JPH01190904A - Cooling water controller for bearing - Google Patents

Cooling water controller for bearing

Info

Publication number
JPH01190904A
JPH01190904A JP1443088A JP1443088A JPH01190904A JP H01190904 A JPH01190904 A JP H01190904A JP 1443088 A JP1443088 A JP 1443088A JP 1443088 A JP1443088 A JP 1443088A JP H01190904 A JPH01190904 A JP H01190904A
Authority
JP
Japan
Prior art keywords
cooling water
heat exchanger
pump
amount
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1443088A
Other languages
Japanese (ja)
Inventor
Hiroshi Arase
荒瀬 央
Riichi Utsuno
宇津野 利一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP1443088A priority Critical patent/JPH01190904A/en
Publication of JPH01190904A publication Critical patent/JPH01190904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To reduce the electric power necessary for the pump operation by supplying the cooling water from a pump having a small capacity into a cooler which requires the cooling water when power generation is suspended. CONSTITUTION:The cooling water whose pressure is increased by the pumps 1-3 arranged in parallel is supplied into heat exchangers 8-11. When power generation is suspended, all the pumps 1-3 are brought into stop, and a pump 21 having a small capacity is started. The cooling water whose pressure is increased by the pump 21 having the small capacity is supplied into the heat exchangers 8 and 10 which require the continuous feed of the cooling water. Therefore, the electric power necessary for the pump operation can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原動機発電プラントの軸受冷却水系統に係り、
特に、発電停止時の冷却水供給ポンプの所要動力の低減
、及び、各熱交換器への流量適正配分に有効な制御装置
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a bearing cooling water system for a prime mover power generation plant.
In particular, the present invention relates to a control device that is effective in reducing the power required for a cooling water supply pump when power generation is stopped and in appropriately distributing flow rates to each heat exchanger.

〔従来の技術〕[Conventional technology]

従来の装置は特開昭52−109005号公報に記載の
ように1発電プラントの部分負荷運転時に各熱交換器の
熱負荷が変化した場合に、被冷却流体の熱交換器出口温
度を一定に保つように冷却水量を調整する温度制御装置
を必要とする熱交換器と、温度制御装置を必要としない
熱交換器の冷却水供給母管とを分離することにより、両
系統の流量の変化が相互に影響し合うことを防ぐもので
あった。
As described in Japanese Unexamined Patent Publication No. 52-109005, conventional equipment maintains the heat exchanger outlet temperature of the cooled fluid constant when the heat load on each heat exchanger changes during partial load operation of a single power plant. By separating the heat exchanger, which requires a temperature control device to adjust the amount of cooling water to maintain the temperature, and the cooling water supply main pipe of the heat exchanger, which does not require a temperature control device, changes in the flow rate of both systems can be prevented. This was to prevent mutual influence.

しかし、プラントの夜間発電停止時のように、各熱交換
器の所要冷却水量及び流量配分が通常のプラント部分負
荷運転時とは異なる特性で変化する場合における各熱交
換器への適性な冷却水量の配分、及び、冷却水供給用の
ポンプの軸動力削減策器′こついては考慮されていなか
った。
However, when the required amount of cooling water and flow rate distribution for each heat exchanger change with characteristics different from those during normal partial load operation of the plant, such as when power generation is stopped at night in a plant, the appropriate amount of cooling water for each heat exchanger cannot be determined. No consideration was given to the distribution of cooling water and measures to reduce the shaft power of the pump for supplying cooling water.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は発電プラントの夜間発電停止時のように
1通常のプラント部分負荷運転時とは異なった特性で各
熱交換器の所要冷却水量が減少し、また、その流量配分
が変化する場合についての考慮がされておらず、そのた
め、この運転状態では軸受冷却水系統全体の流量バラン
スが崩れ5局部的に過大な冷却水が流れる部分が発生し
熱交換器を損傷したり、また逆に被冷却流体を必要な温
度にまで冷却出来ない場合が発生する恐れがあった。
The above conventional technology is applicable to cases where the amount of cooling water required for each heat exchanger decreases due to characteristics different from normal plant partial load operation, such as when power generation is stopped at night, and the flow distribution changes. As a result, under this operating condition, the flow rate balance of the entire bearing cooling water system is disrupted, and there are areas where excessive cooling water flows locally, damaging the heat exchanger, or conversely causing damage to the heat exchanger. There was a risk that the cooling fluid could not be cooled to the required temperature.

また、この様な流量のアンバランスはポンプの冷却水供
給能力以上の水量の供給要求を招き、冷却器の所要冷却
水量は減少するのに、それが冷却水ポンプの軸動力の削
減に結びつかないという問題を生じていた。
In addition, such an unbalance in flow rate results in a request to supply water that exceeds the cooling water supply capacity of the pump, and although the required amount of cooling water for the cooler decreases, this does not lead to a reduction in the shaft power of the cooling water pump. This caused a problem.

本発明の目的は、このような運転状態での各熱交換器の
所要水量を確保できる小容量のポンプを設置し、このポ
ンプの容量内の吐出圧力で各熱交換器への流量の適正配
分が可能な冷却水の供給バイパス系統を設けることによ
り、ポンプ軸動力を削減し、かつ、各熱交換器への適正
な冷却水量を供給し、冷却水量の過大による冷却器の損
傷及び冷却水量の不足による冷却能力の不足を補うこと
にある。
The purpose of the present invention is to install a small-capacity pump that can secure the required amount of water for each heat exchanger under such operating conditions, and to properly distribute the flow rate to each heat exchanger using the discharge pressure within the capacity of this pump. By installing a cooling water supply bypass system that can reduce pump shaft power and supply an appropriate amount of cooling water to each heat exchanger, damage to the cooler due to excessive amount of cooling water and reduction in the amount of cooling water can be avoided. The purpose is to compensate for the lack of cooling capacity due to insufficient cooling capacity.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、このような運転状態における各熱交換器の
所要冷却総水量を供給可能な小容量ポンプを設置し、か
つ、このポンプの供給容量内の吐出圧力で、各熱交換器
への所要冷却水量を適正配分することができるように、
各熱交換器への冷却水の供給配管に、冷却水の供給量を
調整するためのオリフィス等を設けた冷却水供給バイパ
ス系統を設置し、通常の発電プラント負荷運転から発電
プラントの発電停止へ移行する段階で、この小容量ポン
プを起動し、本バイパス系統を介して冷却水を各熱交換
器に供給することにより達成される。
The above purpose is to install a small capacity pump capable of supplying the total amount of cooling water required for each heat exchanger under such operating conditions, and to supply the required amount of cooling water to each heat exchanger at a discharge pressure within the supply capacity of this pump. In order to properly distribute the amount of cooling water,
A cooling water supply bypass system is installed in the cooling water supply piping to each heat exchanger, with an orifice etc. installed to adjust the amount of cooling water supplied, allowing the power plant to switch from normal power plant load operation to power generation shutdown. At the transition stage, this is achieved by starting this small capacity pump and supplying cooling water to each heat exchanger via this bypass system.

〔作用〕[Effect]

原動機発電プラントが発電停止した場合、通常の負荷運
転中に使用される冷却水の供給用ポンプは停止し、本発
明で設置する小容量ポンプが自動起動し、冷却水の供給
バイパス系統の元弁が自動的に開く。このバイパス系統
には、このような運転状態での冷却水量が、適正に配分
されるように、オリフィス等が設置され、かつ、この小
容量ポンプの吐出圧力も、本冷却水量及び流量配分時の
冷却水系統の圧力損失を考慮して選択されるので。
When the power generation plant stops generating power, the cooling water supply pump used during normal load operation will stop, the small capacity pump installed in this invention will automatically start, and the main valve of the cooling water supply bypass system will stop. will open automatically. This bypass system is equipped with an orifice, etc., so that the amount of cooling water under such operating conditions is distributed appropriately, and the discharge pressure of this small capacity pump is also adjusted to match the amount of cooling water and flow rate distribution. Because it is selected taking into consideration the pressure loss of the cooling water system.

本運転状態における所要冷却水総量及び流量配分の適正
化が可能となる。
It becomes possible to optimize the total amount of cooling water required and the flow rate distribution in this operating state.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は、原動機発電プラントの軸受冷却水系統の概略
構成を示す。
FIG. 1 shows a schematic configuration of a bearing cooling water system of a motor power generation plant.

通常のプラント負荷運転中においては、並列するポンプ
1,2.及び3で昇圧された冷却水は、冷却器4でより
低温の流体で冷却され、温度調整弁5により冷却器4を
通った冷水と、冷却器をバイパスした温水を混和し、一
定温度に制御した後、圧力調整弁6によって冷却水供給
母管の圧力を一定となるように制御し、この冷却水供給
母管7より各々の機器に設けられた熱交換器8,9,1
0及び11に供給される。一方、熱交換器8,9゜10
及び11で被冷却流体と熱交換し昇温した冷却水は、戻
り管12,13.14及び15を介し。
During normal plant load operation, pumps 1, 2 . The cooling water pressurized in steps 3 and 3 is cooled with a lower temperature fluid in a cooler 4, and a temperature control valve 5 mixes the cold water that has passed through the cooler 4 with the hot water that has bypassed the cooler, and controls the temperature to a constant temperature. After that, the pressure of the cooling water supply main pipe is controlled to be constant by the pressure regulating valve 6, and from this cooling water supply main pipe 7, the heat exchangers 8, 9, 1 provided in each device are
0 and 11. On the other hand, heat exchanger 8,9゜10
The cooling water heated by exchanging heat with the fluid to be cooled in and 11 passes through return pipes 12, 13, 14, and 15.

戻り母管16に集合し、再び、ポンプ押込み側に供給さ
れる。尚、被冷却流体の冷却用熱交換器の出口温度を一
定に制御する必要のあるものについては、温度調整弁1
7及び18を冷却水配管に設置し、被冷却流体の温度を
温度調整器19及び20で検出し、制御信号に変換して
温度調整弁17及び18により冷却水量を調整すること
が行われている。
It collects in the return main pipe 16 and is again supplied to the pump pushing side. In addition, for those that require constant control of the outlet temperature of the cooling heat exchanger for the fluid to be cooled, use the temperature control valve 1.
7 and 18 are installed in the cooling water piping, and the temperature of the fluid to be cooled is detected by temperature regulators 19 and 20, which is converted into a control signal and the amount of cooling water is adjusted by temperature regulating valves 17 and 18. There is.

次に、プラント発電停止時における冷却流体の流れにつ
いて説明する。
Next, the flow of the cooling fluid when the plant power generation is stopped will be explained.

尚、本運転状態で冷却水を供給継続する必要のある熱交
換器は8,10とする。
Note that heat exchangers 8 and 10 are required to continue supplying cooling water in the actual operating state.

本運転状態の場合、通常の冷却水供給用のポンプ1,2
及び3は全台停止し、本発明による小容量ポンプ21が
起動すると共に冷却水供給止弁22゜23は閉止し、本
発明によるバイパス系統の元弁24が全開する。この場
合、小容量ポンプ21で昇圧された冷却水は、温度調整
弁5の出口から分岐するバイパス系統25に設置された
オリフィス26.27を介し熱交換器8及び11に供給
される。そして、熱交換器8及び11からの戻り水は、
通常のプラント負荷運転中と同一の流量経路を通って、
再び、小容量ポンプに循環する。尚、28゜29.30
及び31は逆止弁であり、これら逆止弁の設置により、
流路切替え時の過度的状態における冷却水の逆流が防げ
る。
In the case of normal operation, pumps 1 and 2 for normal cooling water supply
and 3 are all stopped, the small capacity pump 21 according to the present invention is started, the cooling water supply stop valves 22 and 23 are closed, and the main valve 24 of the bypass system according to the present invention is fully opened. In this case, the cooling water pressurized by the small capacity pump 21 is supplied to the heat exchangers 8 and 11 through orifices 26 and 27 installed in the bypass system 25 branching from the outlet of the temperature regulating valve 5. The return water from heat exchangers 8 and 11 is
through the same flow path as during normal plant load operation.
Circulate again to the small capacity pump. In addition, 28°29.30
and 31 are check valves, and by installing these check valves,
Backflow of cooling water can be prevented in transient situations when switching channels.

この様に、原動機発電プラントが無負荷時に、小容量ポ
ンプからバイパス系統を介して熱交換器に冷却水を送る
ことにより、この運転状態における冷却水量の配分の最
適化が可能となる。この事は、被冷却流体の温度制御を
行わない熱交換器11での冷却管圧力損失の減少による
過大流量流入により引き起こされる熱交換器の二ローシ
ョンによる損傷や被冷却流体の過冷却現象を防止すると
共に、温度制御を行なっている熱交換器8に対しては、
所要冷却水量の確保を可能とし、冷却水量が所要値を下
用るための被冷却流体の冷却性能の劣化を防止すること
を意味する。更に、この様に、原動機発電プラントの無
負荷時に各熱交換器の冷却水量が所要量に制御される事
により、冷却水の総量も減らすことができ、この事はポ
ンプの軸動力の削減に結びつくが1本発明の場合、特に
In this way, by sending cooling water from the small capacity pump to the heat exchanger via the bypass system when the prime mover power generation plant is under no load, it becomes possible to optimize the distribution of the amount of cooling water in this operating state. This prevents damage to the heat exchanger due to excessive flow due to the reduction of pressure loss in the cooling pipes in the heat exchanger 11, which does not perform temperature control of the cooled fluid, and prevents overcooling of the cooled fluid. At the same time, for the heat exchanger 8 that performs temperature control,
This means making it possible to secure the required amount of cooling water and preventing deterioration of the cooling performance of the fluid to be cooled due to the amount of cooling water being lower than the required value. Furthermore, by controlling the amount of cooling water in each heat exchanger to the required amount when the prime mover power generation plant is under no load, the total amount of cooling water can also be reduced, which in turn reduces the shaft power of the pump. Especially in the case of the present invention.

本運転状態で高効率を得る様に専用の小容量ポンプを設
置するので、更に軸動力を軽減した運転を可能とするこ
とが出来る。
Since a dedicated small-capacity pump is installed to obtain high efficiency in the actual operating state, it is possible to operate with further reduced shaft power.

第2図に他の実施例を示す。本実施例は、実施例−に対
し、冷却水止弁22及び23を自動弁から手動弁に変更
し、かわりに冷却水供給母管7に自動弁の供給元弁34
を設計したものである。供給元弁の動作は実施例−に示
す冷却水止弁22及び23と同じであり、また、発明の
効果も実施例−と同一である。図中32は温度調整器、
33は圧力調整器である。
FIG. 2 shows another embodiment. In this embodiment, the cooling water stop valves 22 and 23 are changed from automatic valves to manual valves, and instead, a supply source valve 34 of the automatic valve is installed in the cooling water supply main pipe 7.
It was designed. The operation of the supply source valve is the same as the cooling water stop valves 22 and 23 shown in the embodiment, and the effects of the invention are also the same as in the embodiment. 32 in the figure is a temperature regulator;
33 is a pressure regulator.

本実施例によれば、運転状態で最適な流量配分となるよ
うに設計されたバイパス系統を介して冷却水が各熱交換
器に供給されるため、冷却水量配分の適正化が図れ、そ
の事が、過大流量流入による熱交換器の損傷や被冷却流
体の過冷却を防止し、また、必要冷却水量の確保の不可
能による被冷却流体の冷却性能の劣化を防止する。
According to this embodiment, since cooling water is supplied to each heat exchanger via a bypass system designed to achieve optimal flow distribution under operating conditions, it is possible to optimize cooling water volume distribution. This prevents damage to the heat exchanger and overcooling of the fluid to be cooled due to excessive flow inflow, and also prevents deterioration of cooling performance of the fluid to be cooled due to inability to secure the required amount of cooling water.

本発明により、原動機発電プラントの運転経費を減少さ
せることができ、軸受冷却水系統における各熱交換器の
信頼性を向上させることが出来る。
According to the present invention, operating costs of a prime mover power plant can be reduced, and reliability of each heat exchanger in a bearing cooling water system can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原動機発電プラントの無負荷運転時に
、軸受冷却水量を小容量ポンプを用いて所要水量のみ供
給することができるので、ポンプ運転に必要な電力を大
幅に削減することができる。
According to the present invention, only the required amount of bearing cooling water can be supplied using a small-capacity pump during no-load operation of a prime mover power generation plant, so that the electric power required for pump operation can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の系統図、第2図は本発明の
他の実施例の系統図である。 21・・・小容量ポンプ、22・・・冷却水止弁、23
・・・冷却水止弁、24・・・バイパス元弁、25・・
・バイパス系統、26・・・オリフィス、27・・・オ
リフィス、28・・・逆止弁、29・・・逆止弁、30
・・・逆止弁、31・・・逆止弁、32・・・供給元弁
。 第1図
FIG. 1 is a system diagram of one embodiment of the present invention, and FIG. 2 is a system diagram of another embodiment of the invention. 21... Small capacity pump, 22... Cooling water stop valve, 23
... Cooling water stop valve, 24 ... Bypass source valve, 25 ...
・Bypass system, 26... Orifice, 27... Orifice, 28... Check valve, 29... Check valve, 30
... Check valve, 31 ... Check valve, 32 ... Supply source valve. Figure 1

Claims (1)

【特許請求の範囲】 1、ポンプで抽出した冷却水を管路を介して各熱交換器
に並列に供給する系統をもつ原動機発電プラントの冷却
水系統において、 発電停止時に前記冷却水の供給を継続する必要のある冷
却器に対し、前記冷却水の所要量を供給することができ
る小容量のポンプを設置し、本運転状態における前記熱
交換器の所要冷却水量に応じた冷却水量を配分可能な流
量調整機能をもつバイパス系統を設けたことを特徴とす
る軸受冷却水制御装置。
[Claims] 1. In a cooling water system of a prime mover power generation plant having a system that supplies cooling water extracted by a pump to each heat exchanger in parallel through pipes, the cooling water is supplied when power generation is stopped. A small-capacity pump capable of supplying the required amount of cooling water to the cooler that needs to be continuously operated is installed, and the amount of cooling water can be distributed according to the amount of cooling water required for the heat exchanger in the actual operating state. A bearing cooling water control device characterized by having a bypass system with a flow rate adjustment function.
JP1443088A 1988-01-27 1988-01-27 Cooling water controller for bearing Pending JPH01190904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1443088A JPH01190904A (en) 1988-01-27 1988-01-27 Cooling water controller for bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1443088A JPH01190904A (en) 1988-01-27 1988-01-27 Cooling water controller for bearing

Publications (1)

Publication Number Publication Date
JPH01190904A true JPH01190904A (en) 1989-08-01

Family

ID=11860806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1443088A Pending JPH01190904A (en) 1988-01-27 1988-01-27 Cooling water controller for bearing

Country Status (1)

Country Link
JP (1) JPH01190904A (en)

Similar Documents

Publication Publication Date Title
US6626635B1 (en) System for controlling clearance between blade tips and a surrounding casing in rotating machinery
US7028768B2 (en) Fluid heat exchange control system
KR101983918B1 (en) Intelligent sea water cooling system
US5727396A (en) Method and apparatus for cooling a prime mover for a gas-engine driven heat pump
US6318089B1 (en) Gas turbine inlet air cooling system
JP2004514870A (en) Pressure distribution and pressure regulation system and method for heating / air conditioning unit, and skyscraper using the same
CN110243097A (en) The control method of the cooling unit of lathe and the cooling unit of lathe
CN108240239B (en) Turbine lubricating oil temperature adjusting device and adjusting method
CN213899191U (en) Cooling system of wind generating set and wind generating set
US5435122A (en) Temperature control method and apparatus for the air supply in PFBC plants
CN210197765U (en) Machine tool cooling unit
JPH01190904A (en) Cooling water controller for bearing
JPH0968003A (en) Cooling water unit for turbine auxiliary machine
CN113883626B (en) Air conditioning system and cold charging and discharging control method of cold storage tank of air conditioning system
JPH06272987A (en) Chilled water system controlling method for air conditioning facility
JPS62116846A (en) Control device for the number of operating refrigerating machines
CN220229639U (en) Stable pressure moisturizing device and system
CN114232715B (en) Integrated heat dissipation system of small electric excavator and control method
JPS6239655B2 (en)
JP3039874B2 (en) Reactor isolation cooling system
JP2003029849A (en) Cooling water controller
JPS63131803A (en) Apparatus cooling water control device for power plant
JP2632147B2 (en) Combined cycle plant
JP2006183496A (en) Operation method of pump for supplying fluid
JP2001012487A (en) Bearing cooling device