JPS5952922B2 - Steel manufacturing method - Google Patents
Steel manufacturing methodInfo
- Publication number
- JPS5952922B2 JPS5952922B2 JP54170904A JP17090479A JPS5952922B2 JP S5952922 B2 JPS5952922 B2 JP S5952922B2 JP 54170904 A JP54170904 A JP 54170904A JP 17090479 A JP17090479 A JP 17090479A JP S5952922 B2 JPS5952922 B2 JP S5952922B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- steel
- stirring
- refining
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/068—Decarburising
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Continuous Casting (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
【発明の詳細な説明】
本発明は連続鋳造工程にて気泡を発生させることなく、
リムド鋼相当(7)T、 CAI) (total
Al含有量)及び頁Si) (Si含有量)有する
鋼を製造する鋼を製造する方法に関する。
リムド鋼は精錬過程で故意に脱酸を殆んど行わず、造塊
時に多量のCOガスを発生させ、その気泡によるリミン
グアクションにより凝固界面の不純物を洗い流して製造
される鋼種である。
これを連続鋳造法の如く凝固の進行とともに鋳片を引抜
移動させる方法によって製造せんとする場合は、気泡の
発生が激し過ぎると鋳造内の湯動きが活発となる為に、
又は未凝固溶鋼の深部からの突沸現象が起こる為に危険
であり、気泡の発生が弱くても連続鋳造時の凝固速度が
早いため、表面近傍に微細な気泡がトラップされ製品に
おいてピンホール欠陥が生じるという問題が存在するた
め、リムド鋼の連続鋳造化は殆んど行われていない。
従って連続鋳造適用鋼種としては、AIあるいはSiに
より脱酸を行ったギルド鋼及びセミキルド鋼に限定され
るが、Siキルド鋼は勿論のこと、Alギルド鋼、Al
−3iキルド鋼もAIによるスラグ中あるいは耐火物中
のSiO2の還元によって溶鋼中の(Si)が増加し、
このようなSiの存在によって深絞り性の劣化、Znメ
ッキ密着性の劣化、テンパーカラーの発生、カラー鋼板
腰折れ等の品質上の問題が発生し、穴拡げ性の劣化、冷
延率の制限等鋼材加工上の問題も生していた。
また特にAlギルド鋼、Al−5iキルド鋼の場合は、
Al2O3クラスタの存在による鋳片品質の劣化の他、
AI脱酸生成物による取鍋ノズルあるいはタンディツシ
ュノズルの詰り等操業上の問題、更にはAI添加費が高
いというコスト上の問題が存在する。
このようにAI又はSiによって脱酸したギルド鋼ある
いはセミキルド鋼はAIあるいはSiの存在に起因する
欠点があるため、用途上の制約は避は得す、上述の欠点
がない品質のものが要求される場合には造塊分塊法によ
るリムド鋼が適用されているのが実情である。
しかしながら、造塊分塊法に比べて歩留りが高く、生産
性の良い連続鋳造法の適用鋼種拡大は時代の趨勢であり
、Siを殆んど含まず、Al含有量の低い所謂リムド相
当鋼種の連続鋳造化も当然に要望され、これに応えてい
くつかの試みがなされている。
前述のような深絞り性の劣化等の欠点をさけるためには
、 〔Si〕はなるべく低い方が好ましいが、少くとも
リムド鋼として認められる0、 020%以下にする必
要がある。
またAI添加コスト上、並びに耐火物中のSiO2の還
元によって生じる溶鋼中の〔Si〕の増加及び取鍋ノズ
ル又はタンディツシュノズルの詰りを防止する為には、
T、 〔AI〕についても低い方が好ましい。
しかしながら、例えば熱延鋼板等の鋼中窒素の固定の必
要な鋼種においては、T、〔AI〕は0.010〜0.
020%必要とし、冷延鋼板で箱焼鈍する場合等は、連
続鋳造時の気泡の発生を防止するのに必要なAI添加量
でよい等、用途によって異なるので、T。
(AI’lは0.020%以下であればリムド鋼相当品
として十分な値を示しているといえる。
なお、一般にAlギルド鋼としては、T、〔AI〕 は
0.030%以上である。
而してこのような値以下にT、〔AI〕。(Si’lを
抑制する場合には、当然脱酸不足となり、CO気泡が発
生すると考えられる。
一般に溶融金属中において気泡が発生する条件は、気泡
の内圧が大気圧、気泡の位置における溶湯の静水圧、及
び凝集力によって気泡が受ける圧力の和よりも大である
ことである。
換言すれば、溶鋼中の成分の反応によって生成されるC
O5N2.N2等のガス圧の総和が、前記大気圧、静水
圧、凝集力による圧力の総和よりも小さければ気泡は発
生しない。
ところでN2ガス、N2ガスの分圧はCOガスに比べて
小さいので、気泡の発生を防止するにはCOガスの発生
を抑えなければならないが、前述のピンホール欠陥は鋳
型内の薄い凝固殻に小気泡がトラップされた結果生じた
ものであるので静水圧は極めて小さく、また凝集力によ
って気泡が受ける圧力も1mmゞ程度の気泡では小さい
ので、結局気泡発生の防止の為にはCOガス圧を大気圧
すなわち1気圧以下にすれば良いということになる。
COガスは溶鋼中のCと自由Oとが(1)式の如く反応
して生成したものであり、C+0=CO(f)
・・・(1)但し、C:溶鋼中のC
O:溶鋼中の自由0
CO(fI):COガス
平衡状態ではC濃度及び自由C濃度とCOガスの圧力P
COとの間には平衡定数をKとすると(2)式の関係が
成立する。
但し、 〔C〕:溶鋼中のC濃度
〔C〕:溶鋼中の自由C濃度
この平衡状態では、自由[Detailed description of the invention] The present invention does not generate bubbles in the continuous casting process.
Equivalent to rimmed steel (7) T, CAI) (total
(Al content) and page Si) (Si content). Rimmed steel is a type of steel that is manufactured by intentionally performing almost no deoxidation during the refining process, generating a large amount of CO gas during ingot formation, and using the rimming action of the bubbles to wash away impurities at the solidification interface. If this is to be manufactured using a method such as continuous casting, in which the slab is pulled out and moved as solidification progresses, if the generation of air bubbles is too intense, the movement of the molten metal in the casting will become active.
Otherwise, it is dangerous because the bumping phenomenon occurs from the deep part of the unsolidified molten steel, and even if the generation of bubbles is weak, the solidification rate during continuous casting is fast, so fine bubbles are trapped near the surface and pinhole defects occur in the product. Continuous casting of rimmed steel is rarely carried out because of the problems that occur. Therefore, the steel types applicable to continuous casting are limited to guild steels and semi-killed steels that have been deoxidized with AI or Si, but of course Si-killed steels, Al guild steels,
-3i killed steel also increases (Si) in molten steel due to reduction of SiO2 in slag or refractory by AI,
The presence of such Si causes quality problems such as deterioration of deep drawability, deterioration of Zn plating adhesion, occurrence of temper color, and bending of the collar steel sheet, deterioration of hole expandability, restrictions on cold rolling rate, etc. There were also problems with steel processing. In particular, in the case of Al guild steel and Al-5i killed steel,
In addition to deterioration of slab quality due to the presence of Al2O3 clusters,
There are operational problems such as clogging of ladle nozzles or tundish nozzles due to AI deoxidation products, and cost problems such as the high cost of adding AI. Guild steel or semi-killed steel deoxidized by AI or Si has drawbacks due to the presence of AI or Si, so restrictions on usage cannot be avoided, and quality products that do not have the above drawbacks are required. The reality is that rimmed steel using the agglomeration and blooming method is used in these cases. However, the current trend is to expand the application of continuous casting, which has a higher yield and productivity than the ingot-blowing method, and the so-called rimmed equivalent steel types, which contain almost no Si and have a low Al content, are being introduced. Naturally, continuous casting is also desired, and several attempts have been made in response to this demand. In order to avoid the aforementioned drawbacks such as deterioration of deep drawability, it is preferable that [Si] be as low as possible, but it is necessary to keep it at least below 0.020%, which is acceptable as rimmed steel. In addition, in order to reduce the cost of adding AI and to prevent an increase in [Si] in molten steel caused by the reduction of SiO2 in the refractory and clogging of the ladle nozzle or tundish nozzle,
The lower the T and [AI], the better. However, in steel types that require fixation of nitrogen in the steel, such as hot-rolled steel sheets, T and [AI] are 0.010 to 0.
020%, and when box annealing a cold-rolled steel plate, the amount of AI added is sufficient to prevent the generation of bubbles during continuous casting. (If AI'l is 0.020% or less, it can be said to have a sufficient value as a product equivalent to rimmed steel. In general, for Al guild steel, T and [AI] are 0.030% or more. Therefore, T and [AI] are below these values. (If Si'l is suppressed, deoxidation will naturally be insufficient, and CO bubbles will be generated. Generally, bubbles are generated in molten metal. The condition is that the internal pressure of the bubble is greater than the sum of the atmospheric pressure, the hydrostatic pressure of the molten metal at the location of the bubble, and the pressure that the bubble receives due to cohesive force.In other words, C to be done
O5N2. If the total pressure of the gas such as N2 is lower than the total of the atmospheric pressure, hydrostatic pressure, and pressure due to cohesive force, bubbles will not be generated. By the way, the partial pressure of N2 gas and N2 gas is smaller than that of CO gas, so in order to prevent the generation of bubbles, it is necessary to suppress the generation of CO gas. However, the pinhole defect mentioned above is caused by the thin solidified shell inside the mold. Hydrostatic pressure is extremely small because it is a result of small bubbles being trapped, and the pressure that bubbles receive due to cohesive force is also small for bubbles of about 1 mm in diameter.In the end, CO gas pressure must be increased to prevent bubble generation. This means that it is sufficient to set the pressure to atmospheric pressure, that is, 1 atm or less. CO gas is generated by the reaction between C in molten steel and free O as shown in equation (1), and C+0=CO(f)
...(1) However, C: CO in molten steel O: Free 0 in molten steel CO (fI): In CO gas equilibrium state, C concentration, free C concentration, and pressure P of CO gas
When the equilibrium constant is K, the relationship shown in equation (2) holds true between CO and CO. However, [C]: C concentration in molten steel [C]: Free C concentration in molten steel In this equilibrium state, free C concentration
〔0〕を7Qppm以下に抑制
する場合には、〔C〕が0.3%程度の高濃度であって
もP。
0が1気圧以下となる。従って凝固が進行している状態
においては、自由[0’)を70ppm以下に抑制する
場合は、当然にCOガスの発生は抑えることができる。
そうすると〔Si )、 T。〔AI〕の低い溶鋼を連
続鋳造法にて鋳造せんとする場合は、Si、 AIによ
る脱酸に頼ることなく、別の方法で脱酸を行って自由〔
O〕をコントロールすれは゛良いことになる。
このような観点に立って脱酸を行う鋳片製造方法として
は、特開昭23−73422、特開昭54−93618
が公知である。
これらは転炉精錬後真空脱ガス処理を行い、 〔C〕と
自由When [0] is suppressed to 7Qppm or less, even if [C] is at a high concentration of about 0.3%, it becomes P. 0 becomes 1 atm or less. Therefore, in a state where solidification is progressing, if the free [0') is suppressed to 70 ppm or less, the generation of CO gas can naturally be suppressed. Then [Si), T. When casting molten steel with a low [AI] using the continuous casting method, it is possible to deoxidize using another method without relying on deoxidation using Si or AI.
It will be good to control O]. From this point of view, methods for producing slabs that perform deoxidation include JP-A-23-73422 and JP-A-54-93618.
is publicly known. These are subjected to vacuum degassing treatment after converter refining, and are converted into [C] and free
〔0〕とを低下せしめた後、AI (前者)あるい
はAIとTi (後者)添加による脱酸を行う方法であ
り、これにより (Si)。
T、 (AI)の低い溶鋼を連続鋳造可能である。
しかしながらこれらの方法では、未脱酸状態で、しかも
溶鋼中の自由After reducing [0], deoxidation is performed by adding AI (the former) or AI and Ti (the latter), thereby reducing (Si). It is possible to continuously cast molten steel with low T and (AI). However, in these methods, the free molten steel is not deoxidized, and the free
〔0〕が高い状態で真空に引く為にスプラ
ッシュが発生しやすく、更に真空設備の排気能力が大き
いことが要求される。
スプラッシュ等により炉壁に付着した地金が、真空処理
中に溶鋼中に脱落する為に、自由〔O〕のコントロール
が難しい等の欠点も有する。
また真空処理中の温度低下が大きい為、転炉の出鋼温度
を高くせざるを得す、これにより転炉工程での脱燐が不
足し、また転炉耐火物の溶損が大きいという問題がある
。
更に真空処理に長時間を要するため、工程上大きな制約
を受け、また真空処理設備費及び真空処理のランニング
コストが高いという欠点を存在する。
本発明は斯かる事情に鑑みてなされたものであって、真
空処理を施さないにも拘らず、気泡を発生させることな
く連続鋳造が可能であるリムド鋼相当品を製造する方法
を提供するこを目的とする。
本発明に係る製鋼法は、(1)要すれば転炉に装入され
る溶銑の〔Si〕 を0.30%以下とすべく転炉吹錬
に先立って溶銑を脱珪し、(2)この脱珪処理を施した
又は施していない溶銑を、浴面下よりガスを導入し得る
ようにした転炉(例えば所謂複合吹錬炉)に装入し、こ
の転炉にてその全期間又は一部期間において浴面下より
ガスを導入しつつの酸素吹錬を行い、(3)この酸素吹
錬後に浴面下よりガスを導入して攪拌精錬を行う。
そして上記酸素吹錬から攪拌精錬に至る適宜時点にてア
ルカリ金属炭酸塩を主成分とする造滓剤を添加すること
とする。
次いで連続鋳造機にてスラブ又はブルームを鋳造するよ
うな場合、(4)攪拌精錬後における転炉から取鍋への
出鋼中及び/又は出鋼後、A1添加による脱酸を行い、
自由〔O〕が70ppm以下、T。
〔Al〕が0.020%以下、 (Si)が不可避的含
有量である溶鋼を溶製し、該溶鋼を連続鋳造機により鋳
造するものであり、また連続鋳造機にてビレットを鋳造
するような場合は(1)〜(3)の処理を行った後、(
41’)要すれば攪拌精錬後における転炉から取鍋への
出鋼中及び/又は出鋼後、Al添加による脱酸を行い、
自由〔O〕が100〜180ppm、(Si)が不可避
的含有量である溶鋼を溶製し、(5X)該溶鋼を連続鋳
造機により鋳造するに際して、該連続鋳造機を構成する
鋳型内溶鋼にAlを添加して脱酸処理を行い、鋳型内溶
鋼の自由〔O〕を70pIm以下、T、〔AI〕を0.
020%以下、 (Si)を不可避的含有量とならしめ
るのである。
以下本発明に係る製鋼法を上記番号順に処理工程を追っ
て詳述する。
(1)本発明に係る製鋼法は後述する理由により、転炉
に添加する造滓剤としてアルカリ金属炭酸塩を主成分と
するもの、特に経済性に優れたソーダ灰(Na2CO3
)を使用する。
この際に溶銑の(Si)が高い場合には、溶銑中のSi
又はSiの酸化生成物であるスラグ沖のSiO2とNa
2CO3との反応が下記(3)、 (4)式の如く生じ
て、Na2CO3+5.耐Na2O−8iO2+o・・
・(3)Na2CO3+SiO2→Na2O・SiO2
+C02(力・・・(4)但し、Si、C:夫々溶銑中
のSi、 CCCC02(:CO2ガス
脱燐に関与すべきNa2CO3が減少する。
従って転炉において添加すべきソーダ灰の量が多量とな
り、後述する攪拌精錬の効果を損うことになるので、小
量のソーダ灰添加で脱燐を十分に行わせるために、転炉
に装入する溶銑の(Si〕は0.30%以下とするのが
望ましい。
このために高炉出銑時の溶銑の〔Si〕が0.30%以
上であるときは、転炉吹錬に先立ち、(Silを0.3
0%以下、好ましくは0.20%以下に迄脱珪処理を行
う。
この脱珪処理は高炉鋳床、トーピードカー、溶銑鍋等に
おいて溶銑への酸化鉄の添加、あるいは酸素ガスの吹付
は等により行う。
(2)、 (3)必要に応じてこのような処理を受けた
溶銑は、複合吹錬炉等浴面下よりガスを導入し得るよう
にした転炉に装入される。
この転炉内ではまず酸素吹錬を行い(2)、次いで浴面
下よりガスを導入しての攪拌精錬を行う(3)が、酸素
吹錬に際してはその全部の期間又は一部の期間(例えば
酸素吹錬末期)において浴面下よりガスを導入して攪拌
精錬を併せ行う、所謂複合吹錬を行う。
そして、これらの酸素吹錬から攪拌精錬に至る間の適宜
時点においてアルカリ金属炭酸塩を主成分とする造滓剤
を添加する。
この造滓剤は酸素吹錬時に全量転炉中に装入することと
してもよいが、後述する理由から明らかな如く1、一部
を酸素吹錬の開始直後に、また残部を酸素吹錬末期又は
攪拌精錬開始時に装入するのがよい。
さて、攪拌精錬を行う理由は後述するように主に(1)
式によるC脱酸を促進させるためであるが、攪拌精錬時
に鋼浴面上に転炉スラグが多量に存在する場合は、スラ
グから溶鋼中に多量の酸素が供給されて、攪拌精錬時の
C脱酸効果を損う。
而してこのような転炉スラグから溶鋼への酸素供給の影
響を実質的に受けないようにするためには、転炉スラグ
の量を溶鋼1t(トン)当り40kg以下にしておけば
よいことが本願発明者等の研究の結果間らかになった。
従来は転炉に添加する造滓剤は通常生石灰(Cab)が
使用され、CaOがスラグ中の主成分となって脱燐、脱
硫反応に関与していた。
ところが生石灰によって脱燐、脱硫を十分に行わせるた
めには、その添加量を溶鋼1を当り30〜60kgにせ
ざるを得す、転炉吹錬によって生成するスラグ量と合わ
せて、前述の転炉スラグ量が溶鋼1を当り40kg以下
という条件を満足することは不可能であった。
しかしながら本発明に係る製鋼法のように、転炉スラグ
にソーダ灰(Na2CO3)等のアルカリ金属炭酸塩を
使用する場合は、生石灰を使用する場合に比して、極め
て小量の添加量で脱燐、脱硫が十分に行われる。
第1図は横軸に脱燐反応に与るソーダ灰量(有効ソーダ
灰量)を、また縦軸に脱燐率をとって、ソーダ灰添加量
と脱燐率との関係を表わしたものである。
図から明らかなように、有効ソーダ灰量が溶鋼1を当り
15〜25kgである場合は90%以上の談燐率が得ら
れている。
従って転炉スラグの量を極力抑えて、効率良く脱燐を行
わせるために、本発明においては転炉に添加する造滓剤
としてはソーダ灰を用いることとしている。
また、ソーダ灰を用いる場合は、スラグ沖のT、 Fe
(total Fe)含有力が生石灰や石灰石を使用し
た場合に比して極めて少く、終点(C,lが0.05%
程度になる迄吹錬した場合でを、T、 Fe含有量は高
々5〜8%程度である。
従って後述する攪拌精錬によるC脱酸時には、スラグか
らの酸素の供給が極めて少なく効率よくC脱酸を行うこ
ができる。
一般に転炉における酸素吹錬中の各元素の挙動について
みると、まず吹錬初期にSiが急速に酸化され、SiO
2となってスラグ沖に排出され、 (Si)が低下して
から次に脱炭速度が上昇し、供給される酸素が略々10
0%近く脱炭に消費される吹錬中期に至る。
そして吹錬末期は〔Caが低下するために脱炭速度が低
下し、溶鋼中の自由〔O〕とスラグ中のFeO濃度が増
加する。
従ってまず、酸素吹錬初期に生成する5i02の滓化を
目的として、(4)式の反応が進行するに必要なソーダ
灰を酸素吹錬開始直後において添加する。
また酸素吹錬初期あるいは中期のように溶湯の〔Caが
高い場合は、脱燐に関与すべきソーダ灰が(5)式の反
応に従って消耗されるので、
Na2CO3+ 2 C→2Na(g)+ 3CO(f
) ・・・(5)但し、Na(り)、C0(y)
、−夫々ガスとなって溶湯及びスラグから排出されるN
a、 CO1脱燐、脱硫を目的としたソーダ灰の添加は
、可及的に低〔Caの状態下において行うのが好ましく
、従って〔Caが低くなった酸素吹錬末期あるいは酸素
吹錬後の攪拌精錬時に添加することとする。
要するに〔Caが0.10%以下、 (Si)が0.3
0%以下(但し、転炉吹錬では〔Caが0.10%の場
合は〔si、1は極く微量である)となった状態下にお
いては、溶銑の〔P〕が0.100〜0.150%程度
である場合は、ソーダ灰を溶鋼1を当り20〜30kg
添加することにより、有効ソーダ灰量は前述の15〜2
5kgとなり90以上の脱燐率を得ることができる。
また溶銑の〔S〕が0.030%である場合は、これを
0.010%程度とする迄に脱硫することが可能である
。
本発明による製造対象がリムド鋼代替品であるという性
質に鑑みれば、成品のP、 S濃度は共に0、030
%以下が好ましいが、通常出銑時の〔P〕は0..1.
00〜0.150%、 〔S〕は0.03%近傍である
ので1、特に転炉工程に先立つ脱燐、脱硫等の予備処理
は必要なく、転炉′におけるソーダ灰処理によって脱燐
、脱硫は十分に行われる。
なお、転炉内のソーダ灰処理゛によって〔S〕は0.0
10%程度に迄脱硫可能であるが、成品に要求されるS
濃度が特に低い場合は脱珪処理又は転炉吹錬に先立ち、
溶銑鍋において溶銑中に生石灰、ソーダ灰等の脱硫剤を
添加しインペラの回転により溶銑と脱硫剤を混合せしめ
るKR法、あるいは脱硫剤を懸濁させたガスを溶銑中に
吹込み添加混合せしめるインジェクション法等により別
途予備的脱硫処理を行えばよいことは勿論である。
また転炉におけるソーダ灰の添加方法は、通常造滓剤添
加方法と同様の副原料投入ホッパーから投入すればよい
が、脱燐、脱硫を目的として攪拌精錬時に添加する際に
は、浴面下より導入される攪拌用カスをキャリアガスと
して溶鋼中に吹込む方法を採ることにより、一層効果的
に処理できる。
さて酸素吹錬中の適宜期間(全期間又は一部期間)及び
酸素吹錬後、浴面下よすAr等の不活性ガスを導入して
鋼浴を攪拌せしめるのであるが、これは酸素吹錬末期の
攪拌力の低下を補い、酸素吹錬による脱炭を効率良く行
わしめ、溶鋼中の自由Since the vacuum is drawn in a state where [0] is high, splash is likely to occur, and furthermore, the vacuum equipment is required to have a large exhaust capacity. It also has drawbacks such as difficulty in controlling free [O] because the base metal attached to the furnace wall due to splash etc. falls into the molten steel during vacuum treatment. In addition, because the temperature drop during vacuum treatment is large, the tapping temperature of the converter has to be raised, which leads to insufficient dephosphorization in the converter process and large melting loss of the converter refractories. There is. Further, since the vacuum treatment requires a long time, there are significant restrictions on the process, and there are also disadvantages in that the cost of the vacuum treatment equipment and the running cost of the vacuum treatment are high. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a product equivalent to rimmed steel that can be continuously cast without generating bubbles even though it is not subjected to vacuum treatment. With the goal. The steel manufacturing method according to the present invention includes (1) desiliconizing the hot metal prior to converter blowing in order to reduce the [Si] content of the hot metal charged into the converter to 0.30% or less, and (2) ) The hot metal, which has or has not been subjected to desiliconization treatment, is charged into a converter (for example, a so-called combined blowing furnace) that allows gas to be introduced from below the bath surface, and is heated in this converter for the entire period. Alternatively, oxygen blowing is performed while introducing gas from below the bath surface for a part of the time, and (3) after this oxygen blowing, gas is introduced from below the bath surface and stirring refining is performed. A slag-forming agent containing an alkali metal carbonate as a main component is added at an appropriate point from the oxygen blowing to the stirring refining. Next, when casting a slab or bloom with a continuous casting machine, (4) deoxidizing by adding A1 during and/or after tapping from the converter to the ladle after stirring and refining,
Free [O] is 70 ppm or less, T. Molten steel containing 0.020% or less of [Al] and an unavoidable content of (Si) is produced, and the molten steel is cast using a continuous casting machine, and a billet is cast using a continuous casting machine. If so, after performing steps (1) to (3),
41') If necessary, deoxidize by adding Al during and/or after tapping from the converter to the ladle after stirring and refining,
When melting molten steel with free [O] of 100 to 180 ppm and unavoidable content of (Si), and casting the molten steel with a continuous casting machine (5X), in the molten steel in the mold constituting the continuous casting machine, Deoxidation treatment is performed by adding Al, and the free [O] of the molten steel in the mold is set to 70 pIm or less, and the T and [AI] are set to 0.
0.020% or less, the (Si) content is made unavoidable. Hereinafter, the steel manufacturing method according to the present invention will be explained in detail, following the processing steps in the order of the numbers mentioned above. (1) For the reasons described later, the steelmaking method according to the present invention uses a slag-forming agent containing alkali metal carbonate as a main component to be added to the converter, especially soda ash (Na2CO3), which is highly economical.
). At this time, if the (Si) content of the hot metal is high, the Si in the hot metal
Or SiO2 and Na in the slag, which is an oxidation product of Si.
The reaction with 2CO3 occurs as shown in the following formulas (3) and (4), resulting in Na2CO3+5. Resistant Na2O-8iO2+o...
・(3) Na2CO3+SiO2→Na2O・SiO2
+C02 (Force... (4) However, Si, C: Si in the hot metal, CCCC02 (: Na2CO3, which should be involved in CO2 gas dephosphorization, decreases. Therefore, the amount of soda ash that should be added in the converter is large. Therefore, in order to achieve sufficient dephosphorization with the addition of a small amount of soda ash, the (Si) content of the hot metal charged to the converter should be 0.30% or less. For this reason, if the [Si] of the hot metal at the time of blast furnace tapping is 0.30% or more, prior to converter blowing,
Desiliconization treatment is performed until the content is 0% or less, preferably 0.20% or less. This desiliconization treatment is carried out by adding iron oxide to the hot metal in a blast furnace cast bed, torpedo car, hot metal pot, etc., or by spraying oxygen gas. (2), (3) The hot metal that has undergone such treatment as required is charged into a converter, such as a composite blowing furnace, which allows gas to be introduced from below the bath surface. In this converter, oxygen blowing is first performed (2), and then gas is introduced from below the bath surface to perform stirring and refining (3). For example, in the final stage of oxygen blowing, gas is introduced from below the bath surface to perform stirring and refining, so-called complex blowing. Then, a slag-forming agent containing an alkali metal carbonate as a main component is added at an appropriate point between the oxygen blowing and stirring refining. The entire amount of this slag-forming agent may be charged into the converter during oxygen blowing, but as will be clear from the reasons described below, 1. Part of the slag forming agent may be charged immediately after the start of oxygen blowing, and the remainder may be charged at the end of oxygen blowing. Alternatively, it is preferable to charge it at the start of stirring and refining. Now, the reason for stirring and refining is mainly (1), as will be explained later.
This is to promote C deoxidation according to the formula, but if there is a large amount of converter slag on the steel bath surface during stirring refining, a large amount of oxygen is supplied from the slag to the molten steel, and the C deoxidation during stirring refining is Impairs the deoxidizing effect. In order to substantially avoid the effects of oxygen supply from converter slag to molten steel, the amount of converter slag should be kept at 40 kg or less per ton of molten steel. was clarified as a result of research by the inventors of the present application. Conventionally, quicklime (Cab) was usually used as a slag-forming agent added to a converter, and CaO was the main component in the slag and was involved in dephosphorization and desulfurization reactions. However, in order to achieve sufficient dephosphorization and desulfurization with quicklime, the amount of quicklime added must be 30 to 60 kg per molten steel. It was impossible to satisfy the condition that the amount of slag be 40 kg or less per molten steel. However, when using an alkali metal carbonate such as soda ash (Na2CO3) in the converter slag as in the steelmaking method according to the present invention, it is possible to remove Phosphorus and desulfurization are sufficiently carried out. Figure 1 shows the relationship between the amount of soda ash added and the dephosphorization rate, with the horizontal axis representing the amount of soda ash participating in the dephosphorization reaction (effective amount of soda ash), and the vertical axis representing the dephosphorization rate. It is. As is clear from the figure, when the effective amount of soda ash is 15 to 25 kg per 1 molten steel, a coalescence rate of 90% or more is obtained. Therefore, in order to suppress the amount of converter slag as much as possible and perform dephosphorization efficiently, in the present invention, soda ash is used as the slag forming agent added to the converter. In addition, when using soda ash, T, Fe
(total Fe) content is extremely low compared to when quicklime or limestone is used, and the end point (C, l is 0.05%)
When the steel is blown to a certain degree, the T and Fe contents are about 5 to 8% at most. Therefore, during C deoxidation by stirring refining, which will be described later, the supply of oxygen from the slag is extremely small and C deoxidation can be carried out efficiently. In general, looking at the behavior of each element during oxygen blowing in a converter, first of all, Si is rapidly oxidized in the early stage of blowing, and SiO
2 and the slag is discharged offshore, and after (Si) decreases, the decarburization rate increases, and the supplied oxygen reaches approximately 10
It reaches the middle stage of blowing, when nearly 0% is consumed for decarburization. In the final stage of blowing, the decarburization rate decreases due to a decrease in Ca, and the free [O] in the molten steel and the FeO concentration in the slag increase. Therefore, first, immediately after the start of oxygen blowing, soda ash necessary for the reaction of formula (4) to proceed is added for the purpose of turning 5i02 produced at the beginning of oxygen blowing into slag. In addition, when [Ca] in the molten metal is high, such as in the early or middle stages of oxygen blowing, the soda ash that should be involved in dephosphorization is consumed according to the reaction of equation (5), so Na2CO3+ 2C → 2Na(g)+ 3CO (f
) ... (5) However, Na (ri), C0 (y)
, - N discharged from the molten metal and slag as gases, respectively.
a. The addition of soda ash for the purpose of CO1 dephosphorization and desulfurization is preferably carried out under conditions of as low [Ca] as possible. It will be added during stirring and refining. In short, [Ca is 0.10% or less, (Si) is 0.3
0% or less (However, in converter blowing, under conditions where [Ca is 0.10%, [si, 1 is a very small amount]), [P] of hot metal is 0.100~ If it is about 0.150%, add 20 to 30 kg of soda ash per 1 molten steel.
By adding, the effective amount of soda ash increases from 15 to 2 as mentioned above.
5 kg, and a dephosphorization rate of 90 or more can be obtained. Further, when the [S] content of the hot metal is 0.030%, it is possible to desulfurize it to about 0.010%. Considering the nature of the product manufactured by the present invention as a rimmed steel substitute, the P and S concentrations of the finished product are both 0.030.
% or less, but normally [P] during tapping is 0. .. 1.
00 to 0.150%, and since [S] is around 0.03%1, there is no need for preliminary treatment such as dephosphorization and desulfurization prior to the converter process, and dephosphorization and desulfurization are performed by soda ash treatment in the converter. Desulfurization is sufficient. In addition, [S] is 0.0 due to the soda ash treatment in the converter.
It is possible to desulfurize up to about 10%, but the S required for the product is
If the concentration is particularly low, prior to desiliconization treatment or converter blowing,
KR method, in which a desulfurizing agent such as quicklime or soda ash is added to hot metal in a hot metal ladle, and the hot metal and desulfurizing agent are mixed by the rotation of an impeller, or injection method, in which gas in which the desulfurizing agent is suspended is blown into the hot metal and mixed. It goes without saying that a preliminary desulfurization treatment may be performed separately by a method or the like. In addition, the method of adding soda ash in a converter is to add it from the auxiliary material input hopper, which is the same as the normal slag adding method, but when adding it during stirring and refining for the purpose of dephosphorization and desulfurization, it is necessary to add soda ash below the bath surface. By adopting a method in which the stirring scum that is introduced into the molten steel is blown into the molten steel as a carrier gas, the treatment can be performed more effectively. Now, during an appropriate period during oxygen blowing (all or part of the period) and after oxygen blowing, an inert gas such as Ar is introduced below the bath surface to stir the steel bath. It compensates for the drop in stirring power at the final stage of forging, efficiently decarburizes through oxygen blowing, and improves freedom in molten steel.
〔0〕の増加を防止するともに、
C脱酸を促進させるために行われる。
このC脱酸は攪拌用のガスとしてAr等の不活性ガスを
使用する場合に、鋼浴中の気泡におけるCOガスス分圧
が不活性ガスに希釈されて低くなるため、溶鋼中のCと
自由Oとの(1)式による反応が生じて起こるものであ
る。
すなわち(1)式により生成したCO気泡を不活性ガス
により希釈してCOガス分圧を下げ(1)式によるCO
の生成を促進させるか、あるいはAr気泡を溶鋼中に多
量に分布させ、(1)式の反応により生成するCOをA
r気泡中に希釈混合して溶鋼中から排出せしめて(1)
式の反応を促進させ、溶鋼中の自由〔O〕を低下させる
ものである。
この攪拌精錬により溶鋼中の〔C〕と自由〔O〕と平衡
するP。
。は1気圧以下となる。攪拌ガスの導入は、通常の転炉
を使用し、該転炉内の溶鋼中に攪拌ガス用のランスを挿
入して行ってもよいが、第2図に示すように炉底に羽口
1を設置してなる複合吹錬炉を用いて、この羽口1から
攪拌ガスを導入し鋼浴を攪拌するのが最も効率がよい。
またこの羽目は炉壁下部に設置しても同様の効果がある
ことは勿論である。
攪拌ガスはAr、 Kr、 Xe等の不活性ガスが好ま
しい。
酸素吹錬時の攪拌力の低下を補う場合にはCOあるいは
・CO2でもよいが、COはC脱酸時のCOガス分圧を
下げ得す、またCO2はCOと02とに分解してCO及
び02を発生するのでやはり自由(0)を低下し得す、
共にC脱酸時には好ましくない。
N2でもよいが、溶鋼中のNの吸収が問題となる鋼種で
は好ましくない。
また酸素吹錬中にN2を使用したときは、途中からAr
等のN2を含まないガスに変更するか、又は吹錬後にA
r等のN2を含まないガスで攪拌を行って脱窒を行うと
よい。
更に酸素吹錬中の攪拌ガスとしては0゜を使用してもよ
い。
またこれらのガスを組合せて使用することも可能である
。
ガス流量は溶鋼1を当’) 0.03Nm”/分以上必
要である。
0.038m3/分未満であると攪拌効果が少く、脱酸
速度が遅い為、処理時間が長くなり、処理中の溶鋼温度
の低下が問題となる。
一般に酸素吹込みにより脱炭は進行するが、溶鋼中の自
由(0’)は逆に増加する。
而して上述の如き攪拌精錬を、酸素吹錬と並行して行う
所謂複合吹錬においては、通常の転炉吹錬に比して吹止
め時の〔Cax〔O〕が小さい。
第3図はこのソーダ灰処理酸素吹錬とArガス攪拌精錬
を併用した複合吹錬の場合の終点における〔C〕と自由
〔O〕との関係を黒丸で、また通常の純酸素上吹吹錬(
LD)の終点における〔C〕と自由〔O〕との関係を斜
線領域で示したグラフである。
また図中実線でP。
0が1気圧、波線でP。0が0.5気圧、1点鎖線でP
。
0が0.3気圧の場合における1600℃平衡状態での
〔C〕 と自由〔O〕の関係で夫々示した。
なお実際はCO2も生成するので、これらの曲線の関係
はP。
0 + P CO2が夫々所定の気圧である場合の平衡
状態における〔C〕と自由〔O〕との関係ということに
なるが、 〔C〕が0.1%である場合にはCO2はC
O+CO2の2%以下であり、極く微量なので無視でき
る。
この図から明らかなように、通常吹錬(LD)に比して
複合吹錬の場合は自由〔O〕が低目に推移し、同一〔C
〕に対し後工程で脱酸処理しなければならない自由〔O
〕が少いという利点がある。
また複合吹錬の場合は〔C〕 と自由〔O〕 との関係
がP。
o=1気圧の場合の平衡状態に近くP。
0と終点〔C〕とをコントロールすることにより 〔O
〕が略々一義的にコントロールされ、この点でも複合吹
錬は有利である。
次に攪拌のみを行って、C脱酸を計るわけであるが、こ
のC脱酸効果を損わないために、複合吹錬における酸素
吹錬は〔C〕が0.05%以上にて吹止める。
けだしくC’lが0.05%未満では溶鋼中の自由〔O
〕が高くなりすぎて攪拌によって十分に・C脱酸されず
、後述する小量のAIによる脱酸では自由(0’l を
所定の値にコントロールするのが難しいためである。
このようにして複合吹錬にて得た溶鋼をArによって攪
拌精錬した結果を第3図に白丸で示したが、この図から
明らかな如く、攪拌による脱炭及び脱酸効果は著しく、
溶鋼中の〔C〕、自由〔O〕と平衡するPCOが0.3
〜0.5気圧程度となる迄に脱酸されている。
また酸素吹錬終点〔C〕が0,05%以上の場合は自由
In addition to preventing an increase in [0],
This is done to promote C deoxidation. This C deoxidation occurs when an inert gas such as Ar is used as a stirring gas, because the CO gas partial pressure in the bubbles in the steel bath is diluted by the inert gas and becomes lower. This is caused by a reaction with O according to formula (1). That is, the CO bubbles generated by equation (1) are diluted with an inert gas to lower the CO gas partial pressure and the CO bubbles generated by equation (1) are reduced.
or by distributing a large amount of Ar bubbles in the molten steel, the CO generated by the reaction of equation (1) can be
r Diluted and mixed into bubbles and discharged from the molten steel (1)
It promotes the reaction of the formula and reduces the free [O] in molten steel. Through this stirring and refining, P is in equilibrium with [C] and free [O] in the molten steel. . is less than 1 atm. The stirring gas may be introduced by using a normal converter and inserting a lance for the stirring gas into the molten steel in the converter, but as shown in Figure 2, a tuyere 1 at the bottom of the furnace It is most efficient to stir the steel bath by introducing stirring gas through the tuyere 1 using a composite blowing furnace equipped with a steel bath. Moreover, it goes without saying that the same effect can be obtained even if this panel is installed at the lower part of the furnace wall. The stirring gas is preferably an inert gas such as Ar, Kr, or Xe. CO or CO2 may be used to compensate for the decrease in stirring power during oxygen blowing, but CO can lower the partial pressure of CO gas during C deoxidation, and CO2 decomposes into CO and 02 to produce CO2. and 02, which can also reduce freedom (0),
Both are unfavorable during C deoxidation. Although N2 may be used, it is not preferable for steel types where absorption of N in molten steel is a problem. Also, when using N2 during oxygen blowing, Ar
Either change to a gas that does not contain N2, such as, or use A after blowing.
It is preferable to perform denitrification by stirring with a gas that does not contain N2, such as r. Furthermore, 0° may be used as the stirring gas during oxygen blowing. It is also possible to use a combination of these gases. The gas flow rate is required to be 0.03 Nm''/min or more per molten steel. If it is less than 0.038 m3/min, the stirring effect will be small and the deoxidation rate will be slow, resulting in a long treatment time and Decreasing the temperature of molten steel is a problem. Generally, decarburization progresses by oxygen injection, but the freedom (0') in molten steel increases. In the so-called combined blowing, which is carried out using a combination of oxygen blowing and argon gas stirring, [Cax[O] at the end of blowing is smaller than in normal converter blowing. The relationship between [C] and free [O] at the end point in the case of combined blowing is shown by the black circle, and the relationship between normal pure oxygen top blowing (
LD) is a graph in which the relationship between [C] and freedom [O] at the end point is shown in the shaded area. Also, the solid line in the figure indicates P. 0 is 1 atm, the wavy line is P. 0 is 0.5 atm, dashed line is P
. The relationship between [C] and free [O] in an equilibrium state of 1600°C when 0 is 0.3 atm is shown. In reality, CO2 is also produced, so the relationship between these curves is P. 0 + P This is the relationship between [C] and free [O] in an equilibrium state when CO2 is at a predetermined atmospheric pressure, but when [C] is 0.1%, CO2 is C
It is less than 2% of O+CO2, and is so small that it can be ignored. As is clear from this figure, the free [O] is lower in the case of compound blowing than in normal blowing (LD), and the same [C
] must be deoxidized in the post-process [O
] has the advantage of being small. In addition, in the case of compound blowing, the relationship between [C] and free [O] is P. P is close to the equilibrium state when o = 1 atm. By controlling 0 and the end point [C], [O
] is almost uniquely controlled, and composite blowing is advantageous in this respect as well. Next, only stirring is performed to measure C deoxidation, but in order not to impair this C deoxidation effect, oxygen blowing in combined blowing is performed at a [C] content of 0.05% or more. stop. If C'l is less than 0.05%, free [O
) becomes too high and cannot be sufficiently deoxidized by stirring, and deoxidation with a small amount of AI (described later) is difficult to control free (0'l) to a predetermined value.In this way, The results of stirring and refining the molten steel obtained by composite blowing using Ar are shown in Figure 3 by white circles.As is clear from this figure, the decarburization and deoxidation effects of stirring are remarkable.
PCO in equilibrium with [C] and free [O] in molten steel is 0.3
It has been deoxidized to a pressure of ~0.5 atm. Also, if the oxygen blowing end point [C] is 0.05% or more, it is free.
〔0〕が150ppm程度に迄容易に脱酸され、後述す
るAI脱酸処理にて添加するAi量は著しく小量でよい
ことになる。
なお酸素吹錬終点〔C〕が0.05%程度であったもの
は、攪拌精錬によって0.03%程度に迄脱酸すること
ができる。
而して前述した如く、攪拌精錬時に鋼浴面上に転炉スラ
グが多量に存在すると、スラグから溶鋼中に多量の酸素
が供給されて、攪拌精錬時のC脱酸効果を損う。
ところが本発明に係る製鋼法においては、転炉に添加す
る造滓剤としてソーダ灰を使用するので、前述した如く
溶鋼1を当り20〜30kgの添加量で脱燐効果が十分
得られ、この場合に攪拌精錬時のスラグ量は溶鋼1を当
り40kg以下であるのでC脱酸効果を損うことはない
。
また酸素吹錬の初期から中期にかけては吹錬開始直後に
SiO□の滓化を目的とした小量のソーダ灰添加しか行
っていないので、吹錬中期の脱炭期には転炉スラグとし
ては(3)、 (4)式ノNa2O−8iO2カ小量存
在するだけであり、従って脱炭効率に優れ、複合吹錬効
果と相俟って吹錬末期の自由〔O〕及びスラグ中FeO
濃度の増加を極めて少いものとしている。
このFeOを含むスラグ沖のT、 Fe含有量は〔C〕
が0.05%であるときでも5〜8%以下と極めて低い
が、T、 Fe含有量が低いことも攪拌精錬時のC脱酸
効果を効果的なものとするのに貢献している。
(4)、 ((1)、((至)次に該溶鋼を連続鋳造機
にて鋳造するに際し、AI添加による脱酸を行い連続鋳
造機を構成する鋳型内の未凝固溶鋼中の自由[0] is easily deoxidized to about 150 ppm, and the amount of Ai added in the AI deoxidation treatment described later can be extremely small. Note that those whose oxygen blowing end point [C] is about 0.05% can be deoxidized to about 0.03% by stirring and refining. As described above, if a large amount of converter slag exists on the surface of the steel bath during stirring refining, a large amount of oxygen is supplied from the slag into the molten steel, impairing the C deoxidizing effect during stirring refining. However, in the steel manufacturing method according to the present invention, soda ash is used as a slag forming agent added to the converter, so as mentioned above, a sufficient dephosphorization effect can be obtained with an addition amount of 20 to 30 kg per 1 molten steel. Since the amount of slag during stirring and refining is 40 kg or less per molten steel, the C deoxidizing effect is not impaired. In addition, from the early to middle stages of oxygen blowing, only a small amount of soda ash is added immediately after the start of blowing for the purpose of turning SiO□ into slag, so during the decarburization stage in the middle stage of oxygen blowing, converter slag is Only a small amount of Na2O-8iO2 is present in formulas (3) and (4), and therefore the decarburization efficiency is excellent, and together with the composite blowing effect, free [O] and FeO in the slag at the end of blowing are
The increase in concentration is kept extremely small. The T and Fe content of this slag containing FeO is [C]
Even when the content is 0.05%, it is extremely low at 5 to 8% or less, but the low T and Fe contents also contribute to making the C deoxidation effect during stirring refining effective. (4), ((1), ((to)) Next, when casting the molten steel in a continuous casting machine, deoxidation is performed by adding AI to free the unsolidified molten steel in the mold that constitutes the continuous casting machine.
〔0〕を7
0ppm以下に迄低下せしめる。
この工程においてビレット連続鋳造機のように取鍋又は
タンディツシュのノズル径が小さい(15mm′6以下
)場合は、A1脱酸生成物Al2O3によるノズル詰り
か起きやすい。
具体的にはAI添加による脱酸にて得た取鍋、タンディ
ツシュ内の溶鋼中の自由[0] to 7
Reduce it to below 0 ppm. In this step, if the nozzle diameter of the ladle or tundish is small (15 mm'6 or less) as in a continuous billet casting machine, the nozzle is likely to be clogged by the A1 deoxidation product Al2O3. Specifically, the freedom in the molten steel in the ladle and tundish obtained by deoxidizing with the addition of AI
〔0〕が1100pp以下であ
るときはノズル詰りが多発する。
従ってビレットを連続鋳造する場合にはタンディツシュ
迄の段階では自由(0)を100〜180ppに調整し
てノズル詰りを回避することとし、然る後、鋳型内溶鋼
中の自由〔O〕力f″IOppm以下になるように、鋳
型内溶鋼中にAIを添加して脱酸を行う。
なおタンディツシュ段階で肩山When [0] is less than 1100 pp, nozzle clogging occurs frequently. Therefore, when continuously casting billets, the free [O] force f'' in the molten steel in the mold should be adjusted to 100 to 180 pp to avoid nozzle clogging in the stage up to the tundish. AI is added to the molten steel in the mold to deoxidize it so that it is less than IOppm.
〔0〕をiso pμs
以下とした理由はこの値を超えると鋳型内溶鋼中へのA
I添加が多くなりすぎて、自由〔O〕及び゛Al添加量
の制御が困難になるためである。
AI添加方法としては、A1粒を添加してもよいが、後
述するようにタンディツシュ−鋳型間を不活性ガスでシ
ールした場合に添加しやすく、且つ自由〔O〕の調整が
行いやすいAI綿線供給法好ましい。
一方スラブ、ブルーム連続鋳造機のような取鍋ノズル、
タンテ゛イツシュノズルのノズル径が15mmφ以上で
ある場合は、このようにAI脱酸処理を2弾階に分ける
必要はなく、鋳造される迄のいずれかの期間に自由に〔
0〕を70pIIT1以下にするのに必要最小限のAi
量を添加して脱酸処理を行えたよい。
その添加場所としては、前掲(2)の転炉(複合吹錬炉
)から取鍋への出鋼中、出鋼後の取鍋内、タンディツシ
ュ内、更には鋳型内としてもよく、また複数の場所で行
ってもよい。
AI添加量は、添加前の溶鋼中の自由[0] iso pμs
The reason for the following is that if this value is exceeded, A will enter the molten steel in the mold.
This is because too much I is added, making it difficult to control the amounts of free [O] and Al added. As for the AI addition method, it is possible to add A1 grains, but as described later, it is easier to add when the gap between the tundish and the mold is sealed with an inert gas, and it is easier to adjust the free [O] using AI cotton wire. The feeding method is preferred. Meanwhile ladle nozzle, like slab, bloom continuous casting machine
If the nozzle diameter of the tangent nozzle is 15mmφ or more, there is no need to divide the AI deoxidation treatment into two stages as described above, and the AI deoxidation treatment can be carried out at any time before casting.
0] is below 70pIIT1.
It was possible to perform deoxidation treatment by adding a large amount of chlorine. The addition location may be during tapping from the converter (combined blowing furnace) to the ladle as described in (2) above, in the ladle after tapping, in the tundish, or even in the mold. You can go anywhere. The amount of AI added is free in the molten steel before addition.
〔0〕を例えば固
体電池の如き電気化学現象を利用した酸素プローブによ
って測定して決定するが、該溶鋼は(3)の攪拌精錬に
て既に脱酸処理を受けているため、極めて小量のAI添
加で溶鋼中の自由〔O〕を70ppm以下に迄脱酸でき
、AI添加後の溶鋼中のT、 〔AI)はリムド鋼相当
鋼として品質上要求される0、 020%以下に十分と
どめることができる。
また転炉スラグに含まれるT、 Fe含有量が少く、ス
ラグからの酸素の供給が少いので、AI添加時AIのロ
スがない為、溶鋼中の自由〔O〕を高精度で制御できる
ほか、転炉に装入する溶銑の(Si)を0.03%以下
、好ましくは0.20%以下となすべく調節しているの
でスラグ中のSiO2成分が少く、A1添加によりスラ
グ中のSiO2成分が還元されて溶鋼中の(Si:]が
増加する所謂Siピックアップの影響も少い。
なお転炉から取鍋への出鋼時には、勾知の方法でスラグ
勿ット出鋼を行うと更に精度よく自由(0)をコントロ
ールできる。
また耐火物中のSiO2成分からのSiピックアップあ
るいはAI地金に含まれているSiによって、溶鋼中の
〔Si:)がわずかに増加することが考えられるが、前
述の如<T、〔AI〕イ0.020%とする程度のAI
添加では(Si)の増加は極く微量であり、不可避的含
有量に止まる。
また鋼材の用途に応じて必要とされるMn等の合金元素
の調整は、転炉から取鍋への出鋼中又は出鋼後の取鍋内
に合金を添加することにより行う。
更に転炉から取鍋への出鋼中に溶鋼が空気酸化されるの
を防止するため、出鋼時の溶鋼周辺はAr等の不活性ガ
スでシールするのが望ましい。
更にまた取鍋に出鋼された溶鋼は表面が空気に接してい
るので放熱防止、空気酸化防止上の見地から7ラツクス
又はもみがら等を投入するのが好適である。
なお上述した一連の工程では、通常の連続鋳造前段階で
要する工程よりも攪拌精錬を行う時間だけ処理時間が長
くなるが、前述した如き真空処理を行う場合に比して大
幅に短い。
次にこのような脱酸処理を行った溶鋼は連続鋳造機にて
鋳造されるが、溶鋼中の自由[0] is determined by measuring it with an oxygen probe that utilizes an electrochemical phenomenon such as a solid-state battery, but since the molten steel has already been deoxidized in the stirring refining step (3), an extremely small amount of By adding AI, the free [O] in molten steel can be deoxidized to 70 ppm or less, and the T and [AI) in molten steel after adding AI can be sufficiently kept below 0.020%, which is required for quality as steel equivalent to rimmed steel. be able to. In addition, since the T and Fe contents contained in the converter slag are low, and the supply of oxygen from the slag is small, there is no loss of AI when adding AI, so the free [O] in molten steel can be controlled with high precision. Since the (Si) content of the hot metal charged into the converter is adjusted to 0.03% or less, preferably 0.20% or less, the SiO2 component in the slag is small, and the SiO2 component in the slag is reduced by adding A1. The effect of so-called Si pick-up, where (Si:) increases in molten steel due to reduction of the Freedom (0) can be controlled with high precision.Also, it is possible that [Si:) in the molten steel increases slightly due to Si pickup from the SiO2 component in the refractory or Si contained in the AI metal. , as mentioned above, [AI] is approximately 0.020%.
When added, the increase in (Si) is extremely small and remains at an unavoidable content. Further, adjustment of alloying elements such as Mn required depending on the use of the steel material is carried out by adding the alloy to the ladle during or after tapping from the converter to the ladle. Furthermore, in order to prevent the molten steel from being oxidized by air during tapping from the converter to the ladle, it is desirable to seal the area around the molten steel with an inert gas such as Ar during tapping. Furthermore, since the surface of the molten steel tapped into the ladle is in contact with the air, it is preferable to add 7 lacs or rice husks from the viewpoint of preventing heat radiation and air oxidation. In addition, in the series of steps described above, the processing time is longer by the time required for stirring and refining than the steps required before normal continuous casting, but it is significantly shorter than when performing the vacuum processing as described above. Next, the molten steel that has been subjected to such deoxidation treatment is cast in a continuous casting machine, but free particles in the molten steel
〔0〕は前述した70pp
m以下の条件を満足しているのでCOは発生せず、ピン
ホール等の欠陥のない鋳片を安定的に製造することがで
きる。
なお連造鋳造の際には溶鋼の再酸化を防止する処置、す
なわち取鍋ノズルとしてロングノズルを、タンディツシ
ュノズルとして浸漬ノズルを使用し、且つ取鍋〜タンデ
ィツシュ間及びタンディツシュ−鋳造間をAr等の不活
性ガスでシールを行う等の公知の処置を採るのが望まし
い。
次に本発明の実施例を250mm厚のスラブ及び116
mmmのビレットを夫々製造する場合について詳述する
。
まず250mm厚のスラブを製造する場合は、第1表A
欄(処理前)記載の成分濃度及び温度をもつ溶銑270
tを第4図に示す脱珪処理設備の溶銑鍋に入れて脱珪処
理を行った。
第4図中4は水冷式4重管ラバール型ランスであって、
第5図はその下端面を示している。
このランス4は中心孔及びその周辺に3等配に位置させ
た3孔を有し、中心孔からはN2をキャリアガスとして
生石灰の粉末を25kg/分の割合で供給し、周辺3孔
からは02を3ONm3/分(溶銑1を当り0. ll
Nm3/分)の送酸速度で溶鋼に吹付けた。
同時に脱珪処理を効果的に行うめに浸漬型黒鉛ランス5
からN2を溶鋼中に導入し攪拌を行った。
このような処理を21分間行った結果、溶銑中の各成分
濃度は第1表B欄(脱珪処理後)に示した如くになった
。
即ち(Si)は0.17%と0.30%以下となった。
その後脱珪処理にて生成したスラグを排除し、この溶銑
を第2図に示す270tの転炉(複合吹錬炉)2に装入
して複合吹錬を行い、吹錬開始直後にソーダ灰を溶銑1
を当り7kg添加した。
なお羽口1は内管内径12.7mm’、内外管間隙1.
1mmの2重管構造を有し、内管がCu、外管がステン
レス鋼で形成されていて、内管からは攪拌用のArを吐
出させ、外管には羽目先端部を冷却するための炭化水素
ガスを通流させる。
酸素吹錬時の送酸速度は40、00ONm3/時であり
、攪拌用Arの吹込速度は9Nm3/分である。
複合吹錬によって第1表C欄(複合吹錬後)に示した如
く、 〔C〕が0.07%、自由CO) 325p川地
なり、これは第3図に示した如き、Pco−1気圧のと
きの平衡状態に近い。
なお〔P〕、 〔S〕は添加したソーダ灰の量が少いた
め、はとんど減少していない。
次に複合吹錬後、ソーダ灰を溶鋼1を当k) 20kg
添加し、2個の羽口1の各内管から合計2ONm3/分
の割合でArを5分間溶鋼中に吹込み攪拌精錬を行った
。
その結果第1表り欄(攪拌精錬後)に示した如く、自由
[0] is the aforementioned 70pp
Since the condition of less than m is satisfied, CO is not generated and slabs without defects such as pinholes can be stably produced. During continuous casting, measures are taken to prevent re-oxidation of molten steel: a long nozzle is used as the ladle nozzle, a submerged nozzle is used as the tundish nozzle, and the space between the ladle and the tundish and between the tundish and the casting is heated with Ar, etc. It is desirable to take known measures such as sealing with an inert gas. Next, an example of the present invention was prepared using a 250 mm thick slab and a 116 mm thick slab.
The case of manufacturing mmmm billets will be described in detail. First, when manufacturing a 250 mm thick slab, Table 1 A
Hot metal 270 with the component concentration and temperature listed in the column (before treatment)
t was placed in a hot metal ladle of a desiliconization treatment facility shown in FIG. 4 and subjected to desiliconization treatment. 4 in Fig. 4 is a water-cooled quadruple pipe Laval type lance,
FIG. 5 shows its lower end surface. This lance 4 has a center hole and three holes located at three equal intervals around the center hole. Quicklime powder is supplied from the center hole at a rate of 25 kg/min using N2 as a carrier gas, and from the three peripheral holes. 02 at 3ONm3/min (0.ll per 1 hot metal
The oxygen was sprayed onto the molten steel at an oxygen delivery rate of Nm3/min). Immersion type graphite lance 5 to effectively perform desiliconization treatment at the same time.
N2 was introduced into the molten steel and stirred. As a result of carrying out such treatment for 21 minutes, the concentrations of each component in the hot metal became as shown in column B of Table 1 (after desiliconization treatment). That is, (Si) was 0.17%, which was 0.30% or less. After that, the slag generated in the desiliconization process is removed, and the hot metal is charged into a 270-ton converter (compound blowing furnace) 2 shown in Fig. 2 for complex blowing. Immediately after the start of blowing, soda ash is Hot metal 1
7 kg of each was added. Note that the tuyere 1 has an inner tube inner diameter of 12.7 mm' and a gap between the inner and outer tubes of 1.
It has a 1mm double tube structure, with an inner tube made of Cu and an outer tube made of stainless steel.Ar is discharged from the inner tube for stirring, and the outer tube is used to cool the tip of the slats. Hydrocarbon gas is passed through. The oxygen blowing rate during oxygen blowing was 40,00 ONm3/hour, and the stirring Ar blowing rate was 9Nm3/min. As shown in Column C of Table 1 (after combined blowing), the combined blowing resulted in a 325p riverbed with [C] of 0.07% (free CO), which is Pco-1 as shown in Figure 3. Close to the equilibrium state at atmospheric pressure. Note that [P] and [S] do not decrease at all because the amount of added soda ash is small. Next, after composite blowing, soda ash is added to molten steel (1 kg) 20 kg
Then, Ar was blown into the molten steel for 5 minutes from each inner tube of the two tuyeres 1 at a total rate of 2ONm3/min to perform stirring and refining. As a result, as shown in the first table (after stirring and refining), free
〔0〕が141p1m迄脱酸され、更に脱燐脱硫も行わ
れて、〔P〕、 〔S〕は夫々0.015. 0.01
1%と低下した。
次いで転炉から取鍋へ出鋼したが、この出鋼時において
、溶鋼中に棒状のAIを80kg (溶鋼1を当り約0
.3kg)添加し、同時にMn成分調整のためHCFe
−Mn (Fe−Mn合金)を適量添加した。
またAI脱酸によって生成するA1□03系介在物の浮
上を促進させるために、取鍋蓋をした後浸漬ランスを溶
鋼中に挿入し、3kg/cm2の圧力で5分間Arによ
る攪拌を行った。
このAI脱酸処理後の各成分濃度を第1表E欄(AI脱
酸処理後)に示すが、〔Si〕が0.010%、T、〔
A1〕が0.016%と、リムド鋼相当品用の溶鋼とし
て十分な値を示しており、さらに自由[0] was deoxidized to 141 p1m, and dephosphorization and desulfurization were also performed, so that [P] and [S] were each 0.015. 0.01
It decreased to 1%. Next, the steel was tapped from the converter to the ladle, and during this tapping, 80 kg of rod-shaped AI was added to the molten steel (approximately 0.0 kg per 1 molten steel).
.. 3 kg) and at the same time added HCFe to adjust the Mn component.
An appropriate amount of -Mn (Fe-Mn alloy) was added. In addition, in order to promote the floating of A1□03-based inclusions generated by AI deoxidation, after the ladle was covered, an immersion lance was inserted into the molten steel, and the steel was stirred with Ar at a pressure of 3 kg/cm2 for 5 minutes. . The concentrations of each component after this AI deoxidation treatment are shown in Table 1, column E (after AI deoxidation treatment). [Si] is 0.010%, T, [
A1] is 0.016%, which is a sufficient value for molten steel for products equivalent to rimmed steel, and even more free.
〔0〕は連続鋳造
時に気泡を発生させるおそれがない5Qppmを示した
。
而して250rom厚のスラブ連続鋳造機にて取鍋〜タ
ンディツシュ間、タンディツシュ−鋳型間をArにてシ
ールし、取鍋ノズルにロングノズルを、タンディツシュ
ノズルに浸漬ノズルを使用して引抜速度1.2m/分で
鋳造したが、気泡の発生、従ってまたピンホールの発生
は皆無であり、表面性状の良好な鋳片が製造できた。
次に116mm−ビレットを製造する場合について述べ
る。
第2表A欄(処理前)記載の成分濃度及び温度もつ溶銑
77tを第6図に示すような溶銑鍋6に移し、KR法に
よる脱珪処理を行った。
すなわちインペラ7の先端を溶銑中に浸漬し、インペラ
7を5Qr、 p、 m、で回転させて溶銑を攪拌しな
がら、浸漬ランス8により送酸速度12Nm3/分(溶
銑1を当り0.15Nm3/分)で02を溶鋼中に22
分間吹込んだ。
また脱珪処理を効率良く行うために、送酸期間中の前半
にてホッパ9より150kg (溶銑1を当り約2 k
g)の生石灰を投入した。
この脱珪処理後の溶銑の各成分濃度は第2表B欄(脱珪
処理後)に示す如くなり、 [Si]は0.21%と0
.30%以下に低下した。
その後脱珪処理にて生成したスラグを排除し、この溶銑
を第2図と同様な構造の70を複合吹錬炉に装入して複
合吹錬を行い、吹錬開始直後にソーダ灰を溶銑1を当り
7kg添加した。
送酸速度は11゜00ONm3/時であり、攪拌用Ar
の吹込速度は4Nm3/分である。
羽口の材質は内管がCuい外管がステンレス鋼と第2図
の場合と同様であるが、内管内径は7.75mmφ、内
外管間隙は0.8mmと形状は稍々小さい。
複合吹錬によって第2表C欄(複合吹錬後)に示した如
く、 〔C量が0.10%、自由[0] indicates 5Qppm, which is not likely to generate bubbles during continuous casting. Then, in a continuous slab casting machine with a thickness of 250 ROM, the spaces between the ladle and the tundish and between the tundish and the mold were sealed with Ar, and a long nozzle was used for the ladle nozzle, and a submerged nozzle was used for the tundish nozzle, and the drawing speed was 1. Although casting was carried out at a speed of .2 m/min, there was no generation of air bubbles or pinholes, and a slab with good surface quality could be produced. Next, the case of manufacturing a 116 mm billet will be described. 77 tons of hot metal having the component concentration and temperature listed in column A (before treatment) of Table 2 was transferred to a hot metal ladle 6 as shown in FIG. 6, and subjected to desiliconization treatment by the KR method. That is, the tip of the impeller 7 was immersed in the hot metal, and while stirring the hot metal by rotating the impeller 7 at 5 Qr, p, m, the immersion lance 8 was used to feed oxygen at a rate of 12 Nm3/min (0.15 Nm3/min per 1 piece of hot metal). 02 in molten steel at 22 min)
I blew it for a minute. In addition, in order to perform the desiliconization process efficiently, 150 kg (approximately 2 kg per 1 hot metal
g) quicklime was added. The concentration of each component in the hot metal after this desiliconization treatment is as shown in column B of Table 2 (after desiliconization treatment), and [Si] is 0.21% and 0.
.. It decreased to 30% or less. After that, the slag generated in the desiliconization process is removed, and this hot metal is charged into a composite blowing furnace with a structure similar to that shown in Figure 2 for composite blowing. Immediately after the start of blowing, soda ash is added to the hot metal. 1 was added in an amount of 7 kg per portion. The oxygen supply rate was 11゜00ONm3/hour, and the stirring Ar
The blowing speed is 4 Nm3/min. The material of the tuyeres is the same as in the case of Fig. 2, with the inner tube being Cu and the outer tube being stainless steel, but the shape is slightly smaller, with the inner diameter of the inner tube being 7.75 mmφ and the gap between the inner and outer tubes being 0.8 mm. As shown in column C of Table 2 (after composite blowing), [C amount is 0.10%, free
〔0〕が250ppm
となり、これは第3図に示す如き、Pco”1気圧のと
きの平衡状態に近い。
なお脱燐、脱硫はほとんど行われていない。
次に複合吹錬の後、ソーダ灰を溶鋼1を当)) 20k
g添加し、2個の羽目の内管から合計計8Nm・7分の
割合でArを5分間溶鋼中に吹込み攪拌精錬を行った。
その結果第2表り欄(攪拌精錬後)に示した如く、 C
PU、 〔S)は夫々0.013%、 0.009%
に迄脱燐、脱硫され、更に自由[0] is 250ppm
As shown in Fig. 3, this is close to the equilibrium state when Pco is 1 atm.Dephosphorization and desulfurization are hardly performed.Next, after combined blowing, soda ash is applied to molten steel 1. )) 20k
Ar was injected into the molten steel for 5 minutes at a rate of 8 Nm/7 minutes from the inner tube of the two sidings to perform stirring and refining. As a result, as shown in the second table column (after stirring and refining), C
PU and [S) are 0.013% and 0.009%, respectively.
Dephosphorized and desulfurized until
〔0〕も110斑和に迄
低下した。
ビレットを製造する場合は脱酸調整を一部連続鋳造機の
鋳型内で行うので、タンディツシュ段階においては、溶
鋼中の自由〔O〕を100〜180’1)IIIITI
に調整しておくのであるが、この実施例では攪拌精錬に
よって溶鋼中の自由[0] also decreased to 110 spots. When producing billets, part of the deoxidation adjustment is performed in the mold of a continuous casting machine, so at the tundish stage, the free [O] in the molten steel must be reduced to 100 to 180'1)IIITI
However, in this example, stirring and refining is used to remove free particles in the molten steel.
〔0〕が110pnに迄脱酸されて
いるので、タンディツシュ段階迄はAI添加は行わずに
HCFe−Mnの投入によりMn成分の調整のみを行っ
た。
このようにして溶製された溶鋼を116mm−のビレッ
ト連続鋳造機にて鋳造する際に、溶鋼1を当り200m
割合でAl線を鋳型内溶鋼に供給した。
引抜速度は2.2m 7分であり、やはり溶鋼の再酸化
を防止するためArによるシールを行った。
その結果、気泡の発生従ってピンホールの発生は皆無で
あり、表面性状の良好な鋳片が製造できた。
鋳型内溶鋼の各成分濃度を第2表E欄(鋳型内溶鋼)に
示したが、Si脱酸は全く行っていないので、(Si)
が0.009%と低いことは当然であるが、T。
(AI)も0.013%と従来のA1ギルド鋼の0.0
30%以上に比して極めて低く、リムド鋼相当の溶鋼と
して十分な値を示している。
さらに自由COI も53ppmと極めて低いので気泡
の発生も当然に起らなかった。
土泥の二つの実施例は、いずれも成品中のC量が0.0
3〜0.10%程度の低炭素リムド鋼相当品についての
ものであるが、成品中のC濃度が0.11〜0.25%
程度の中、高炭素リムド鋼相当品についても本発明が適
用可能であることは言うまでもない。
けだし〔C量が高い程酸素吹錬終点自由(0,1は低く
、その後の脱酸処理が軽度であるからである。
以上詳述した如く、本発明に係るソーダ灰を使用する複
合吹錬、攪拌精錬を中心とした一連の製鋼法はSi脱酸
を全く行わずにAI脱酸も極く軽度にとどめた溶鋼を連
続鋳造可能ならしめ、ピンホールの欠陥を有しないリム
ド鋼相当の鋳片を高歩留り、且つ高能率で得ることを可
能としたものであり、また真空処理を行わないので、設
備が人指りなものとはならず、また真空処理にて脱酸を
行う場合に比して全工程所要時間が短かい。
このように本発明に係る製鋼法は、従来の製造過程を大
幅に変動させることな〈従来不可能とされていた低(A
I)、 (Si)鋼、即ちリムド鋼相当品の連続鋳造
化を可能としたものであり、まさにこの種技術に画期的
な貢献をなすものといえる。Since [0] had been deoxidized to 110 pn, no AI was added until the tundish stage, and only the Mn component was adjusted by adding HCFe-Mn. When casting the molten steel produced in this way using a 116 mm billet continuous casting machine, molten steel 1 is cast at a rate of 200 m
Al wire was supplied to the molten steel in the mold at the same rate. The drawing speed was 2.2 m for 7 minutes, and Ar sealing was performed to prevent re-oxidation of the molten steel. As a result, there was no generation of air bubbles or pinholes, and a slab with good surface quality could be produced. The concentration of each component of the molten steel in the mold is shown in Table 2 column E (molten steel in the mold), but since no Si deoxidation was performed, (Si)
It is natural that T is as low as 0.009%. (AI) is also 0.013%, which is 0.0 of conventional A1 guild steel.
This is extremely low compared to 30% or more, and is sufficient for molten steel equivalent to rimmed steel. Furthermore, since the free COI was extremely low at 53 ppm, naturally no bubbles were generated. In both examples of soil and mud, the amount of C in the product was 0.0.
This is about a product equivalent to low carbon rimmed steel with a carbon concentration of about 3 to 0.10%, but the C concentration in the finished product is 0.11 to 0.25%.
It goes without saying that the present invention is also applicable to products equivalent to high carbon rimmed steel to a certain degree. [This is because the higher the C content, the freer the end point of oxygen blowing (0, 1 is lower, and the subsequent deoxidation treatment is light.) As detailed above, the composite blowing using soda ash according to the present invention A series of steelmaking methods centered on stirring and refining have made it possible to continuously cast molten steel with no Si deoxidation and only slight AI deoxidation, making it possible to cast molten steel equivalent to rimmed steel without pinhole defects. This method makes it possible to obtain pieces at a high yield and with high efficiency, and since vacuum treatment is not performed, the equipment does not require manual labor, and compared to deoxidation using vacuum treatment. As described above, the steel manufacturing method according to the present invention can achieve low A
I), (Si) steel, that is, a product equivalent to rimmed steel, has been made possible to be continuously cast, and can be said to be an epoch-making contribution to this type of technology.
第1図は有効ソーダ灰量と脱燐率との関係を示すグラフ
、第2図は複合吹錬炉の模式的縦断面図、第3図はソー
ダ灰を使用した複合吹錬及び攪拌精錬の効果を示すグラ
フ、第4図は脱珪処理設備の模式的縦断面図、第5図は
水冷式4重管ラバール型ランスの下端面を模式的に表わ
す図、第6図はKR法脱脱珪理設備の模式的縦断面図で
ある。
1・・・・・・羽口、2・・・・・・転炉、3,6・・
・・・・溶銑鍋、4・・・・・・水冷式4重管ラバール
型ランス、5・・・・・・浸漬型黒鉛ランス、7・・・
・・・インペラ、8・・・・・・ランス、9・・・・・
・ホッパ。Figure 1 is a graph showing the relationship between the effective amount of soda ash and the dephosphorization rate, Figure 2 is a schematic longitudinal cross-sectional view of a composite blowing furnace, and Figure 3 is a graph showing the relationship between the effective amount of soda ash and the dephosphorization rate. Graph showing the effect, Figure 4 is a schematic vertical cross-sectional view of the desiliconization treatment equipment, Figure 5 is a diagram schematically showing the lower end surface of a water-cooled quadruple-pipe Laval type lance, and Figure 6 is a diagram showing the KR method desiliconization treatment. FIG. 2 is a schematic vertical cross-sectional view of the silica equipment. 1...tuyere, 2...converter, 3,6...
... Hot metal pot, 4 ... Water-cooled quadruple pipe Laval type lance, 5 ... Immersion type graphite lance, 7 ...
... Impeller, 8... Lance, 9...
・Hopper.
Claims (1)
を脱硅し、この脱珪処理を施した又は施していない溶銑
を浴面下よりガスを導入し得るようにした転炉に装入し
て酸素吹錬を行い、酸素吹錬中の適宜期間及び酸素吹錬
後備浴面下よりガスを導入して攪拌精錬を行い、且つこ
れらの酸素吹錬から攪拌精錬に到る適宜時点にはアルカ
リ金属炭酸塩を主成分とする造滓剤を添加することとし
、攪拌精錬後の転炉から取鍋への出鋼中及び/又は出鋼
後、AI添加による脱酸を行い自由〔0〕力QOOpp
m以下、T、〔Al〕が0.020%以下、 〔Si〕
が不可避的含有量である溶鋼を溶製し、該溶鋼を連続鋳
造機により鋳造することを特徴とする製鋼法。 2 要すれは頁Si)を0.30%以下になすべく溶銑
を脱硅し、この脱珪処理を施した又は施していない溶銑
を浴面下よりガスを導入し得るようにした転炉に装入し
て酸素吹錬を行い、酸素吹錬中の適宜期間及び酸素吹錬
後備浴面下よりガスを導入して攪拌精錬を行い、且つこ
れらの酸素吹錬から攪拌精錬に至る適宜時点にはアルカ
リ金属炭酸塩を主成分とする造滓剤を添加することとし
、要すれば攪拌精錬後の転炉から取鍋への出鋼中及び/
又は出鋼後、A1添加による脱酸を行い、自由〔0〕が
100〜180p狸、〔Si〕が不可避的含有量である
溶鋼を溶製し、該溶鋼を連続鋳造機により鋳造するに際
し、該連続鋳造機を構成する鋳型内の溶鋼中にAlを添
加して脱酸処理を行い、鋳型自溶鋼の自由〔0〕を70
pIrn以下、T、 (AI)を0.020%以下、
[Si〕を不可避的含有量とならしめることを特徴とす
る製鋼法。[Claims] 1. If necessary, the hot metal can be desiliconized to reduce the Si content to 0.30% or less, and gas can be introduced from below the bath surface into the hot metal with or without the desiliconization treatment. Oxygen blowing is performed by charging into a converter with a similar structure, and stirring and refining is performed by introducing gas from below the bath surface for an appropriate period during oxygen blowing and after oxygen blowing. A slag-forming agent mainly composed of alkali metal carbonate is added at an appropriate point leading to refining, and during and/or after tapping from the converter to the ladle after stirring and refining, the addition of AI Deoxidize and free [0] force QOOpp
m or less, T, [Al] is 0.020% or less, [Si]
1. A steel manufacturing method characterized by producing molten steel having an unavoidable content of molten steel and casting the molten steel using a continuous casting machine. 2 In short, the hot metal is desiliconized so that the page Si) is 0.30% or less, and the hot metal with or without the desiliconization treatment is placed in a converter that allows gas to be introduced from below the bath surface. After the oxygen blowing, gas is introduced from below the surface of the bath to perform stirring and refining, and at appropriate times from oxygen blowing to stirring and refining. A slag-forming agent containing an alkali metal carbonate as a main component is added, if necessary, during tapping from the converter to the ladle after stirring and refining.
Or, after tapping the steel, perform deoxidation by adding A1 to produce molten steel with a free [0] of 100 to 180p and an unavoidable content of [Si], and when casting the molten steel with a continuous casting machine, Al is added to the molten steel in the mold constituting the continuous casting machine to perform deoxidation treatment, and the free [0] of the mold self-melting steel is reduced to 70
pIrn or less, T, (AI) 0.020% or less,
A steel manufacturing method characterized by making [Si] an unavoidable content.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54170904A JPS5952922B2 (en) | 1979-12-28 | 1979-12-28 | Steel manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54170904A JPS5952922B2 (en) | 1979-12-28 | 1979-12-28 | Steel manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5696012A JPS5696012A (en) | 1981-08-03 |
JPS5952922B2 true JPS5952922B2 (en) | 1984-12-22 |
Family
ID=15913482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54170904A Expired JPS5952922B2 (en) | 1979-12-28 | 1979-12-28 | Steel manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5952922B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5763619A (en) * | 1980-10-06 | 1982-04-17 | Nippon Kokan Kk <Nkk> | Production of continuous cast steel |
JP2007277669A (en) * | 2006-04-10 | 2007-10-25 | Nippon Steel Corp | Method for desulfurizing molten iron |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1284155A (en) * | 1961-02-15 | 1962-02-09 | Ct Nat De Rech S Metallurg A S | Method and installation for controlling the effervescence and calming of steel in continuous casting and steel in accordance with that obtained by said process or similar process |
JPS52127421A (en) * | 1976-04-19 | 1977-10-26 | Nisshin Steel Co Ltd | Primary treatment of molten pig iron for converter process |
JPS5425209A (en) * | 1977-07-27 | 1979-02-26 | Sumitomo Metal Ind Ltd | Method of producing super low carbon steel |
-
1979
- 1979-12-28 JP JP54170904A patent/JPS5952922B2/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1284155A (en) * | 1961-02-15 | 1962-02-09 | Ct Nat De Rech S Metallurg A S | Method and installation for controlling the effervescence and calming of steel in continuous casting and steel in accordance with that obtained by said process or similar process |
JPS52127421A (en) * | 1976-04-19 | 1977-10-26 | Nisshin Steel Co Ltd | Primary treatment of molten pig iron for converter process |
JPS5425209A (en) * | 1977-07-27 | 1979-02-26 | Sumitomo Metal Ind Ltd | Method of producing super low carbon steel |
Also Published As
Publication number | Publication date |
---|---|
JPS5696012A (en) | 1981-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5958152B2 (en) | Manufacturing method of high cleanliness steel | |
JP6551626B2 (en) | Method of melting high manganese steel | |
KR101449799B1 (en) | Method of producing steel | |
KR20180102179A (en) | Refining method of molten steel in vacuum degassing facility | |
JPH0230711A (en) | Manufacture of extremely low carbon steel having superior cleanness | |
JP4487812B2 (en) | Method for producing low phosphorus hot metal | |
JP5904238B2 (en) | Method of dephosphorizing hot metal in converter | |
JP4687103B2 (en) | Melting method of low carbon aluminum killed steel | |
JP3616423B2 (en) | Vacuum refining method for ultra-low carbon stainless steel | |
JP4534734B2 (en) | Melting method of low carbon high manganese steel | |
JPS5952922B2 (en) | Steel manufacturing method | |
JPH09235611A (en) | Production of extra-low sulfur pure iron having high cleanliness | |
JP2729458B2 (en) | Melting method of low nitrogen steel using electric furnace molten steel. | |
JP3777630B2 (en) | Method for heat refining of molten steel | |
JP2022105879A (en) | Refining method | |
JP2912963B2 (en) | Slag reforming method as desulfurization pretreatment | |
JP3719056B2 (en) | Method for producing ultra-low carbon steel with excellent cleanability | |
JPS5952921B2 (en) | Steel manufacturing method | |
JP4025713B2 (en) | Dephosphorization method of hot metal | |
JPH07103416B2 (en) | High carbon steel wire manufacturing method | |
JP4305127B2 (en) | Hot metal dephosphorization method | |
JP3668172B2 (en) | Hot metal refining method | |
JPS5922766B2 (en) | Steel manufacturing method | |
JP2003155517A (en) | Method for producing low carbon and high manganese steel | |
JPH08199218A (en) | Converter process recycling decarburized slag |