conventional cold power generation equipment will be explained with reference to FIG.

第1図は、従来の冷熱発電設備の系統図で、導管1を経
て凝縮器2tこ供給さr、た気化熱媒体は、導管3を経
て供給さnる低温液化カスと熱交換することで冷却、液
化され、る。又、低温液化カスは、その熱媒体eこ上り
加熱、気化さr、導管4を経て、例えば、火力発電所ボ
イラ(図示省略)等地の需要先へ送給さjる。一方、凝
縮器で液化さrた液化熱媒体は、導管5,21.弁20
.導管22゜8、逆止弁9.導管10を経て凝縮器2よ
りも低位置に設置された蒸発器Jul乙供給され、ここ
で導管12を経て供給さ1.る海水等の加熱源で加熱。
Fig. 1 is a system diagram of a conventional cold power generation facility, in which the vaporized heat medium is supplied to a condenser 2t through a conduit 1, and the vaporized heat medium exchanges heat with the low-temperature liquefied waste supplied through a conduit 3. It is cooled and liquefied. Further, the low-temperature liquefied scum is heated by the heating medium e, vaporized, and sent through a conduit 4 to a local demand destination, such as a thermal power plant boiler (not shown). On the other hand, the liquefied heat medium liquefied in the condenser is transferred to conduits 5, 21. valve 20
.. Conduit 22°8, check valve 9. It is supplied via a conduit 10 to an evaporator installed at a lower position than the condenser 2, where it is supplied via a conduit 12. Heated with a heating source such as seawater.

気化される。その後、この気化熱媒体は、導管】3.2
4.弁23.導管25,1を経て凝縮器2に環流さr、
ここで再び冷却、液化される。気化モード運転では、こ
のようなサイクルを繰返しつつ運転が続行され、熱媒体
の運転圧力は、この場付、熱媒体の種類文び加熱源の温
度1こよっても異なるが、一般的tこは数Kp/a/G
となり、又、凝縮器2とlX発器1】とは、はぼ均圧状
態で運転さrる。
vaporized. Thereafter, this vaporized heat transfer medium is transferred to the conduit ]3.2
4. Valve 23. refluxed to the condenser 2 via the conduit 25,1;
Here it is cooled and liquefied again. In vaporization mode operation, the operation continues while repeating such a cycle, and the operating pressure of the heating medium varies depending on the situation, the type of heating medium, and the temperature of the heating source, but in general, Several Kp/a/G
In addition, the condenser 2 and the lX generator 1 are operated under almost equal pressure conditions.

次tこ、冷熱発電モードへの移行方法1こついて説明す
る。
Next, the first method of transitioning to cold power generation mode will be explained.

冷熱発電モードにあっては、膨張タービン(以下タービ
ンと略)17を駆動するためtこ、タービン】7の入口
圧力よりも出口圧力の方が当然低く、例えば蒸発器J1
の圧力が数Ky/−Gであるの1こ対し凝縮器2の圧力
はほぼ大気圧と低いため凝縮器2での熱媒体を蒸発器】
1に供給するために熱媒体を昇圧するポンプ7を運転す
る必要がある。
In the cold power generation mode, in order to drive the expansion turbine (hereinafter referred to as turbine) 17, the outlet pressure of the turbine is naturally lower than the inlet pressure of the turbine.
The pressure in the condenser 2 is low, almost atmospheric pressure, whereas the pressure in the condenser 2 is a few Ky/-G, so the heat medium in the condenser 2 is transferred to the evaporator
1, it is necessary to operate the pump 7 that increases the pressure of the heat medium.

その運転手順は、一般的に先ず弁20を閉止し、その結
果、凝縮器2内の熱媒液の液面が上昇し、こrが所定の
液面位迄上昇したことを液面計26で確認した時点でポ
ンプ7を起動する。次tこ、弁23を徐閉すること1こ
より凝縮器2の内圧を徐々に低下せしめ、所定圧力まで
低下したことを圧力計271ごて確認した時点で弁】5
を開きタービン17を起動すると共1こ弁23を閉止す
る。この結果、蒸発器1】からの高圧の気化熱媒体は導
管13.14.弁】5.導管】6を経てタービン17に
供給さrタービン】7は回転を開始する。この気化熱媒
体はタービン17を回転させることtこよりその保有す
るエネルギを機械エネルギtこ変換し、更に、発電91
Bにより電気エネルギ1こ変換して取出され、利用さr
る。タービン17tこて仕事をした結果、温度、圧力へ
tこ低下した気化熱媒体は導管】9.】を経て凝縮器1
に環流さr、このサイクルを繰り返しつつ冷熱発電運転
が継続さrる。
Generally, the operating procedure is to first close the valve 20, and as a result, the level of the heat transfer liquid in the condenser 2 rises, and the level gauge 2 indicates that the level has risen to a predetermined level. When confirmed, start pump 7. Next, the internal pressure of the condenser 2 is gradually lowered by gradually closing the valve 23, and when it is confirmed with the pressure gauge 271 that the pressure has decreased to a predetermined level, the valve 23 is closed gradually.
When the turbine 17 is opened and the turbine 17 is started, the single valve 23 is closed. As a result, the high pressure vaporized heat transfer medium from the evaporator 1] is transferred to the conduits 13, 14. Valent] 5. The turbine 17 is supplied through the conduit [6] and the turbine [7] starts rotating. By rotating the turbine 17, this vaporized heat medium converts the energy it possesses into mechanical energy, and further generates electricity 91.
One electric energy is converted and taken out by B, and it is used.
Ru. As a result of 17 tons of trowel work performed by the turbine, the vaporized heat medium whose temperature and pressure have decreased by 17 tons is transferred to the conduit]9. ] to condenser 1
The cold power generation operation continues while repeating this cycle.

尚、ポンプ7は液化ガス用ポンプでルするため常1こ所
定のNPSH即ち過冷却の状態で運転する必要がある。
Incidentally, since the pump 7 is a pump for liquefied gas, it must be operated in a predetermined NPSH state, that is, in a supercooled state.

すなわち、過冷却の状態で運転しないと−ポンプ17内
にて多着の気泡が発生しキャビテーションを起し圧送運
転不能となる。
That is, if the pump 17 is not operated in a supercooled state, a large number of air bubbles will be generated in the pump 17, causing cavitation and making pumping operation impossible.

また、この種のポンプの軸受部の潤滑は処理流体そのも
のを用いているため、極端な場合は軸受焼損などの重大
事故につながる慣れがある。
Furthermore, since the processing fluid itself is used to lubricate the bearings of this type of pump, in extreme cases this can lead to serious accidents such as bearing burnout.

このような冷熱発電設備では、ポンプのトラブルを避け
るべく、タービンをバイパスした導管の途中tこ設け゛
らrた弁23を・ゆっくり操作しているが、それでも圧
力降下速度が許容範囲を超えてポンプ7がキャビテーシ
ョンを起しトリップする起動失敗が生じる可能性を残し
ている。
In such cold power generation equipment, in order to avoid problems with the pump, the valve 23, which is installed in the middle of the conduit that bypasses the turbine, is operated slowly, but the pressure drop rate still exceeds the allowable range. There remains a possibility that the pump 7 will cavitate and trip, resulting in startup failure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ポンプのトラブルを生じさせない冷熱
発電設備を提供することである。
An object of the present invention is to provide a cold-thermal power generation facility that does not cause problems with pumps.

〔発明の概要〕[Summary of the invention]

大発明ハ、タービンをバイパスするバイパス通路の途中
?こ操作用の弁と並列に自動調節弁を設け、さら1こ昇
圧用のポンプ入側Vこおける液化熱媒体の圧力をその飽
和圧力よりも高圧力1こ維持するようをこその自動調節
弁を自動調節する圧力調節計な設けなことを特徴とする
Great invention, in the middle of the bypass passage that bypasses the turbine? An automatic control valve is installed in parallel with this operating valve, and is designed to maintain the pressure of the liquefied heat medium at the inlet side of the pump for pressure increase by one point higher than its saturation pressure. It is characterized by the provision of a pressure regulator that automatically adjusts the pressure.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を具体的実施例に基づき詳細ンこ説明する
Hereinafter, the present invention will be explained in detail based on specific examples.

第2図は、本発明の一実施例tこおける冷熱発電設備の
系統図である。なお、第2図をこおいて、第1図と同−
機器等は同一符号を付している。第2図tこおいて、2
8は圧力調節計であり、ポンプ7の入側1こおける液化
熱媒体の圧力を検出し、この圧力を飽和圧力よりも高圧
力である設定圧力[こするための調節信号を出力する。
FIG. 2 is a system diagram of a cold power generation facility in an embodiment of the present invention. In addition, with reference to Figure 2, the same as Figure 1.
Equipment etc. are given the same symbols. In Fig. 2, 2
Reference numeral 8 denotes a pressure regulator, which detects the pressure of the liquefied heat medium at the inlet side of the pump 7, and outputs an adjustment signal for adjusting this pressure to a set pressure higher than the saturation pressure.

29は温度検出器であり、ポンプ70入側の液化熱媒体
の温度を検出する。この温度検出器29の出力は演算器
30に入力され、る。演算器30は、入力された温度を
基に・該温度tこおける液化熱媒体の飽和圧力をめ、こ
れよりも高圧力となる圧力設定値を圧力調節計28#こ
出力する。3Jは自動調節弁であり、圧力調節計28の
出力する調節信号tこよって自動調節される。この調節
弁31は、弁15と膨張タービン17とをバイパスする
通路の途中eこ設けらrた弁23rこ並列に設置さ釘、
でいる。32と33は導管である。
A temperature detector 29 detects the temperature of the liquefied heat medium on the inlet side of the pump 70. The output of this temperature detector 29 is input to a computing unit 30. Based on the input temperature, the calculator 30 determines the saturation pressure of the liquefied heat medium at the temperature t, and outputs a pressure setting value higher than this to the pressure regulator 28#. 3J is an automatic control valve, which is automatically adjusted by the control signal t output from the pressure regulator 28. This control valve 31 is provided in the middle of a passage that bypasses the valve 15 and the expansion turbine 17, and the valves 23 and 23 are installed in parallel.
I'm here. 32 and 33 are conduits.

このような構成において、気化モード運転から冷熱発電
モード運転への移行は次のよう?こ行なわrる。まず、
弁20を閉止する。この結果、凝縮器2内の液化熱媒体
の液面が上昇し、所定の液面位まで上昇した時点でポン
プ7を起動する。この起動tこより、ポンプ7には液化
熱媒体が吸入されるが、この吸入側(入側)の液化熱媒
体の温度は温度検出器29で検出される。同様をこ、液
化熱媒体の圧力も圧力調節計28で検出さnる。演算器
30は、温度検出器29の出力を入力して、液化熱媒体
のその温度トこ対する飽和圧力をめ、こr。
In this configuration, how does the transition from vaporization mode operation to cold power generation mode operation occur? Let's do this. first,
Close valve 20. As a result, the liquid level of the liquefied heat medium in the condenser 2 rises, and when the liquid level rises to a predetermined level, the pump 7 is started. From this start-up, the liquefied heat medium is sucked into the pump 7, and the temperature of the liquefied heat medium on the suction side (inlet side) is detected by the temperature detector 29. Similarly, the pressure of the liquefied heat medium is also detected by the pressure regulator 28. The computing unit 30 inputs the output of the temperature detector 29 and calculates the saturation pressure of the liquefied heat medium at that temperature.

よりも高い圧力を圧力調節計28の設定圧力として出力
する。圧力調節計28は、その設定圧力と検出した実際
の圧力とを比較し、実際の圧力が設定圧力より高い場8
1こは自動調節弁3】を閉方向に、逆に低い場81こは
自動調節弁、3】を開方向に作動させる。例えば、弁2
3を急閉した結果、ポンプ7吸入側の圧力が圧力調節計
28の設定値よりも低くならんとした時は自動調節弁3
1が自動的に開くのでポンプ7吸入側は圧力調節計28
の設定値、即ち過冷却状態を維持する。そして、圧力低
下により熱媒体の温度が低下したなら自動的tこ圧力調
節計28の設定値を下げるので、この動作を繰り返しつ
つ圧力は低下の一途をたどる。そして凝縮器2の内圧が
所定の圧力、例えば、0.5KP/ ci G迄低下し
たことが圧力計27で確認された時点で弁15を開きタ
ービン17を起動する。
A pressure higher than that is outputted as the set pressure of the pressure regulator 28. The pressure regulator 28 compares the set pressure with the detected actual pressure and determines if the actual pressure is higher than the set pressure.
1), the automatic control valve 3] is operated in the closing direction, and conversely, when the temperature is low, the automatic control valve 3] is operated in the open direction. For example, valve 2
When the pressure on the suction side of the pump 7 does not become lower than the set value of the pressure regulator 28 as a result of suddenly closing the automatic control valve 3,
1 opens automatically, so the pressure regulator 28 is on the suction side of the pump 7.
The set value of , that is, the supercooled state is maintained. Then, when the temperature of the heat medium decreases due to the pressure drop, the set value of the pressure regulator 28 is automatically lowered, and as this operation is repeated, the pressure continues to drop. Then, when it is confirmed by the pressure gauge 27 that the internal pressure of the condenser 2 has decreased to a predetermined pressure, for example, 0.5 KP/ciG, the valve 15 is opened and the turbine 17 is started.

この結果、蒸発器J1からの気化熱媒体は導管】3.1
4.升15.導管】6を経てタービン17に供給され、
タービン17は回転を開始する。
As a result, the vaporized heat transfer medium from the evaporator J1 is transferred to the conduit】3.1
4. Square 15. Conduit] 6 is supplied to the turbine 17,
Turbine 17 starts rotating.

本実施例のような冷熱発電設備では、ポンプの吸入部の
状態を如何なる場合でも自動的に過冷却状態に維持でき
るので、ポンプのキャビテーションの発生が防止でき、
こrL、に伴なうポンプ停止による起動失敗や、ポンプ
軸受の焼損事故を充分に防止できるのみならず、起動時
間が必要最小限に短縮できるため起動効率が良く経済的
となる。
In the cold thermal power generation equipment as in this embodiment, the state of the suction part of the pump can be automatically maintained in a supercooled state under any circumstances, so the occurrence of cavitation in the pump can be prevented.
Not only is it possible to sufficiently prevent startup failures due to pump stoppage and burnout accidents of the pump bearings due to this rL, but also the startup time can be shortened to the necessary minimum, resulting in high startup efficiency and economy.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によnば、ポンプ入側の圧力
をその飽和圧力以上?こ保つことができるので、ポンプ
のトラブルを生じさせることがなくなる。
As explained above, according to the present invention, the pressure on the inlet side of the pump can be set to be equal to or higher than its saturation pressure. Since this can be maintained, problems with the pump will not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の冷熱発電設備の系統図、第2図は本発
明の一実施例を示す冷熱発電設備の系統図である。 】、3から6.8,10.12から14.16゜19.
2]、22,24,25,32.33・・・・・・導管
、2・・・・・11器、7・・・・・・ポンプ、9・・
・・・・逆止弁、1】・・・・・・蒸発器、15 、2
0 、23・・・・・・弁、17・・・・・・タービン
、J8・・・・・・発電機、26・・・・・・液面針、
27・・・・・・圧力計、28・・・・・・圧力調節計
、29・・・・・・温度検出器、30・・・・・・演算
器、31・・・・・・自動調節弁 代理人 弁理士 小 川 勝 男 才1図
FIG. 1 is a system diagram of a conventional cold power generation facility, and FIG. 2 is a system diagram of a cold power generation facility showing an embodiment of the present invention. ], 3 to 6.8, 10.12 to 14.16°19.
2], 22, 24, 25, 32. 33... conduit, 2... 11 equipment, 7... pump, 9...
...Check valve, 1] ...Evaporator, 15, 2
0, 23... Valve, 17... Turbine, J8... Generator, 26... Liquid level needle,
27...Pressure gauge, 28...Pressure regulator, 29...Temperature detector, 30...Calculator, 31...Automatic Control valve agent Patent attorney Masaru Ogawa Masaru 1 figure

Claims (1)

【特許請求の範囲】[Claims] 1、 低温液化ガスの冷熱により気化熱媒体を液化する
凝縮器と、液化熱媒体を昇圧するポンプと、蒸発器と、
第】の弁と、該蒸発器で気化され、た気化熱媒体の供給
を受け駆動する膨張ターピンと、前記叡縮器とを順次直
列に接続した熱サイクルを有し、ll′ff記ポンプを
バイパスする通路の途中tこ第2の弁と、前記第1の弁
とOff記膨張タービンとをバイパスする通路の途中に
第3の弁と、前記膨張ターピンにより駆動される発電機
とを備えた冷熱発電設備eこおいて、前記第3の弁と並
列を乙第4の弁を設けると共tこ前記ポンプの入側tこ
おける液化熱媒体の圧力を飽和圧力よりも高圧力に維持
するように該第4の弁を自動調節する圧力調節計を設け
たことを特徴とする冷熱発電設備。
1. A condenser that liquefies the vaporized heat medium using the cold heat of the low-temperature liquefied gas, a pump that increases the pressure of the liquefied heat medium, and an evaporator.
It has a thermal cycle in which the valve No.], an expansion turpin driven by the supply of the vaporized heat medium vaporized by the evaporator, and the condenser are connected in series, and the pump No. 1'ff is connected in series. A second valve is provided in the middle of the bypass passage, a third valve is provided in the middle of the passage that bypasses the first valve and the expansion turbine, and a generator driven by the expansion turbine. In the cold power generation equipment, a fourth valve is provided in parallel with the third valve, and the pressure of the liquefied heat medium at the inlet side of the pump is maintained at a higher pressure than the saturation pressure. A cold-thermal power generation facility characterized by being provided with a pressure regulator that automatically adjusts the fourth valve.
JP6059085A 1985-03-27 1985-03-27 Thermal power generating equipment Granted JPS60222511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6059085A JPS60222511A (en) 1985-03-27 1985-03-27 Thermal power generating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6059085A JPS60222511A (en) 1985-03-27 1985-03-27 Thermal power generating equipment

Publications (2)

Publication Number Publication Date
JPS60222511A true JPS60222511A (en) 1985-11-07
JPS6213490B2 JPS6213490B2 (en) 1987-03-26

Family

ID=13146601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6059085A Granted JPS60222511A (en) 1985-03-27 1985-03-27 Thermal power generating equipment

Country Status (1)

Country Link
JP (1) JPS60222511A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012021881A2 (en) 2010-08-13 2012-02-16 Cummins Intellectual Property, Inc. Rankine cycle condenser pressure control using an energy conversion device bypass valve
US8893495B2 (en) 2012-07-16 2014-11-25 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method
US8919328B2 (en) 2011-01-20 2014-12-30 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system and method with improved EGR temperature control
US9021808B2 (en) 2011-01-10 2015-05-05 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US9140209B2 (en) 2012-11-16 2015-09-22 Cummins Inc. Rankine cycle waste heat recovery system
JP2015203417A (en) * 2014-04-16 2015-11-16 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Device for controlling closed loop working based on rankine cycle and method using the same
US9217338B2 (en) 2010-12-23 2015-12-22 Cummins Intellectual Property, Inc. System and method for regulating EGR cooling using a rankine cycle
US9334760B2 (en) 2011-01-06 2016-05-10 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US9470115B2 (en) 2010-08-11 2016-10-18 Cummins Intellectual Property, Inc. Split radiator design for heat rejection optimization for a waste heat recovery system
US9702272B2 (en) 2010-12-23 2017-07-11 Cummins Intellectual Property, Inc. Rankine cycle system and method
US9845711B2 (en) 2013-05-24 2017-12-19 Cummins Inc. Waste heat recovery system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6610145B2 (en) * 2015-10-07 2019-11-27 いすゞ自動車株式会社 Power generation device and method for controlling power generation device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9470115B2 (en) 2010-08-11 2016-10-18 Cummins Intellectual Property, Inc. Split radiator design for heat rejection optimization for a waste heat recovery system
WO2012021881A3 (en) * 2010-08-13 2012-06-07 Cummins Intellectual Property, Inc. Rankine cycle condenser pressure control using an energy conversion device bypass valve
CN103180554A (en) * 2010-08-13 2013-06-26 康明斯知识产权公司 Rankine cycle condenser pressure control using an energy conversion device bypass valve
WO2012021881A2 (en) 2010-08-13 2012-02-16 Cummins Intellectual Property, Inc. Rankine cycle condenser pressure control using an energy conversion device bypass valve
US9745869B2 (en) 2010-12-23 2017-08-29 Cummins Intellectual Property, Inc. System and method for regulating EGR cooling using a Rankine cycle
US9702272B2 (en) 2010-12-23 2017-07-11 Cummins Intellectual Property, Inc. Rankine cycle system and method
US9217338B2 (en) 2010-12-23 2015-12-22 Cummins Intellectual Property, Inc. System and method for regulating EGR cooling using a rankine cycle
US9334760B2 (en) 2011-01-06 2016-05-10 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US9021808B2 (en) 2011-01-10 2015-05-05 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US9638067B2 (en) 2011-01-10 2017-05-02 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US8919328B2 (en) 2011-01-20 2014-12-30 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system and method with improved EGR temperature control
US11092069B2 (en) 2011-01-20 2021-08-17 Cummins Inc. Rankine cycle waste heat recovery system and method with improved EGR temperature control
US9702289B2 (en) 2012-07-16 2017-07-11 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method
US8893495B2 (en) 2012-07-16 2014-11-25 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method
US9140209B2 (en) 2012-11-16 2015-09-22 Cummins Inc. Rankine cycle waste heat recovery system
US9845711B2 (en) 2013-05-24 2017-12-19 Cummins Inc. Waste heat recovery system
JP2015203417A (en) * 2014-04-16 2015-11-16 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Device for controlling closed loop working based on rankine cycle and method using the same

Also Published As

Publication number Publication date
JPS6213490B2 (en) 1987-03-26

Similar Documents

Publication Publication Date Title
JP4343427B2 (en) Steam power plant output adjustment method and its steam power plant
US20140345279A1 (en) Thermal Energy Conversion Method
US6360535B1 (en) System and method for recovering energy from an air compressor
JPS60222511A (en) Thermal power generating equipment
JPH0565808A (en) Steam turbine plant supplying heat
CN116667383A (en) Heat pump and low-adding coupling thermal power generating unit frequency modulation system and method
JPS59138707A (en) Rankine engine
US4211932A (en) Power recovery system
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
JP2918743B2 (en) Steam cycle controller
KR20170134127A (en) Combined heat and power system with multiple expanders
JPS61145305A (en) Control device for turbine plant using hot water
CN218644350U (en) ORC power generation system working medium pump automatic protection control system
JP2531755B2 (en) Water supply control device
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPS59145307A (en) Control system of bleeder condensing turbine in thermal and power generation plant
KR20180017752A (en) Combined heat and power system with multiple expanders
JPS5810103A (en) Turbine controller
SU926330A1 (en) Method of operating steam turbine
SU354167A1 (en) THERMAL STEAM TURBINE
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor
JPS6327204Y2 (en)
JPH04103902A (en) Method and device for controlling feedwater to boiler
JPH056002B2 (en)
JPH0583744B2 (en)