JPH0968003A - Cooling water unit for turbine auxiliary machine - Google Patents

Cooling water unit for turbine auxiliary machine

Info

Publication number
JPH0968003A
JPH0968003A JP22497295A JP22497295A JPH0968003A JP H0968003 A JPH0968003 A JP H0968003A JP 22497295 A JP22497295 A JP 22497295A JP 22497295 A JP22497295 A JP 22497295A JP H0968003 A JPH0968003 A JP H0968003A
Authority
JP
Japan
Prior art keywords
cooling water
flow rate
turbine
turbine auxiliary
mother pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22497295A
Other languages
Japanese (ja)
Inventor
Osamu Okubo
修 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22497295A priority Critical patent/JPH0968003A/en
Publication of JPH0968003A publication Critical patent/JPH0968003A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent differential pressure at a throttle valve from becoming excessively large due to the pressure increase of cooling water in a system generated in association with the decrease of cooling water flow in the system. SOLUTION: Cooling water from a cooling water temperature regulating part 2 for regulating the temperature of cooling water to be fed to a plurality of turbine auxiliary machines is led to a turbine auxiliary machine 1a continuously controlling cooling water flow and to a turbine auxiliary machine 1b not continuously controlling cooling water flow, through a cooling water supply main pipe 7, and the cooling water after cooling the turbine auxiliary machines is returned to the cooling water temperature regulating part 2 through a cooling water return main pipe 8. When the supply main pipe pressure of the cooling water supply main pipe 7 exceeds the prescribed value, a by-pass valve 14 of a by-pass pipeline 12 branching off from the cooling water supply main pipe 7 and by-passing the turbine auxiliary machines so as to be connected to the cooling water return main pipe 8 is opened, and when the supply main pipe pressure becomes the prescribed value or less, the by-pass valve 14 is closed to return to normal operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発電プラント運転
に伴ってタービン補機で発生する熱を冷却するためのタ
ービン補機冷却水設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine auxiliary equipment cooling water facility for cooling heat generated in a turbine auxiliary equipment during operation of a power plant.

【0002】[0002]

【従来の技術】一般に、発電プラントにはタービン補機
を冷却するためのタービン補機冷却設備が設けられてい
る。冷却の対象となるタービン補機にはタービン付帯機
器用の熱交換器が設けられ、その熱交換器に冷却水を供
給してタービン補機を冷却するようにしている。例え
ば、タービン補機冷却設備は、タービン油冷却器、電動
機冷却器、空調用熱交換器などタービン付帯機器用の熱
交換器に冷却水を供給し冷却する。
2. Description of the Related Art Generally, a power plant is equipped with a turbine accessory cooling facility for cooling a turbine accessory. A turbine auxiliary machine to be cooled is provided with a heat exchanger for turbine auxiliary equipment, and cooling water is supplied to the heat exchanger to cool the turbine auxiliary machine. For example, the turbine auxiliary equipment cooling facility supplies cooling water to a turbine oil cooler, an electric motor cooler, a heat exchanger for an auxiliary device of the turbine such as a heat exchanger for air conditioning, and cools it.

【0003】図4に、従来のタービン補機冷却水設備を
示す。タービン補機1a、1bに供給する冷却水の温度
は、冷却水温度調節部2で調整される。すなわち、ポン
プ3で昇圧された冷却水は、冷却水温度調節弁4aを介
した配管系統と、熱交換器5及び冷却水温度調節弁4b
を介した配管系統とに分岐して供給され、温度計6で検
出した冷却水供給母管7の冷却水温度が所定値になるよ
うに、冷却水温度調節弁4aの弁開度及び冷却水温度調
節弁4bの弁開度を調節して、冷却水供給母管7の冷却
水温度を制御する。つまり、熱交換器5を通った低温の
冷却水の流量と、熱交換器5を通っていない高温の冷却
水の流量とを調整することにより冷却水温度を制御して
いる。
FIG. 4 shows a conventional turbine auxiliary equipment cooling water facility. The temperature of the cooling water supplied to the turbine accessories 1a and 1b is adjusted by the cooling water temperature adjusting section 2. That is, the cooling water boosted by the pump 3 has a piping system through the cooling water temperature control valve 4a, the heat exchanger 5 and the cooling water temperature control valve 4b.
So that the cooling water temperature of the cooling water supply mother pipe 7 detected by the thermometer 6 reaches a predetermined value, the opening degree of the cooling water temperature control valve 4a and the cooling water. The opening degree of the temperature control valve 4b is adjusted to control the cooling water temperature of the cooling water supply mother pipe 7. That is, the cooling water temperature is controlled by adjusting the flow rate of the low temperature cooling water that has passed through the heat exchanger 5 and the flow rate of the high temperature cooling water that does not pass through the heat exchanger 5.

【0004】温度制御された冷却水は、冷却水供給母管
7を介してタービン補機1a、1bに供給され、タービ
ン補機1a、1bの被冷却流体と熱交換された後、冷却
水戻り母管8を介してポンプ3の吸込側に戻る。
The temperature-controlled cooling water is supplied to the turbine auxiliaries 1a and 1b via the cooling water supply mother pipe 7 and exchanges heat with the fluid to be cooled in the turbine auxiliaries 1a and 1b, and then returns to the cooling water. It returns to the suction side of the pump 3 via the mother pipe 8.

【0005】タービン補機1a、1bに通水される冷却
水流量の設定方法は2つに大別される。1つはタービン
補機1a内の熱交換器への通水流量を連続制御する設定
方法であり、もう1つは、タービン補機1b内の熱交換
器への通水流量を連続制御しない設定方法である。
The method of setting the flow rate of the cooling water flowing through the turbine accessories 1a, 1b is roughly classified into two. One is a setting method of continuously controlling the water flow rate to the heat exchanger in the turbine auxiliary machine 1a, and the other is a setting method of not continuously controlling the water flow rate to the heat exchanger in the turbine auxiliary machine 1b. Is the way.

【0006】タービン補機1a内の熱交換器への通水流
量を連続制御する設定方法は、タービン補機1aの熱交
換器の出口又は入口に冷却水調節弁9を設置し、この冷
却水調節弁9によりタービン補機1aの熱交換器に供給
される冷却水流量を連続制御するものである。図4で
は、冷却水調節弁9がタービン補機1aの熱交換器の出
口に設置されているものが示されている。この冷却水調
節弁9は、タービン補機1aの熱交換器における被冷却
流体の温度又は圧力を検出器10で検出し、被冷却流体
の温度又は圧力が所定値になるように冷却水流量を増減
制御するものである。
A method for continuously controlling the flow rate of water flowing to the heat exchanger in the turbine auxiliary machine 1a is to install a cooling water control valve 9 at the outlet or inlet of the heat exchanger of the turbine auxiliary machine 1a, and The control valve 9 continuously controls the flow rate of the cooling water supplied to the heat exchanger of the turbine auxiliary machine 1a. In FIG. 4, the cooling water control valve 9 is shown installed at the outlet of the heat exchanger of the turbine accessory 1a. The cooling water control valve 9 detects the temperature or pressure of the fluid to be cooled in the heat exchanger of the turbine auxiliary machine 1a by the detector 10, and controls the cooling water flow rate so that the temperature or pressure of the fluid to be cooled reaches a predetermined value. The increase / decrease is controlled.

【0007】一方、タービン補機1b内の熱交換器への
通水流量を連続制御しない設定方法は、タービン補機1
bの熱交換器の入口及び出口ともに冷却水調節弁9は設
置されていない。その代わりに絞り弁11a、11bが
設けられ、通水流量はこの絞り弁11a、11bを絞る
ことにより予め設定される。絞り弁11a、11bは、
タービン補機1bの熱交換器の出口及び入口の双方又は
いずれか一方に設けられる。図4では出口及び入口の双
方に設けられたものを示している。上述のように、通水
流量はこの絞り弁11a、11bを絞ることにより予め
設定されるが、連続制御されないので、絞り弁11a、
11bの弁開度は一定のままであることが多い。
On the other hand, the setting method which does not continuously control the water flow rate to the heat exchanger in the turbine auxiliary machine 1b is the turbine auxiliary machine 1
The cooling water control valve 9 is not installed at both the inlet and the outlet of the heat exchanger of b. Instead, throttle valves 11a and 11b are provided, and the water flow rate is preset by throttling the throttle valves 11a and 11b. The throttle valves 11a and 11b are
The turbine auxiliary machine 1b is provided at either or both of the outlet and the inlet of the heat exchanger. In FIG. 4, those provided at both the outlet and the inlet are shown. As described above, the water flow rate is set in advance by throttling the throttle valves 11a and 11b, but since it is not continuously controlled, the throttle valve 11a,
The valve opening of 11b often remains constant.

【0008】[0008]

【発明が解決しようとする課題】ところが、通水流量を
連続制御していないタービン補機1bの熱交換器への通
水量は、冷却水供給母管7と冷却水戻り母管8との圧力
差が大きくなれば、絞り弁11は予め定められた弁開度
に固定されているので、この差圧に相当する流量まで増
加することになる。冷却水流量が増加した場合、絞り弁
11の差圧も増加することになるので、過度の差圧によ
る振動又はキャビテーションが発生することがある。
However, the water flow rate to the heat exchanger of the turbine auxiliary machine 1b, which does not continuously control the water flow rate, is determined by the pressure of the cooling water supply mother pipe 7 and the cooling water return mother pipe 8. If the difference becomes large, the throttle valve 11 is fixed to a predetermined valve opening, and therefore the flow rate increases to a flow rate corresponding to this differential pressure. When the cooling water flow rate increases, the differential pressure of the throttle valve 11 also increases, so that vibration or cavitation due to excessive differential pressure may occur.

【0009】冷却水供給母管7と冷却水戻り母管8との
圧力差の変動は、通水流量を連続制御しているタービン
補機1aの熱交換器の通水流量が変動することによって
生じる。すなわち、通水流量を連続制御しているタービ
ン補機1aの熱交換器の中には、その通水流量がタービ
ン補機冷却水系統内の全流量の約20〜40%前後占め
るものがある。
The fluctuation of the pressure difference between the cooling water supply mother pipe 7 and the cooling water return mother pipe 8 is caused by the fluctuation of the water flow rate of the heat exchanger of the turbine auxiliary machine 1a which continuously controls the water flow rate. Occurs. That is, in some heat exchangers of the turbine auxiliary machine 1a that continuously control the water flow rate, the water flow rate of the heat exchanger occupies about 20 to 40% of the total flow rate in the turbine auxiliary machine cooling water system. .

【0010】図5に、母管圧力Pと系統内の冷却水流量
Qとの特性を示す。図5中、PIは冷却水供給母管圧力
の特性曲線、POは冷却水戻り母管圧力の特性曲線であ
る。ここで、タービン補機1a、1bへの通水流量が最
大のときの系統全体の流量をQ1 とし、タービン補機1
a、1bへの通水流量が最小のときの系統全体の流量を
Q2 とする。そして、最大通水流量Q1 のときの冷却水
供給母管圧力をPI1、最小通水流量Q2 のときの冷却水
供給母管圧力をPI2とし、最大通水流量Q1 のときの冷
却水戻り母管圧力をPO1、最小通水流量Q2 のときの冷
却水戻り母管圧力をPO2とすると、次の関係がある。
FIG. 5 shows the characteristics of the mother pipe pressure P and the cooling water flow rate Q in the system. In FIG. 5, PI is a characteristic curve of the cooling water supply mother pipe pressure, and PO is a characteristic curve of the cooling water return mother pipe pressure. Here, the flow rate of the entire system when the water flow rate to the turbine auxiliaries 1a and 1b is the maximum is Q1, and the turbine auxiliaries 1
Let Q2 be the flow rate of the entire system when the flow rate of water to a and 1b is minimum. Let PI1 be the cooling water supply mother pipe pressure at the maximum water flow rate Q1, PI2 be the cooling water supply mother pipe pressure at the minimum water flow rate Q2, and the cooling water return mother pipe at the maximum water flow rate Q1. When the pressure is PO1 and the cooling water return mother pipe pressure at the minimum water flow rate Q2 is PO2, the following relationship is established.

【0011】系統内冷却水流量 Q1 >Q2 冷却水供給母管圧力 PI1<PI2 冷却水戻り母管圧力 PO1>PO2 これは、冷却水供給母管圧力PIがポンプQ−H特性と
圧力損失、そして冷却水戻り母管圧力POが圧力損失に
より決まるためである。すなわち、系統内冷却水流量が
減少すると、冷却水供給母管圧力PIと冷却水戻り母管
圧力POとの圧力差は大きくなる傾向があり、通水流量
を連続制御していないタービン補機1bの熱交換器への
通水量は、冷却水供給母管7と冷却水戻り母管8との圧
力差が大きくなれば、この差圧に相当する流量まで増加
することになる。
In-system cooling water flow rate Q1> Q2 Cooling water supply mother pipe pressure PI1 <PI2 Cooling water return mother pipe pressure PO1> PO2 This is because the cooling water supply mother pipe pressure PI is the pump Q-H characteristic and pressure loss, and This is because the cooling water return mother pipe pressure PO is determined by the pressure loss. That is, when the in-system cooling water flow rate decreases, the pressure difference between the cooling water supply mother pipe pressure PI and the cooling water return mother pipe pressure PO tends to increase, and the turbine accessory 1b that does not continuously control the water flow amount. If the pressure difference between the cooling water supply mother pipe 7 and the cooling water return mother pipe 8 increases, the amount of water passing through the heat exchanger will increase to a flow rate corresponding to this pressure difference.

【0012】図6は、通水流量を連続制御していないタ
ービン補機1bの熱交換器における熱交換器本体、配
管、絞り弁11のそれぞれの差圧の特性を示す。図6中
のΔP1 は絞り弁差圧、ΔP2 は配管差圧、ΔP3 は熱
交換器差圧である。図6から分かるように、冷却水流量
がQ1AからQ2Aに流量が増加した場合、絞り弁11の差
圧ΔP1 も増加する。これにより、過度の差圧による振
動あるいはキャビテーション発生などの問題点があっ
た。
FIG. 6 shows the characteristics of the differential pressures of the heat exchanger main body, the piping, and the throttle valve 11 in the heat exchanger of the turbine auxiliary machine 1b, which does not continuously control the water flow rate. In FIG. 6, ΔP1 is the throttle valve differential pressure, ΔP2 is the pipe differential pressure, and ΔP3 is the heat exchanger differential pressure. As can be seen from FIG. 6, when the flow rate of the cooling water increases from Q1A to Q2A, the differential pressure ΔP1 of the throttle valve 11 also increases. As a result, there are problems such as vibration or cavitation due to excessive pressure difference.

【0013】本発明の目的は、系統内冷却水流量の減少
に伴う系統内冷却水圧力増加による絞り弁での差圧が過
度に大きくなることを防止することができるタービン補
機冷却水設備を提供することである。
An object of the present invention is to provide a turbine auxiliary equipment cooling water facility capable of preventing an excessive increase in the differential pressure at the throttle valve due to an increase in the system cooling water pressure due to a decrease in the system cooling water flow rate. Is to provide.

【0014】[0014]

【課題を解決するための手段】請求項1の発明は、複数
のタービン補機に供給する冷却水の温度を調節するため
の冷却水温度調節部と、冷却水温度調節部からの冷却水
を各々のタービン補機に導くための冷却水供給母管と、
冷却水供給母管から導かれる冷却水の通水流量を連続制
御して複数のタービン補機のうちの特定のタービン補機
に供給する冷却水調節弁と、冷却水供給母管から導かれ
る冷却水の通水流量を予め設定された弁開度で特定のタ
ービン補機以外のタービン補機に供給する絞り弁と、複
数のタービン補機を冷却し終えた冷却水を冷却水温度調
節部に戻すための冷却水戻り母管と、冷却水供給母管か
ら分岐しタービン補機をバイパスして冷却水戻り母管に
接続されたバイパス配管と、バイパス配管に設けられ冷
却水供給母管の供給母管圧力が所定値を越えたときは開
し所定値以下になったときは閉するバイパス弁とを備え
ている。これにより、系統内冷却水流量が減少するに伴
って系統内冷却水圧力が増加したときには、バイパス配
管に設けられたバイパス弁を開することによりバイパス
配管に冷却水を流す。したがって、系統内冷却水流量が
増加しその結果系統内冷却水圧力が下がる。系統内冷却
水圧力が所定値になるとバイパス弁を閉し通常の運転に
戻る。
According to a first aspect of the present invention, there is provided a cooling water temperature adjusting section for adjusting the temperatures of cooling water supplied to a plurality of turbine accessories, and cooling water from the cooling water temperature adjusting section. Cooling water supply mother pipe for guiding to each turbine auxiliary machine,
A cooling water control valve that continuously controls the flow rate of cooling water that is guided from the cooling water supply mother pipe and supplies it to a specific turbine auxiliary machine among a plurality of turbine auxiliary machines, and cooling that is guided from the cooling water supply mother cylinder. A throttle valve that supplies the flow rate of water to a turbine accessory other than a specific turbine accessory with a preset valve opening, and cooling water that has finished cooling multiple turbine accessories to the cooling water temperature control unit. Cooling water return mother pipe for returning, bypass pipe branched from the cooling water supply mother pipe and connected to the cooling water return mother pipe bypassing the turbine auxiliary equipment, and supply of the cooling water supply mother pipe provided in the bypass pipe And a bypass valve that opens when the mother pipe pressure exceeds a predetermined value and closes when the mother pipe pressure falls below the predetermined value. As a result, when the cooling water flow rate in the system increases and the cooling water pressure in the system increases, the bypass valve provided in the bypass pipe is opened to flow the cooling water in the bypass pipe. Therefore, the flow rate of cooling water in the system increases, and as a result, the pressure of cooling water in the system decreases. When the cooling water pressure in the system reaches a predetermined value, the bypass valve is closed and normal operation is resumed.

【0015】請求項2の発明は、請求項1の発明におい
て、バイパス弁を調節弁とし、冷却水供給母管の供給母
管圧力が所定値になるようにバイパス配管を流れる冷却
水の流量を調節するようにしたものである。これにより
系統内冷却水流量を連続的に制御できる。
According to a second aspect of the present invention, in the first aspect of the invention, the bypass valve is used as a control valve, and the flow rate of the cooling water flowing through the bypass pipe is controlled so that the supply pipe pressure of the cooling water supply pipe becomes a predetermined value. It was adjusted. Thereby, the cooling water flow rate in the system can be continuously controlled.

【0016】請求項3の発明は、請求項1の発明におい
て、バイパス弁は、冷却水供給母管の冷却水流量が所定
値を越えたときは開し、所定値以下になったときは閉す
るようにしたものである。
According to a third aspect of the present invention, in the first aspect of the present invention, the bypass valve is opened when the flow rate of the cooling water in the cooling water supply mother pipe exceeds a predetermined value, and closed when the flow rate is below the predetermined value. It is something that is done.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の第1の実施の形態を示すブロック
構成図である。この第1の実施の形態は、冷却水供給母
管7から分岐しタービン補機1a、1bをバイパスして
冷却水戻り母管8に接続されたバイパス配管12と、バ
イパス配管12に設けられ圧力計13により検出された
冷却水供給母管7の供給母管圧力PIが所定値を越えた
ときは開し、所定値以下になったときは閉するバイパス
弁14とを備えたものである。
Embodiments of the present invention will be described below. FIG. 1 is a block diagram showing a first embodiment of the present invention. In the first embodiment, the bypass pipe 12 branched from the cooling water supply mother pipe 7 and bypassing the turbine auxiliaries 1a and 1b and connected to the cooling water return mother pipe 8 and the pressure provided in the bypass pipe 12 are provided. The bypass valve 14 is opened when the supply mother pipe pressure PI of the cooling water supply mother pipe 7 detected by the total 13 exceeds a predetermined value and closes when the supply mother pipe pressure PI falls below the predetermined value.

【0018】図1において、タービン補機1a、1bに
供給する冷却水の温度は、冷却水温度調節部2で調整さ
れる。すなわち、ポンプ3で昇圧された冷却水は、冷却
水温度調節弁4aを介した配管系統と、熱交換器5及び
冷却水温度調節弁4bを介した配管系統とに分岐して供
給される。そして、温度計6で検出された冷却水供給母
管7の冷却水温度が所定値になるように、冷却水温度調
節弁4aの弁開度及び冷却水温度調節弁4bの弁開度を
調節して、冷却水供給母管7の冷却水温度を制御する。
このようにして、熱交換器5を通った低温の冷却水の流
量と、熱交換器5を通っていない高温の冷却水の流量と
を調整することにより、タービン補機1a、1bに供給
する冷却水の温度を制御している。
In FIG. 1, the temperature of the cooling water supplied to the turbine accessories 1a and 1b is adjusted by the cooling water temperature adjusting section 2. That is, the cooling water boosted by the pump 3 is branched and supplied to the piping system via the cooling water temperature control valve 4a and the piping system via the heat exchanger 5 and the cooling water temperature control valve 4b. Then, the valve opening of the cooling water temperature control valve 4a and the valve opening of the cooling water temperature control valve 4b are adjusted so that the cooling water temperature of the cooling water supply mother pipe 7 detected by the thermometer 6 becomes a predetermined value. Then, the cooling water temperature of the cooling water supply mother pipe 7 is controlled.
In this way, by adjusting the flow rate of the low-temperature cooling water that has passed through the heat exchanger 5 and the flow rate of the high-temperature cooling water that does not pass through the heat exchanger 5, the turbine auxiliary machines 1a and 1b are supplied. The temperature of the cooling water is controlled.

【0019】温度制御された冷却水は、冷却水供給母管
7を介してタービン補機1a、1bに供給され、タービ
ン補機1a、1b内の各熱交換器で被冷却流体と熱交換
された後、冷却水戻り母管8を介してポンプ3の吸込側
に戻る。
The temperature-controlled cooling water is supplied to the turbine auxiliaries 1a and 1b via the cooling water supply mother pipe 7, and heat-exchanged with the fluid to be cooled by the heat exchangers in the turbine auxiliaries 1a and 1b. After that, it returns to the suction side of the pump 3 via the cooling water return mother pipe 8.

【0020】また、冷却水供給母管7から分岐しタービ
ン補機1a、1bをバイパスして冷却水戻り母管8に接
続されたバイパス配管12が設けられている。このバイ
パス配管12には、バイパス弁14が設けられており、
バイパス弁14は、圧力計13で検出された冷却水供給
母管7の供給母管圧力PIが所定値を越えたときは開
し、所定値以下になったときは閉する。これにより、系
統内冷却水流量Qが減少するに伴って系統内冷却水圧力
Pが増加したときには、バイパス配管12に設けられた
バイパス弁14を開することにより、バイパス配管12
に冷却水を流す。したがって、系統内冷却水流量Qが増
加し、その結果系統内冷却水圧力Pが下がる。系統内冷
却水圧力Pが所定値になると、バイパス弁14を閉し通
常の運転に戻る。
A bypass pipe 12 is provided which branches from the cooling water supply mother pipe 7 and bypasses the turbine auxiliary machines 1a and 1b and is connected to the cooling water return mother pipe 8. A bypass valve 14 is provided in the bypass pipe 12,
The bypass valve 14 is opened when the supply mother pipe pressure PI of the cooling water supply mother pipe 7 detected by the pressure gauge 13 exceeds a predetermined value and closed when the supply mother pipe pressure PI is below the predetermined value. Thus, when the in-system cooling water pressure P increases as the in-system cooling water flow rate Q decreases, the bypass valve 12 provided in the bypass pipe 12 is opened to open the bypass pipe 12
Pour cooling water into. Therefore, the in-system cooling water flow rate Q increases, and as a result, the in-system cooling water pressure P decreases. When the in-system cooling water pressure P reaches a predetermined value, the bypass valve 14 is closed and normal operation is resumed.

【0021】この第1の実施の形態によれば、冷却水供
給母管7の冷却水供給母管圧力PIが所定値を越えたと
きは、バイパス配管12に設置されているバイパス弁1
4が開することにより系統内冷却水通水流量Qが増加す
るので、冷却水供給母管圧力PIが下がる。このため絞
り弁11の差圧の増加を防止することができ、過度の差
圧による振動あるいはキャビテーション発生を抑制する
ことができる。
According to the first embodiment, when the cooling water supply mother pipe pressure PI of the cooling water supply mother pipe 7 exceeds a predetermined value, the bypass valve 1 installed in the bypass pipe 12 is provided.
Since the flow rate Q of the cooling water flowing through the system is increased by opening No. 4, the cooling water supply mother pipe pressure PI is reduced. Therefore, it is possible to prevent an increase in the differential pressure of the throttle valve 11, and it is possible to suppress the occurrence of vibration or cavitation due to excessive differential pressure.

【0022】次に、図2に、本発明の第2の実施の形態
を示す。この第2の実施の形態は、図1に示した第1の
実施の形態に対し、バイパス弁14を調節弁15とし、
冷却水供給母管7の供給母管圧力PIが所定値になるよ
うにバイパス配管12を流れる冷却水の流量を調節する
ようにしたものである。これにより系統内冷却水流量Q
を連続的に制御する。その他の構成は、図1に示した第
1の実施の形態と同一であるので、同一要素には同一符
号を付しその説明は省略する。
Next, FIG. 2 shows a second embodiment of the present invention. The second embodiment differs from the first embodiment shown in FIG. 1 in that the bypass valve 14 is a control valve 15.
The flow rate of the cooling water flowing through the bypass pipe 12 is adjusted so that the supply pipe pressure PI of the cooling water supply pipe 7 becomes a predetermined value. As a result, the cooling water flow rate Q in the system
Control continuously. Other configurations are the same as those of the first embodiment shown in FIG. 1, and therefore, the same components are denoted by the same reference symbols and description thereof will be omitted.

【0023】この第2の実施の形態によれば、調節弁1
5は圧力計13で検出された供給母管圧力PIを所定値
になるように連続制御することになるので、絞り弁11
の差圧を常に最適な条件でタービン補機1bを冷却する
ことができる。
According to this second embodiment, the control valve 1
5 continuously controls the supply mother pipe pressure PI detected by the pressure gauge 13 to a predetermined value, the throttle valve 11
The turbine auxiliary machine 1b can be cooled under the optimum differential pressure condition.

【0024】次に、図3に、本発明の第3の実施の形態
を示す。この第3の実施の形態は、バイパス弁14は、
流量計16で検出される冷却水供給母管7の冷却水流量
が所定値を越えたときは開し、所定値以下になったとき
は閉するようにしたものである。その他の構成は、図1
に示した第1の実施の形態と同一であるので、同一要素
には同一符号を付しその説明は省略する。
Next, FIG. 3 shows a third embodiment of the present invention. In the third embodiment, the bypass valve 14 is
When the cooling water flow rate of the cooling water supply mother pipe 7 detected by the flow meter 16 exceeds a predetermined value, it is opened, and when it is below a predetermined value, it is closed. Other configurations are shown in FIG.
Since it is the same as that of the first embodiment shown in FIG. 1, the same elements are denoted by the same reference numerals and the description thereof will be omitted.

【0025】この第3の実施の形態によれば、系統内通
水流量Qが予め設定された流量以下になると、バイパス
弁14を開するので、系統内通水流量Qが増加し、冷却
水供給母管圧力PIの増加を抑制することができ、過度
の差圧により絞り弁11に振動あるいはキャビテーショ
ンは発生することを防止できる。
According to the third embodiment, when the in-system water flow rate Q becomes equal to or less than the preset flow rate, the bypass valve 14 is opened, so that the in-system water flow rate Q increases and the cooling water flows. It is possible to suppress an increase in the supply mother pipe pressure PI, and it is possible to prevent vibration or cavitation from occurring in the throttle valve 11 due to an excessive pressure difference.

【0026】次に、本発明の第4の実施の形態を説明す
る。この第4の実施の形態は、図2に示した第2の実施
の形態における調節弁15を、第3の実施の形態におけ
る流量計16で検出される冷却水供給母管7の冷却水流
量に基づいて調節するようにしたものである。すなわ
ち、冷却水供給母管7の冷却水流量が所定値になるよう
にバイパス配管12を流れる冷却水の流量を調節する。
Next, a fourth embodiment of the present invention will be described. In the fourth embodiment, the control valve 15 in the second embodiment shown in FIG. 2 is replaced with the cooling water flow rate of the cooling water supply mother pipe 7 detected by the flow meter 16 in the third embodiment. The adjustment is based on. That is, the flow rate of the cooling water flowing through the bypass pipe 12 is adjusted so that the flow rate of the cooling water in the cooling water supply mother pipe 7 becomes a predetermined value.

【0027】この第4の実施の形態によれば、調節弁1
5は流量計16で検出された供給母管通水流量Qを所定
値になるように連続制御することになるので、絞り弁1
1の差圧を常に最適な条件でタービン補機1bを冷却す
ることができる。
According to the fourth embodiment, the control valve 1
5 continuously controls the flow rate Q of the supply mother pipe flow detected by the flow meter 16 so that the flow rate Q becomes a predetermined value.
The turbine auxiliary machine 1b can be cooled under the optimum condition with the differential pressure of 1 always.

【0028】[0028]

【発明の効果】以上述べたように本発明によれば、系統
内流量減少に伴う系統内圧力増加による絞り弁での差圧
が過度に大きくなることを防止することができる。した
がって、通水流量を連続制御しないタービン補機の絞り
弁の差圧を常に最適な条件に保持することが可能とな
り、最適な条件で通水流量を連続制御しないタービン補
機を冷却することができる。
As described above, according to the present invention, it is possible to prevent the differential pressure in the throttle valve from becoming excessively large due to the increase in the system pressure due to the decrease in the system flow rate. Therefore, it is possible to always maintain the differential pressure of the throttle valve of the turbine auxiliary machine that does not continuously control the water flow rate under optimum conditions, and cool the turbine auxiliary machine that does not continuously control the water flow rate under optimal conditions. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態を示す系統構成図。FIG. 1 is a system configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施の形態を示す系統構成図。FIG. 2 is a system configuration diagram showing a second embodiment of the present invention.

【図3】本発明の第3の実施の形態を示す系統構成図。FIG. 3 is a system configuration diagram showing a third embodiment of the present invention.

【図4】従来例の系統構成図。FIG. 4 is a system configuration diagram of a conventional example.

【図5】従来例における系統内冷却水通水流量と系統内
冷却水圧力との特性を示す特性図。
FIG. 5 is a characteristic diagram showing characteristics of an in-system cooling water flow rate and an in-system cooling water pressure in a conventional example.

【図6】従来例におけるタービン補機内熱交換器の通水
流量と各部の差圧との特性を示す特性図。
FIG. 6 is a characteristic diagram showing characteristics of a water flow rate of a heat exchanger in a turbine auxiliary machine and a differential pressure of each part in a conventional example.

【符号の説明】[Explanation of symbols]

1 タービン補機 2 冷却水温度調節部 3 ポンプ 4 冷却水温度調節弁 5 熱交換器 6 温度計 7 冷却水供給母管 8 冷却水戻り母管 9 冷却水調節弁 10 温度又は圧力検出器 1 1絞り弁 12 バイパス配管 13 圧力計 14 バイパス弁 15 調節弁 1 Turbine auxiliary machine 2 Cooling water temperature control part 3 Pump 4 Cooling water temperature control valve 5 Heat exchanger 6 Thermometer 7 Cooling water supply mother pipe 8 Cooling water return mother pipe 9 Cooling water control valve 10 Temperature or pressure detector 1 1 Throttle valve 12 Bypass piping 13 Pressure gauge 14 Bypass valve 15 Control valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数のタービン補機に供給する冷却水の
温度を調節するための冷却水温度調節部と、前記冷却水
温度調節部からの冷却水を各々の前記タービン補機に導
くための冷却水供給母管と、前記冷却水供給母管から導
かれる冷却水の通水流量を連続制御して前記複数のター
ビン補機のうちの特定のタービン補機に供給する冷却水
調節弁と、前記冷却水供給母管から導かれる冷却水の通
水流量を予め設定された弁開度で前記特定のタービン補
機以外のタービン補機に供給する絞り弁と、前記複数の
タービン補機を冷却し終えた冷却水を前記冷却水温度調
節部に戻すための冷却水戻り母管とを備え、発電プラン
ト運転に伴って前記タービン補機で発生する熱を冷却す
るタービン補機冷却水設備において、前記冷却水供給母
管から分岐し前記タービン補機をバイパスして前記冷却
水戻り母管に接続されたバイパス配管と、前記バイパス
配管に設けられ前記冷却水供給母管の供給母管圧力が所
定値を越えたときは開し所定値以下になったときは閉す
るバイパス弁とを備えたことを特徴とするタービン補機
冷却水設備。
1. A cooling water temperature adjusting section for adjusting the temperature of cooling water supplied to a plurality of turbine accessories, and a cooling water temperature adjusting section for guiding the cooling water from the cooling water temperature adjusting section to each of the turbine accessories. A cooling water supply mother pipe, and a cooling water control valve for continuously controlling the flow rate of the cooling water introduced from the cooling water supply mother pipe and supplying it to a specific turbine auxiliary machine of the plurality of turbine auxiliary machines, A throttle valve that supplies a flow rate of cooling water introduced from the cooling water supply mother pipe to a turbine auxiliary machine other than the specific turbine auxiliary machine at a preset valve opening degree, and cools the plurality of turbine auxiliary machines. A cooling water return mother pipe for returning the cooling water that has been finished to the cooling water temperature control unit, and a turbine auxiliary machine cooling water facility for cooling the heat generated in the turbine auxiliary machine with the operation of a power plant, Branch from the cooling water supply mother pipe A bypass pipe connected to the cooling water return mother pipe by-passing the auxiliary machine and a supply mother pipe pressure of the cooling water supply mother pipe provided in the bypass pipe exceeds a predetermined value, and is opened to a predetermined value. A turbine auxiliary equipment cooling water facility comprising a bypass valve that closes when the following occurs.
【請求項2】 前記バイパス弁を調節弁とし、前記冷却
水供給母管の供給母管圧力が所定値になるように前記バ
イパス配管を流れる冷却水の流量を調節するようにした
ことを特徴とする請求項1に記載のタービン補機冷却水
設備。
2. The bypass valve is a control valve, and a flow rate of the cooling water flowing through the bypass pipe is adjusted so that a supply pipe pressure of the cooling water supply pipe becomes a predetermined value. The turbine auxiliary equipment cooling water facility according to claim 1.
【請求項3】 前記バイパス弁は、前記冷却水供給母管
の冷却水流量が所定値を越えたときは開し、所定値以下
になったときは閉するようにしたことを特徴とする請求
項1に記載のタービン補機冷却水設備。
3. The bypass valve is opened when the flow rate of the cooling water in the cooling water supply mother pipe exceeds a predetermined value and closed when the flow rate of the cooling water is below the predetermined value. Item 2. A turbine auxiliary equipment cooling water facility according to Item 1.
JP22497295A 1995-09-01 1995-09-01 Cooling water unit for turbine auxiliary machine Pending JPH0968003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22497295A JPH0968003A (en) 1995-09-01 1995-09-01 Cooling water unit for turbine auxiliary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22497295A JPH0968003A (en) 1995-09-01 1995-09-01 Cooling water unit for turbine auxiliary machine

Publications (1)

Publication Number Publication Date
JPH0968003A true JPH0968003A (en) 1997-03-11

Family

ID=16822099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22497295A Pending JPH0968003A (en) 1995-09-01 1995-09-01 Cooling water unit for turbine auxiliary machine

Country Status (1)

Country Link
JP (1) JPH0968003A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104963755A (en) * 2015-06-23 2015-10-07 李华良 Cooling water tank of automobile
US9366157B2 (en) 2013-08-08 2016-06-14 General Electric Company Lube oil supply system and method of regulating lube oil temperature
CN109283880A (en) * 2018-09-18 2019-01-29 中国电力科学研究院有限公司 It is a kind of for energy supply the excessive method and system judged of flow difference

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9366157B2 (en) 2013-08-08 2016-06-14 General Electric Company Lube oil supply system and method of regulating lube oil temperature
CN104963755A (en) * 2015-06-23 2015-10-07 李华良 Cooling water tank of automobile
CN109283880A (en) * 2018-09-18 2019-01-29 中国电力科学研究院有限公司 It is a kind of for energy supply the excessive method and system judged of flow difference
CN109283880B (en) * 2018-09-18 2021-11-02 中国电力科学研究院有限公司 Method and system for judging overlarge energy supply flow difference value

Similar Documents

Publication Publication Date Title
US7207298B2 (en) Cooling system for an engine
US6318089B1 (en) Gas turbine inlet air cooling system
JP2007519853A (en) Equipment for cooling exhaust and supply air
EP2082123A1 (en) Engine cooling system
GB2430730A (en) Water cooled constant temperature liquid circulating device
CN110243097A (en) The control method of the cooling unit of lathe and the cooling unit of lathe
US6158399A (en) Turbocharged engine cooling system with two-pass radiator
CN103104453B (en) The controlling method of cooling system and device
CN113266756B (en) Unit shutdown recirculation cooling system and method
US5435122A (en) Temperature control method and apparatus for the air supply in PFBC plants
CN113959106A (en) Method and device for controlling refrigerant circulation system and refrigerant circulation system
JPH0968003A (en) Cooling water unit for turbine auxiliary machine
CN107120305A (en) Air-conditioning equipment, cold oil system and its control method
CN112786920A (en) Fuel cell cooling device and method
JP2002021653A (en) Supplied-air temperature control device for diesel engine
CN208886990U (en) A kind of freezing water thermostat
US6314921B1 (en) Turbocharged engine cooling system with two-pass radiator
CN109253515A (en) A kind of freezing water thermostat and its control method
JP2008088868A (en) Method for controlling operation of compressor with exhaust heat recovery system, and compressor with exhaust heat recovery system
CN206943073U (en) Air-conditioning equipment and its cold oil system
CN219955771U (en) Cooling water adjusting system
JPH01190904A (en) Cooling water controller for bearing
CN216052768U (en) Automatic temperature adjusting system
CN112874257B (en) Vehicle thermal management system and vehicle
KR101565167B1 (en) Control System for Fan Motor of Construction Machinery