JPS5952921B2 - Steel manufacturing method - Google Patents

Steel manufacturing method

Info

Publication number
JPS5952921B2
JPS5952921B2 JP54170135A JP17013579A JPS5952921B2 JP S5952921 B2 JPS5952921 B2 JP S5952921B2 JP 54170135 A JP54170135 A JP 54170135A JP 17013579 A JP17013579 A JP 17013579A JP S5952921 B2 JPS5952921 B2 JP S5952921B2
Authority
JP
Japan
Prior art keywords
steel
molten steel
stirring
converter
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54170135A
Other languages
Japanese (ja)
Other versions
JPS5690920A (en
Inventor
雄浄 丸川
正治 姉崎
良康 城田
努 梶本
昭紀 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP54170135A priority Critical patent/JPS5952921B2/en
Publication of JPS5690920A publication Critical patent/JPS5690920A/en
Publication of JPS5952921B2 publication Critical patent/JPS5952921B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は連続鋳造工程にて気泡を発生させることなく、
リムド鋼相当c7)T、(AI) (totalAl
含有量)及び(Si) (Si含有量)を有する鋼を
製造する方法に関する。 リムド鋼は精練過程で故意に脱酸を殆んど行わず、造塊
時に多量のCOガスを発生させ、その気泡によるリミン
グアクションによt月疑固界面の不純物を洗い流して製
造される鋼種である。 これを連続鋳造法の如く凝固の進行とともに鋳片を引抜
移動させる方法によって製造せんとする場合は、気泡の
発生が激し過ぎると鋳型内の湯動きが活発となる為に、
又は未凝固溶鋼の深部からの突沸現象が起こる為に危険
であり、気泡の発生が弱くても連続鋳造時の凝固速度が
早いため、表面近傍に微細な気泡がトラップされて製品
においてピンホール欠陥が生じるという問題が存在する
ため、リムド鋼の連続鋳造化は殆んど行われていない。 従って連続鋳造適用鋼種としては、AIあるいはSiに
より脱酸を行ったギルド鋼及びセミキルド鋼に限定され
るが、Siキルド鋼は勿論のことA1ギルド鋼、Al−
8iキルド鋼をAIによるスラグ沖あるいは耐火物中の
SiO2の還元によって溶鋼中の(Si)が増加し、こ
のようなSiの存在によって深絞り性の劣化、Znメッ
キ密着性の劣化、テンパーカラーの発生、カラー鋼板腰
折れ等の品質上の問題が発生し、穴拡げ性の劣化、冷延
率の制限等鋼材加工上の問題も生じていた。 また特にA1ギルド鋼、Al−3iギルド鋼の場合は、
Al2O3クラスタの存在による鋳片品質の劣化の他、
AI脱酸生成物による取鍋ノズルあるいはタンディツシ
ュノズル詰り等操業上の問題、更にはAI添加費が高い
というコスト上の問題が存在する。 このようにAI又はSiによって脱酸したギルド鋼ある
いはセミキルド鋼はAIあるいはSiの存在に起因する
欠点があるため、用途上の制約は避は得す、上述の欠点
がない品質のものが要求される場合には造塊分塊法によ
るリムド鋼が適用されているのが実情である。 しかしながら、造塊分塊法に比べて歩留りが高く、生産
性の良い連続鋳造法の適用鋼種拡大は時代の趨勢であり
、Siを殆んど含まず、AI含有量の低い所謂リムド相
当鋼種の連続鋳造化も当然に要望され、これに応えてい
くつかの試みがなされている。 前述のような深絞り性の劣化等の欠点をさけるためには
、 (Si)はなるべく低い方が好ましいが、少くとも
リムド鋼として認められる0、020%以下にする必要
がある。 またA1添加コスト上、並びに耐火物中のSiO2の還
元によって生じる溶鋼中の[Si、lの増加及び取鍋ノ
ズル又はタンディツシュノズルの詰りを防止する為には
、T、 (Aleについても低い方が好ましい。 しかしながら、例えば熱延鋼板等の鋼中窒素の固定の必
要な鋼種においては、T、〔AI〕は0.010〜0.
020%必要とし、冷延鋼板で箱焼鈍する場合等は、連
続鋳造時の気泡の発生を防止するのに必要なA1添加量
でよい等、用途によって異なるので、T。 〔AI〕は0.020%以下であればリムド鋼相当品と
して十分な値を示しているといえる。 なお、一般にAIギルド鋼としては、T、〔AI〕は0
.030%以上である。 而してこのような値以下にT、 (Ale。〔Si、
lを抑制する場合には、当然脱酸不足となり、CO気泡
が発生すると考えられる。 一般に溶融金属中において気泡が発生する条件は、気泡
の内圧が大気圧、気泡の位置における溶湯の静水圧、及
び凝集力によって気泡が受ける圧力の和よりも大である
ことである。 換言すれば、溶鋼中の成分の反応によって生成されるC
O5N2.H2等のガス圧の総和が、前記大気圧、静水
圧、凝集力による圧力の総和よりも小さければ気泡は発
生しない。 ところでN2ガス、H2ガスの分圧はCOガスに比べて
小さいので、気泡の発生を防止するにはCOガスの発生
を抑えなければならないが、前述のピンホール欠陥は鋳
型内の薄い凝固殻に小気泡がトラップされた結果束した
ものであるので静水圧は極めて小さく、また凝集力によ
って気泡が受ける圧力も1mmφ程度の気泡では小さい
ので、結局気泡発生の防止の為にはCOガス圧を大気圧
すなわち1気圧以下にすれば良いといういとになる。 COガス溶鋼中のCと自由Oとが(1)式の如く反応し
て生成したものであるり、C+0=CO(f
・・・(1)但し、C:溶鋼中のC O:溶鋼中の自由O CO(g):COガス 平衡状態ではC濃度及び1由O濃度とCOガスの圧力P
。 0との間には平衡定数をKとすると(2)式の関係が成
立する。 但し、 〔C〕:溶鋼中のC濃度 〔O〕:溶鋼中の自由C濃度 この平衡状態では、自由
The present invention does not generate bubbles in the continuous casting process,
Rimmed steel equivalent c7) T, (AI) (totalAl
(Si content) and (Si) (Si content). Rimmed steel is a type of steel that is manufactured by intentionally performing almost no deoxidation during the smelting process, generating a large amount of CO gas during ingot formation, and washing away impurities from the solid interface through the rimming action of the bubbles. be. If this is to be manufactured by a method such as continuous casting, in which the slab is pulled out and moved as solidification progresses, if the generation of air bubbles is too intense, the movement of the molten metal in the mold will become active.
Otherwise, it is dangerous because the bumping phenomenon occurs from the deep part of unsolidified molten steel, and even if the generation of bubbles is weak, the solidification rate during continuous casting is fast, so minute bubbles are trapped near the surface and cause pinhole defects in the product. Continuous casting of rimmed steel is rarely carried out because of the problem of occurrence of . Therefore, the steel types applicable to continuous casting are limited to guild steels and semi-killed steels that have been deoxidized with AI or Si, including Si-killed steels, A1 guild steels, and Al-
(Si) in the molten steel increases due to the reduction of SiO2 in the slag or refractories of 8i killed steel by AI, and the presence of such Si causes deterioration of deep drawability, deterioration of Zn plating adhesion, and reduction of temper color. Quality problems such as cracking and bending of the collar steel sheet occurred, as well as problems in steel material processing such as deterioration of hole expandability and restrictions on cold rolling rate. In addition, especially in the case of A1 guild steel and Al-3i guild steel,
In addition to deterioration of slab quality due to the presence of Al2O3 clusters,
There are operational problems such as clogging of ladle nozzles or tundish nozzles due to AI deoxidation products, and cost problems such as the high cost of adding AI. Guild steel or semi-killed steel deoxidized by AI or Si has drawbacks due to the presence of AI or Si, so restrictions on usage cannot be avoided, and quality products that do not have the above drawbacks are required. The reality is that rimmed steel using the agglomeration and blooming method is used in these cases. However, the current trend is to expand the application of continuous casting, which has a higher yield and productivity than the ingot-blowing method, and the so-called rimmed equivalent steel, which contains almost no Si and has a low AI content Naturally, continuous casting is also desired, and several attempts have been made in response to this demand. In order to avoid the above-mentioned drawbacks such as deterioration of deep drawability, it is preferable that the (Si) content be as low as possible, but it must be at least 0.020% or less, which is acceptable as rimmed steel. In addition, in order to reduce the cost of adding A1 and to prevent an increase in [Si,l] in the molten steel caused by the reduction of SiO2 in the refractory and clogging of the ladle nozzle or tundish nozzle, it is necessary to However, in steel types such as hot-rolled steel sheets that require fixation of nitrogen in the steel, T and [AI] are preferably 0.010 to 0.
020%, and when box annealing a cold-rolled steel plate, the amount of A1 added is sufficient to prevent the generation of bubbles during continuous casting. If [AI] is 0.020% or less, it can be said that it shows a sufficient value as a product equivalent to rimmed steel. In general, for AI guild steel, T and [AI] are 0.
.. 0.030% or more. Therefore, below this value, T, (Ale.[Si,
If l is suppressed, deoxidation will naturally be insufficient, and it is thought that CO bubbles will be generated. Generally, the condition for the generation of bubbles in molten metal is that the internal pressure of the bubbles is greater than the sum of atmospheric pressure, the hydrostatic pressure of the molten metal at the location of the bubbles, and the pressure exerted on the bubbles by cohesive force. In other words, C generated by the reaction of components in molten steel
O5N2. If the sum of the pressures of gases such as H2 is smaller than the sum of the atmospheric pressure, hydrostatic pressure, and pressure due to cohesive force, bubbles will not be generated. By the way, the partial pressure of N2 gas and H2 gas is smaller than that of CO gas, so in order to prevent the generation of bubbles, it is necessary to suppress the generation of CO gas, but the aforementioned pinhole defect occurs in the thin solidified shell inside the mold. Since the small bubbles are trapped and bunched together, the hydrostatic pressure is extremely small, and the pressure exerted on the bubbles due to cohesive force is also small for bubbles of about 1 mm diameter, so in order to prevent bubble generation, the CO gas pressure must be increased. In other words, it is sufficient to reduce the atmospheric pressure to 1 atm or less. It is generated by the reaction of C in CO gas molten steel with free O as shown in equation (1), or C+0=CO(f
...(1) However, C: CO in molten steel O: Free O in molten steel CO (g): In the CO gas equilibrium state, C concentration, 1 O concentration, and CO gas pressure P
. 0, the relationship of equation (2) holds true, where K is the equilibrium constant. However, [C]: C concentration in molten steel [O]: Free C concentration in molten steel In this equilibrium state, free C concentration

〔0〕を70pIlrn゛以下
に抑制する場合には、〔C〕が0.3%程度の高濃度で
あってもP。 0が1気圧以下となる。従って凝固が進行している状態
においては、自由[0猾70ppm以下に抑制する場合
は、当然にCOガスの発生は抑えることができる。 そうすると 〔Si〕、T。〔AI〕の低い溶鋼を連続
鋳造法にて鋳造せんとする場合は、Si、 AIによる
脱酸に頼ることなく、別の方法で脱酸を行って自由〔0
〕をコントロールすれば良いことになるい このような観点に立って脱酸を行う鋳片製造方法として
は、特開昭53−73422、特開昭54−93618
が公知である。 これらは転炉精錬後真空脱ガス処理を行い、 〔C〕と
自由
When [0] is suppressed to 70 pIlrn or less, even if [C] is at a high concentration of about 0.3%, P. 0 becomes 1 atm or less. Therefore, in a state where solidification is progressing, if the amount of free carbon dioxide is suppressed to 70 ppm or less, the generation of CO gas can naturally be suppressed. Then [Si], T. When casting molten steel with a low [AI] using the continuous casting method, deoxidation can be carried out using another method without relying on deoxidation using Si or AI.
] From this point of view, methods for producing slabs that carry out deoxidation are disclosed in JP-A-53-73422 and JP-A-54-93618.
is publicly known. These are subjected to vacuum degassing treatment after converter refining, and are converted into [C] and free

〔0〕を低下せしめた後、AI (前者)あるいは
AIとTi (後者)添加による脱酸を行方法であり、
これにより 〔Si〕、T〔AI〕の低い溶鋼を連続鋳
造可能である。 しかしながらこれらの方法では、未脱酸状態で、しかも
溶鋼中の自由〔O〕か゛高い状態で真空に引く為にスプ
ラッシュが発生しやすく、更に真空設備の排気能力が大
きいことが要求される。 このスプラッシュ等により炉壁に付着した地金が、真空
処理中に溶鋼中に脱落する為に、自由〔O〕のコントロ
ールが難しい等の欠点も有する。 また真空処理中の温度低下が大きい為、転炉の出鋼温度
を高くせざるを得す、これにより転炉工程での脱燐が不
足し、また転炉耐火物の溶損が大きいという問題がある
。 更に真空処理に長時間を要するため、工程上大きな制約
を受け、また真空処理設備費及び真空処理のランニング
コストが高いという欠点も存在する。 さて前述したように溶鋼中に発生するCOは、(1)式
の反応により生成する。 これは溶鋼中の自由〔O〕が高い場合には、(2)式か
ら得られる溶鋼中のC1自由Oと平衡するP。 0が1気圧よりも高いので、生成したCOの圧力が大気
圧よりも高くなり、CO気泡が大気圧に抗して溶鋼中に
発生するものである。 従って溶鋼中のC1自由Oと平衡するP。 0が1気圧以下になるように脱酸すればCO気泡は発生
しない。 前述の公知例ではこのために真空処理を行っているが、
真空処理と同様にCOガス分圧P。 0を下げる方法として、溶鋼中にAr等不活性ガスを導
入してC脱酸を行わせる方法がある。 このC脱酸は鋼沿中の気泡におけるCOガス分圧が不活
性ガスに希釈されて低くなるため、溶鋼中のCと自由O
との(1)式による反応が生じて起こるものである。 すなわち(1)式により生成したCO気泡を不活性ガス
により希釈してCOガス圧を下げ(1)式によるCOの
生成を促進させるか、あるいはAr気泡を溶鋼中に多量
に分布させ(1)式の反応により生成するCOをAr気
泡中に希釈混合して溶鋼中から排出せしめて(1)式の
反応を促進させ、溶鋼中の自由〔O〕を低下させるもの
である。 しかしながら、通常の転炉吹錬の後に、このような攪拌
精錬を行っても、転炉終点の自由(0)が極めて高く、
また転炉スラグ中のFeO等のT、 Fe含有量が高い
ため、攪拌中にスラグから溶鋼中に酸素の供給が多量に
あり、溶鋼中の自由〔O〕を、下げることは容易ではな
い。 第1図は横軸に終点
After reducing [0], deoxidation is performed by adding AI (the former) or AI and Ti (the latter),
This allows continuous casting of molten steel with low [Si] and T [AI]. However, in these methods, splash is likely to occur because the vacuum is drawn in an undeoxidized state and in a state where the free [O] in the molten steel is high, and furthermore, the vacuum equipment is required to have a large exhaust capacity. Since the base metal attached to the furnace wall due to this splash falls off into the molten steel during the vacuum treatment, it also has drawbacks such as difficulty in controlling free [O]. In addition, because the temperature drop during vacuum treatment is large, the tapping temperature of the converter has to be raised, which leads to insufficient dephosphorization in the converter process and large melting loss of the converter refractories. There is. Further, since the vacuum treatment requires a long time, there are significant restrictions on the process, and there are also disadvantages in that the cost of the vacuum treatment equipment and the running cost of the vacuum treatment are high. Now, as mentioned above, CO generated in molten steel is generated by the reaction of formula (1). When the free [O] in the molten steel is high, P is in equilibrium with the C1 free O in the molten steel obtained from equation (2). Since 0 is higher than 1 atm, the pressure of the generated CO becomes higher than the atmospheric pressure, and CO bubbles are generated in the molten steel against the atmospheric pressure. Therefore, P is in equilibrium with C1 free O in molten steel. If deoxidation is performed so that 0 becomes 1 atm or less, no CO bubbles will be generated. In the above-mentioned known example, vacuum treatment is performed for this purpose, but
CO gas partial pressure P as in vacuum treatment. As a method of lowering 0, there is a method of introducing an inert gas such as Ar into molten steel to perform C deoxidation. In this C deoxidation, the CO gas partial pressure in the bubbles in the steel is diluted with inert gas and lowered, so that the C in the molten steel and the free O
This is caused by a reaction according to formula (1) with. That is, the CO bubbles generated according to equation (1) are diluted with an inert gas to lower the CO gas pressure and the generation of CO according to equation (1) is promoted, or a large amount of Ar bubbles are distributed in the molten steel (1). The CO generated by the reaction of formula (1) is diluted and mixed into Ar bubbles and discharged from the molten steel to promote the reaction of formula (1) and reduce the free [O] content in the molten steel. However, even if such stirring refining is performed after normal converter blowing, the freedom (0) at the end point of the converter is extremely high.
Furthermore, since the converter slag has a high T and Fe content such as FeO, a large amount of oxygen is supplied from the slag to the molten steel during stirring, and it is not easy to lower the free [O] content in the molten steel. Figure 1 shows the end point on the horizontal axis.

〔0〕を、また縦軸に終点自由〔O
〕をとって、通常の純酸素上吹転炉(LD)の終点〔C
〕と終点自由〔O〕との関係を斜線領域で示し、実線で
F’ccが1気圧、温度が1600℃の場合の平衡状態
における〔C〕と自由
[0] and the end point free [O] on the vertical axis.
], the end point of a normal pure oxygen top-blowing converter (LD) [C
] and the end point free [O] are shown in the shaded area, and the solid line shows the relationship between [C] and the free end point in the equilibrium state when F'cc is 1 atm and the temperature is 1600°C.

〔0〕との関係を示したものであ
る。 なお実際はCO2も生成するので、この実線はP。 0+PCO2が1気圧の場合の平衡状態における〔C〕
と自由〔O〕との関係であるが、〔C〕か0.1%の場
合にはCO2はCO+CO2の2%以下であり極く微量
なので無視できる。 図から明らかな如く、通常の転炉終点では自由
This shows the relationship with [0]. In reality, CO2 is also generated, so this solid line is P. [C] in equilibrium when 0+PCO2 is 1 atm
Regarding the relationship between free [O] and free [O], if [C] is 0.1%, CO2 is less than 2% of CO+CO2, which is an extremely small amount and can be ignored. As is clear from the figure, the normal converter end point is free.

〔0〕が
この平衡状態よりもかなり高いため、終点自由
[0] is much higher than this equilibrium state, so the end point is free

〔0〕が
300pIITI以下の溶鋼を得るためには〔C〕は0
.20%以上で吹止める必要がある。 終点自由〔O〕が300ppm以下としたのは、それ以
上であると次順の攪拌精錬及び軽度のAI脱酸で肩山
In order to obtain molten steel with [0] of 300 pIITI or less, [C] must be 0.
.. It is necessary to stop blowing at 20% or more. The reason why the end point free [O] was set to be 300 ppm or less is that if it is higher than that, the following steps of stirring refining and mild AI deoxidation will result in a peak.

〔0〕を70ppm以下に迄低下し得ない為である。 而して後、攪拌精錬によって〔C〕をリムド鋼として要
求されるC濃度範囲に迄低下せしめる必要があるが、攪
拌精錬や長時間にわたる為溶鋼温度の低下が著しくなる
ので、転炉出鋼温度を高くせざるを得ない。 従って上述した如く 〔C〕が高いところで吹止める場
合は、脱燐不足になり、転炉耐火物の溶損が激しい等、
種々の不都合を生じ、通常の転炉吹錬後に攪拌精錬にて
前述の〔C〕、自由
This is because [0] cannot be reduced to 70 ppm or less. After that, it is necessary to reduce [C] to the C concentration range required for rimmed steel by stirring and refining, but since stirring and refining takes a long time, the temperature of the molten steel decreases significantly, so it is not necessary to remove the steel from the converter. I have no choice but to raise the temperature. Therefore, as mentioned above, if you stop blowing at a high [C], dephosphorization will be insufficient and the converter refractories will be severely eroded, etc.
Various inconveniences occur, and the above-mentioned [C], free

〔0〕程度迄脱炭、脱酸することは
、極めて困難であり、不可能に近い。 本発明は斯かる事情に鑑みてなされたものであって、真
空処理を施さないにも拘らず、気泡を発生させることな
く連続鋳造が可能であるリムド鋼相当品を製造する方法
を提供することを目的とする。 本発明に係る製鋼法は、(1)浴面下よりガスを導入し
得るようにした転炉(例えば所謂複合吹錬炉)において
、吹止め〔C〕を0.05%以上とすべく酸素吹錬し、
(2)酸素吹錬中の適宜期間(全期間又は一部期間)及
び酸素吹錬後、鋼浴面下よりガスを導入して攪拌精錬を
行い、(3)攪拌精錬後には転炉から取鍋へ転炉スラグ
の混入を抑制しつつ出鋼し、(4)連続鋳造機にてスラ
ブ又はブルームを鋳造するような場合は、攪拌精錬後の
転炉から取鍋への出鋼中及び/又は出鋼後、AI添加に
よる脱酸を行い、自由
It is extremely difficult and almost impossible to decarburize and deoxidize to a level of [0]. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for producing a product equivalent to rimmed steel that can be continuously cast without generating bubbles even though it is not subjected to vacuum treatment. With the goal. The steelmaking method according to the present invention includes (1) a converter (for example, a so-called combined blowing furnace) in which gas can be introduced from below the bath surface, and oxygen blowing,
(2) Stirring and refining is carried out by introducing gas from below the surface of the steel bath during the appropriate period (all or part of the period) during oxygen blowing and after oxygen blowing, and (3) After stirring and refining, the steel is removed from the converter. (4) When casting slabs or blooms using a continuous casting machine, during tapping from the converter to the ladle after stirring and refining, and / Or, after tapping, deoxidize by adding AI to free the steel.

〔0〕が7Q ppm以下、T、
(AI) カ0、020%以下、 〔Si〕が不可避
的含有量である溶鋼を溶製し、該溶鋼を連続鋳造機によ
り鋳造するものであり、また連続鋳造機にてビレットを
鋳造するような場合は(1)〜(3)の処理を行った後
、(4)′要すれば攪拌精錬後の転炉から取鍋への出鋼
中及び/又は出鋼後、AI添加による脱酸を行い、自由
〔O〕が100〜180:ppm、〔Si〕カ不可避的
含有量である溶鋼を溶製し、(5)′該溶鋼を連続鋳造
機により鋳造するに際して、該連続鋳造機を構成する鋳
型内の溶鋼中にA1を添加して脱酸処理を行い、鋳型内
溶鋼の自由
[0] is 7Q ppm or less, T,
(AI) Molten steel with an unavoidable content of 0.020% or less and [Si] is produced, and the molten steel is cast using a continuous casting machine, and a billet is cast using a continuous casting machine. In that case, after performing the treatments in (1) to (3), (4)' If necessary, deoxidation by adding AI during and/or after tapping from the converter to the ladle after stirring and refining. (5)' When casting the molten steel with a continuous casting machine, the continuous casting machine is A1 is added to the molten steel in the mold to perform deoxidation treatment, freeing the molten steel in the mold.

〔0〕を70p−下、T。 〔Al〕を0.020%以下、 〔Si〕を不可避的含
有量とならしめるものである。 以下本発明に係る製鋼法を上記番号順に処理工程を追っ
て詳述する。 (1)次順の攪拌精錬によって自由〔O〕を十分低下さ
せることができるように、終点での自由
[0] below 70p, T. [Al] is made to be 0.020% or less, and [Si] is made to be an unavoidable content. Hereinafter, the steel manufacturing method according to the present invention will be explained in detail, following the processing steps in the order of the numbers mentioned above. (1) Free at the end point so that free [O] can be sufficiently reduced by the following stirring and refining steps.

〔0〕を低くす
べく、転炉における酸素吹錬中の適宜期間、鋼浴面下よ
すAr等の不活性ガスもを導入して鋼浴を攪拌せしめ、
酸素吹錬に攪拌精錬を併用する所謂複合吹錬を行う。 この複合吹錬における吹止め〔C〕は後述する理由によ
り0.05%以上とする。 鋼浴面下よりのガス導入により特に酸素吹錬末期の攪拌
力の低下を補い、酸素吹錬による脱炭を効率良く行わし
め、溶鋼中の自由CO)の増加を防止するともに、スラ
グ沖のFeO濃度の増加を防止する。 更にArによりCOガス分圧の低下をもたらし、前述の
C脱酸の促進をはかる。 攪拌ガス導入は、通常の転炉を使用し、該転炉内の鋼浴
中に攪拌ガス用のランスを挿入して行ってもよいが、第
2図に示すように転炉の炉底に羽口1を設置してなる複
合吹錬炉を用いて、この羽口1から攪拌ガスを導入し鋼
浴を攪拌するのが最も効率がよい。 またこの羽口は炉壁下部に設置しても同様の効果がある
ことは勿論である。 酸素吹錬中に浴面下より導入されるガス、あるいは吹錬
後のC脱酸時に導入されるガスはAr、 Xe、 Kr
のような不活性ガスが好ましいが、経済性に優れたAr
を使用するのが好ましい。 攪拌ガスのコストを考え、酸素吹錬中はC09CO2,
N2等安価なガスで攪拌を行うとよいが、溶鋼中のNの
吸収に敏感な鋼種では、N2攪拌の途中からAr等のN
2を含まないガスに切換える必要がある。 なお酸素吹錬中の攪拌ガスの一部を02とすることも可
能であり、またこれらのガスを組み合わせて使用しても
よい。 酸素吹錬後のC脱酸時の攪拌ガスはAr等の不活性ガス
が好ましい。 C脱酸時の攪拌ガスとしてはCOは適当で゛なく、また
CO2もCOと02とに分解してCOガス分圧を増加さ
せるので好ましくない。 さて攪拌ガス供給量は溶鋼1を当り0、O3Nm3/分
以上とするのがよい。 0.038m3/分未満であると攪拌効果が少く、また
攪拌精錬□ のみを行う場合は脱酸速度が遅い為、処理
時間が長くなり処理中の溶鋼温度の低下が問題となる。 一般に酸素吹込みにより脱炭は進行するが、溶鋼中の自
由〔O〕は逆に増加する。 第1図にArを攪拌用ガスとした複合吹錬の場合の終点
における〔C〕と自由
In order to lower [0], an inert gas such as Ar is introduced below the surface of the steel bath for an appropriate period during oxygen blowing in the converter to stir the steel bath.
So-called complex blowing is performed in which oxygen blowing and stirring refining are combined. The blow stop [C] in this composite blowing is set to 0.05% or more for the reason described later. Introducing gas from below the surface of the steel bath compensates for the drop in stirring power, especially at the final stage of oxygen blowing, efficiently decarburizes oxygen blowing, prevents an increase in free CO in the molten steel, and removes FeO from the slag. Prevent concentration increase. Furthermore, Ar lowers the CO gas partial pressure and promotes the above-mentioned C deoxidation. Stirring gas may be introduced by using a normal converter and inserting a lance for the stirring gas into the steel bath in the converter, but as shown in Figure 2, a lance for stirring gas may be inserted into the bottom of the converter. The most efficient method is to use a composite blowing furnace equipped with a tuyere 1 and introduce stirring gas through the tuyere 1 to stir the steel bath. It goes without saying that the same effect can be obtained even if the tuyere is installed at the lower part of the furnace wall. The gases introduced from below the bath surface during oxygen blowing or the gases introduced during carbon deoxidation after blowing are Ar, Xe, and Kr.
Although inert gases such as Ar are preferable, Ar
It is preferable to use Considering the cost of stirring gas, C09CO2,
It is best to stir with an inexpensive gas such as N2, but for steel types that are sensitive to N absorption in molten steel, N2 gas such as Ar may be used during the N2 stirring.
It is necessary to switch to a gas that does not contain 2. Note that it is also possible to use 02 as a part of the stirring gas during oxygen blowing, or a combination of these gases may be used. The stirring gas during C deoxidation after oxygen blowing is preferably an inert gas such as Ar. CO is not suitable as a stirring gas during C deoxidation, and CO2 is also undesirable because it decomposes into CO and O2, increasing the CO gas partial pressure. Now, the stirring gas supply rate is preferably 0.03 Nm3/min or more per molten steel. If it is less than 0.038 m3/min, the stirring effect will be small, and if only stirring refining □ is performed, the deoxidation rate will be slow, resulting in a longer treatment time and a problem of lowering the molten steel temperature during treatment. Generally, decarburization progresses by oxygen injection, but the free [O] in the molten steel increases. Figure 1 shows [C] and free flow at the end point in the case of composite blowing using Ar as a stirring gas.

〔0〕との関係を黒丸で示したが
、前述の如く攪拌により酸素吹錬末期の脱炭効率の低下
を防ぎ、溶鋼中の自由〔O〕の増加及びスラグ中のFe
O濃度の増加を防止するので、 〔Cax〔O〕はP。 o=1気圧の場合の平衡状態に近く、またC脱酸効果に
よ1) P。 0が1気圧以下に迄低下する場合もある。 なお、図中破線はP。 O=0.5気圧、1点鎖線はP。。=0.1気圧の場合
、夫々の〔Cax
The relationship with [0] is shown by the black circle, and as mentioned above, stirring prevents the decarburization efficiency from decreasing at the final stage of oxygen blowing, increases free [O] in the molten steel, and increases Fe in the slag.
[Cax[O] is P because it prevents the increase in O concentration. It is close to the equilibrium state when o = 1 atm, and due to the C deoxidizing effect 1) P. 0 may drop to 1 atm or less. In addition, the broken line in the figure is P. O=0.5 atm, dashed line is P. . = 0.1 atm, each [Cax

〔0〕平衡関係を表わす。 このように複合吹錬は通常吹錬(LD)に比して自由C
O)が低目に推移し、同−CC)に対して後工程で脱酸
処理することを用する自由
[0] represents an equilibrium relationship. In this way, compound blowing has a free C compared to normal blowing (LD).
O) remains low, and the -CC) is free to be deoxidized in the post-process.

〔0〕か′少いという利点が
あり、また〔Cax
It has the advantage of having less [0] or

〔0〕関係が平衡に近くバラツキが
少い。 従ってP。0と終点〔C〕とをコントロールすることに
より
[0] The relationship is close to equilibrium and there is little variation. Therefore P. By controlling 0 and the end point [C]

〔0〕が略々一義的にコントロールされることに
なり、複合吹錬は精錬法として極めて優れたものである
といえる。 而して次には攪拌のみを行って、C脱酸を計るわけであ
るが、このC脱酸効果を損なわないために、複合吹錬に
おける酸素吹錬は〔C〕が0.05%以上、好ましくは
0.08%以上にて吹止める。 けだし〔C〕が0.05%未満では、溶鋼中の自由〔0
〕が400ppm以上と高くなりすぎて攪拌によっても
十分にC脱酸されず、後述するAIによる脱酸では自由
[0)のバラツキが大きく、所定の値にコントロールす
るのが難しいためである。 (2)次に上記複合吹錬の延長として、鋼浴面下がらの
ガス導入のみを継続させる。 複合吹錬にて得た溶鋼をArによって攪拌精錬した結果
を第1図に白丸で示したが、この図から明らかな如く、
攪拌による脱炭及び脱酸効果は著しく、溶鋼中の〔C〕
、自由
[0] is almost uniquely controlled, and it can be said that compound blowing is an extremely excellent refining method. Next, only stirring is performed to measure C deoxidation, but in order not to impair this C deoxidation effect, oxygen blowing in combined blowing is performed so that [C] is 0.05% or more. , preferably at 0.08% or more. If free [C] is less than 0.05%, free [0]
] is too high at 400 ppm or more, C cannot be sufficiently deoxidized even by stirring, and when deoxidizing using AI, which will be described later, there is a large variation in free [0) and it is difficult to control it to a predetermined value. (2) Next, as an extension of the above-mentioned composite blowing, only the gas introduction from below the surface of the steel bath is continued. The results of stirring and refining the molten steel obtained by composite blowing using Ar are shown in Figure 1 by white circles, and as is clear from this figure,
The decarburization and deoxidation effects of stirring are remarkable, and [C] in molten steel is
,freedom

〔0〕 と平衡するP。 0は0.1〜0.5気圧程度に迄脱酸されている。 また酸素吹錬終点〔C〕が0.05%以上の場合は、自
P in equilibrium with [0]. 0 has been deoxidized to about 0.1 to 0.5 atm. In addition, if the oxygen blowing end point [C] is 0.05% or more, free

〔0〕が2009Iln以下に迄脱酸され、後述する
AI脱酸処理にて添加するAI量は著しく少量でよいこ
とになる。 (3)ところで取鍋内でのAI脱酸時に溶鋼面上に転炉
スラグが存在すると、AIによってスラグ成分のSiO
2が(3)式により一部還元され、3S102 + 4
Al→3Si + 2AI、、O” ・・・
(3)溶鋼中の〔Si〕が増加する所謂Siピックアッ
プが起きる。 従って出鋼時の取鍋内への転炉スラグの混入を抑えるた
めに、出鋼開始時のスラグの流出及び出鋼末期のスラグ
の流出を防止する所謂スラグカット出鋼を行う。 出鋼開始時のスラグ流出防止方法としては、転炉(複合
吹錬炉)の炉壁上部に通常設置しである礼状の出鋼口に
、ボロ布、スケール等の詰め物をする方法がある。 また出鋼末期のスラグ流出防止方法としては、耐火物性
の球状物(スラグボール)を出鋼口上に落下させ出鋼口
を閉塞するスラグボール法、ストッパーにて出鋼口を閉
塞するスラグストッパー法、溶鋼面上に浮いている出鋼
口近辺のスラグに生石灰粉を添加してスラグを固化させ
出鋼口からスラグが流出しないようにする生石灰粉法等
が公知である。 更に出鋼開始時及び出鋼末期のスラグ流出を共に防止で
きる方法として、出鋼口にスライディングバルブを設置
して、スライディングバルブの開閉により出鋼を制御す
る出鋼ロスライディングゲート法も知られている。 更に取鍋内溶鋼面上のスラグを固化する為に生石灰を添
加するか、又は取鍋内のスラグをスラグトラッカー等に
より排除することにより、取鍋内溶鋼面上のスラグ量を
少くすることも可能であり、要するに本発明方法の実施
にあたってはこのような方法も適宜採択すればよい。 なお、このような方法によっても出鋼時のスラグ流出防
止、又は取鍋スラグの除去は完全には行えないが、取鍋
内溶鋼面上のスラグ厚を50mm以下にすることに十分
可能である。 (4)、 (4)’、 (5)’ 次に該溶鋼を連続
鋳造機にて鋳造するに際し、Al添加による脱酸を行い
連続鋳造機を構成する鋳型内の未凝固溶鋼中の自由〔0
〕を70p1mJ、下に迄低下せしめる。 この工程においてビレット連続鋳造機のように取鍋又は
タンディツシュのノズル径が小さい(15mmφ以下)
場合は、AI脱酸生成物Al2O3によるノズル詰りか
起きやすい。 具体的にはAl添加による脱酸にて得た取鍋、タンテ゛
イツシュ内の溶鋼中の自由
[0] is deoxidized to 2009 Iln or less, and the amount of AI added in the AI deoxidation treatment described later can be extremely small. (3) By the way, if converter slag is present on the molten steel surface during AI deoxidation in the ladle, the slag component SiO
2 is partially reduced by formula (3), 3S102 + 4
Al→3Si + 2AI,,O"...
(3) A so-called Si pickup occurs in which [Si] in the molten steel increases. Therefore, in order to suppress the mixing of converter slag into the ladle during tapping, so-called slag cut tapping is performed to prevent slag from flowing out at the start of tapping and from flowing out at the end of tapping. One way to prevent slag from flowing out at the start of tapping is to stuff the tap hole, which is usually installed on the upper part of the furnace wall of a converter (combined blowing furnace), with rags, scales, etc. In addition, methods for preventing slag outflow at the final stage of tapping include the slag ball method, in which a refractory spherical object (slag ball) is dropped onto the tap to block the tap, and the slag stopper method, in which the tap is closed with a stopper. There is a known quicklime powder method in which quicklime powder is added to slag floating on the molten steel surface near the tap to solidify the slag and prevent the slag from flowing out from the tap. Furthermore, as a method for preventing slag outflow both at the start of tapping and at the end of tapping, there is also known a tapping loss sliding gate method in which a sliding valve is installed at the tapping port and tapping is controlled by opening and closing the sliding valve. There is. Furthermore, the amount of slag on the surface of the molten steel in the ladle can be reduced by adding quicklime to solidify the slag on the surface of the molten steel in the ladle, or by removing the slag in the ladle using a slag tracker, etc. This is possible, and in short, such a method may be appropriately adopted when implementing the method of the present invention. Although this method cannot completely prevent slag from flowing out during tapping or remove ladle slag, it is sufficient to reduce the thickness of slag on the molten steel surface in the ladle to 50 mm or less. . (4), (4)', (5)' Next, when the molten steel is cast in a continuous casting machine, it is deoxidized by adding Al to remove the free material in the unsolidified molten steel in the mold that constitutes the continuous casting machine. 0
] to below 70p1mJ. In this process, the nozzle diameter of the ladle or tundish is small (15 mmφ or less) like in a continuous billet casting machine.
In this case, nozzle clogging is likely to occur due to the AI deoxidation product Al2O3. Specifically, the free content in the molten steel in the ladle and tumbler is obtained by deoxidizing with the addition of Al.

〔0〕がIQOppm以下で
゛あるときはノズル詰りか多発する。 従ってビレットを連続鋳造する場合にはタンディツシュ
迄の段階では自由〔O〕を100〜180p[に調整し
てノズル詰りを回避することとし、然る後、鋳型内溶鋼
中の自由[0負ffOOI)pm以下になるように、鋳
型内溶鋼中にAIを添加して脱酸を行う。 なおタンディツシュ段階で自由
When [0] is less than IQOppm, nozzle clogging occurs frequently. Therefore, when continuously casting billets, the free [O] should be adjusted to 100 to 180 p[ to avoid nozzle clogging in the stage up to the tundish, and after that, the free [O] in the molten steel in the mold [0 negative ffOOI] Deoxidation is performed by adding AI to the molten steel in the mold so that the concentration is below pm. In addition, it is free at the tanditshu stage.

〔0〕を180pIm以
下とした理由はこの値を超えると鋳型内溶鋼中へのAl
添加が多くなりすぎて、自由
The reason [0] was set to 180 pIm or less is that if this value is exceeded, Al will enter the molten steel in the mold.
Too many additions, freedom

〔0〕及びAl添加量の制
御が困難になるためである。 また自由〔O〕が1go、ppmを超えるとタンディツ
シュノズル等の耐火物の溶損が激しくなり、溶損した耐
火物が鋳型内溶鋼中に混入して品質上の欠陥を引き起こ
すこともある。 Al添加方法としては、A1粒を添加してもよいが、後
述するようにタンディツシュ−鋳型間を不活性ガスでシ
ールした場合に添加しやすく、且つ自由〔O〕の調整が
行いやすいAI線供給法が好ましい。 一方スラブ、ブルーム連続鋳造機のように取鍋ノズル、
タンディツシュノズルのノズル径が15mmφ以上であ
る場合は、このようにAI脱酸処理を2段階に分ける必
要はなく、鋳造される迄のいずれかの期間に自由
This is because it becomes difficult to control [0] and the amount of Al added. Furthermore, if the free [O] exceeds 1 go, ppm, the melting loss of refractories such as tundish nozzles becomes severe, and the melted refractory mixes into the molten steel in the mold, causing quality defects. Al can be added by adding Al grains, but as described later, it is easier to add when the gap between the tundish and the mold is sealed with an inert gas, and it is easier to freely adjust [O] by supplying an AI wire. law is preferred. Meanwhile, ladle nozzle, like slab and bloom continuous casting machine
If the nozzle diameter of the tundish nozzle is 15mmφ or more, there is no need to divide the AI deoxidation treatment into two stages as described above, and the AI deoxidation treatment can be carried out at any time before casting.

〔0〕
を70pI]T1以下にするのに必要最小限のAI量を
添加して脱酸処理を行えばよい。 この添加場所としては、前掲(2)の転炉(複合吹錬炉
)から取鍋への出鋼中、出鋼後の取鍋内、タンテ゛イツ
シュ内、更には鋳型内としてもよく、また複数の場所で
行ってもよい。 A1添加は、スラブ又はブルームを製造する場合は勿論
のこと、ビレットの製造時に溶鋼中の自由[0) 10
0〜1soppmに調整する場合にも、取鍋内において
行った方が好ましい。 けだし作業工程上有利であり、またタンディツシュ内に
おいてAt添加する場合に比してより均一な脱酸が可能
であリ、取鍋固溶鋼中にAr等を導入して攪拌を行えば
より効果的な脱酸が可能であるからである。 なお前述した如く本発明においてはスラグカット出鋼を
行うこととしているので、AI添加によるスラグからの
Siピックアップは抑制することができる。 第3図はAI添加量と溶鋼中の〔Si〕 との関係を、
通常出鋼(取鍋溶鋼面上のスラグ厚200mm)の場合
を破線で、スラグカット出鋼(スラグ厚50mm)の場
合を実線で、スラグレス(スラグ厚Omm)の場合を1
点鎖線で夫々示している。 図から明らかなようにスラグ厚が50mmの場合は、ス
ラグカット出鋼を行わない場合に比して、AI添加後の
〔Si〕は172以下に抑制することができる。 そして複合吹錬及び攪拌精錬によって既に溶鋼中の自由
[0]
The deoxidizing treatment may be performed by adding the minimum amount of AI necessary to reduce the temperature to 70 pI] T1 or less. The addition location may be during tapping from the converter (combined blowing furnace) to the ladle as described in (2) above, in the ladle after tapping, in the tantest, or even in the mold. You can go anywhere. A1 is added to free [0) 10 in molten steel when producing billets, as well as when producing slabs or blooms.
Even when adjusting to 0 to 1 soppm, it is preferable to do it in a ladle. It is advantageous in the pouring process, and more uniform deoxidation is possible than when At is added in the tundish, and it is more effective if Ar is introduced into the solid solution steel in the ladle and stirred. This is because deoxidation is possible. Note that, as described above, in the present invention, slag cut steel tapping is performed, so that the pickup of Si from the slag due to the addition of AI can be suppressed. Figure 3 shows the relationship between the amount of AI added and [Si] in molten steel.
The broken line is for normal tapping (slag thickness 200 mm on the surface of the molten steel in the ladle), the solid line is for slag-cut tapping (slag thickness 50 mm), and 1 is for slagless tapping (slag thickness Omm).
Each is indicated by a dotted chain line. As is clear from the figure, when the slag thickness is 50 mm, [Si] after adding AI can be suppressed to 172 or less compared to the case where slag cutting and tapping are not performed. And, by combined blowing and stirring refining, it is already free in molten steel.

〔0〕は相当低下しているので、脱酸のためのAI添加
量は小量でよく、連続鋳造すべき溶鋼のT、(AI)を
0.020%以下とする程度のA1添加では(Si)の
増加は極く微量であり、不可避的含有量に止まる。 AI添加量は、添加前の溶鋼中の自由〔O〕を例えば固
体電池の如き電気化学的現象を利用した酸素プローブに
よって測定して決定するが、該溶鋼は複合吹錬及び攪拌
精錬によって既に脱酸処理を受けているため、極めて少
量のAI添加で溶鋼中の自由
[0] has decreased considerably, so the amount of AI added for deoxidation only needs to be small, and if A1 is added to the extent that T, (AI) of molten steel to be continuously cast is 0.020% or less, ( The increase in Si) is extremely small and remains at an unavoidable content. The amount of AI added is determined by measuring the free [O] in molten steel before addition using an oxygen probe that utilizes an electrochemical phenomenon such as a solid-state battery, but the molten steel has already been desorbed by combined blowing and stirring refining. Because it has been acid-treated, a very small amount of AI can be added to free the molten steel.

〔0〕を70ppm、’以
下に迄脱酸でき、A1添加後の溶鋼中T、 (AI)は
リムド鋼相当鋼として品質上要求される0、 020%
以下に十分にとどめることができる。 また取鍋内にAIを添加する場合には、スラグカット出
鋼を行っているので溶鋼面上に存在するスラグの量は少
く、スラグ中の酸素によるAIのロスが少い為、溶鋼中
の自由
[0] can be deoxidized to below 70 ppm, and T, (AI) in molten steel after adding A1 is 0.020%, which is required for quality as steel equivalent to rimmed steel.
The following can suffice. In addition, when adding AI into the ladle, slag-cut tapping is performed, so the amount of slag present on the surface of the molten steel is small, and the loss of AI due to oxygen in the slag is small. freedom

〔0〕を高精度で制御できる。 また鋼材の用途に応じて必要とされるMn等の合金元素
の調整は、転炉から、取鍋への出鋼中又は出鋼後の取鍋
内に合金を添加することにより行う。 更に転炉から取鍋への出鋼中に溶鋼が空気酸化されるの
を防止するため、出鋼時の溶鋼周辺はAr等の不活性ガ
スでシールするのが望ましい。 更にまた取鍋に出鋼された溶鋼は表面が空気に接してい
るので放熱防止、空気酸化防止上の見地からフラックス
又はもみがら等を投入するのが好適である。 な々上述した一連の工程では、通常の連続鋳造前段階で
要する工程よりも攪拌精錬を行う時間だけ処理時間が長
くなるが、前述した如き真空処理を行う場合に比して大
幅に短く、溶鋼温度も通常の連続鋳造の場合よりも特に
高くする必要はない。 次にこのような脱酸処理を行った溶鋼は連続鋳造機にて
鋳造されるが、溶鋼中の自由〔O〕は前述した70■m
以下の条件を満足しているのでCOは発生せず、ピンホ
ール等の欠陥のない鋳片を安定的に製造するこができる
。 なお連続鋳造の際には溶鋼の再酸化を防止する処置、す
なわち取鍋ノズルとしてロングノズルを、タンテ゛イツ
シュノズルとして浸漬ノズルを使用し、且つ取鍋〜タン
ディフシ1間及びタンテ゛イツシュ〜鋳型間をAr間の
不活性ガスでシールを行う等の公知の処置を採るのが望
ましい。 次に本発明の実施例を250mm厚のスラブ及び116
mm口のビレットを夫々製造する場合について詳述する
。 まず250mm厚のスラブを製造する場合は、第1表A
欄(処理前)記載の成分濃度及び温度をもつ溶銑270
tを、第2図に示す270tの転炉2に装入し、溶銑1
を当り生石灰40kg、軽焼ドロマイ) 18kgを添
加して複合吹錬を行った。 なお溶鋼温度の調整を行うために吹錬中に鉄鉱石を適宜
添加した。 羽口1は内管内径12.7mm矛、内外管間隙1.1m
mの2重管構造を有し、内管がCu、外管がステンレス
鋼で形成されている。 酸素吹錬時の送酸速度は40、 OOONm3/時であ
り、攪拌用Arの吹込速度は9Nm3/分である。 複合吹錬によって第1表B欄(複合吹錬後)に示した如
ぐ、 〔C〕が0.09%、自由〔O〕が2781)n
となり、これは第1図に示したように、PCO二1気圧
のときの平衡状態に近い。 また〔C〕は前記0.05%以上の値にて吹止められて
おり、更に〔P)も生石灰による脱燐効果により0.1
18%から0.013%に低減されている。 次に複合吹錬後、2個の羽口1の各内管から合計25N
m3/分の割合でArを8分間溶鋼中に吹込み攪拌精錬
を行った。 その結果第1表C欄(攪拌精錬後)に示した如く、自由
〔O〕が180ppmに迄脱酸された。 次いで転炉から取鍋へ出鋼したが、出鋼時には出鋼ロス
ライテ゛イングゲート法により取鍋内への転炉スラグの
流入を極力抑えた。 これにより取鍋自溶鋼面上のスラグ厚は50mmとする
ことができた。 この出鋼時において、溶鋼中に棒状のAIを100kg
(溶鋼1を当り約0.37kg)添加し、同時にMn
成分調整のためHCFe−Mn (Fe−Mn合金)を
適量添加した。 。またAI脱酸によって生成するAl2O3系介在物の
浮上を促進させるために、取鍋蓋をした後浸漬ランスを
溶鋼中に挿入し、3kg/cm2の圧力で5分間Arに
よる攪拌を行った。 このAI脱酸処理後の各成分濃度を第1表り欄(AI脱
酸処理後)に示すが、(Si)が0.010%、T〔A
I〕が0.005%と、リムド鋼相当品用の溶鋼として
十分な値を示しており、さらに自由〔O〕は連続鋳造時
に気泡を発生されるおそれがない53pIlrnを示し
た。 而して250mm厚のスラブ連続鋳造機にて取鍋〜タン
ディツシュ内、タンディツシュ−鋳型間をArにてシー
ルし、取鍋ノズルにロングノズルを、タンディツシュノ
ズルに浸漬ノズルを使用して引抜速度l、2m/分で鋳
造したが、気泡の発生、従ってまたピンホールの発生は
皆無であり、表面性状の良好な鋳片が製造できた。 次に116mm口ビレットを製造する場合について述べ
る。 第2表A欄(処理前)記載の成分濃度及び温度をもつ溶
鋼77tを第2図と同様な構造の70を複合吹錬炉に装
入し、溶鋼且当り生石灰31kg、軽焼ドロマイ) 2
8kg、ホタル石1.3kgを添加して複合吹錬を行っ
た。 なお溶鋼温度の調整を行うために吹錬中に鉄鉱石を適宜
添加した。 送酸速度は11゜00ONm3/時であり、攪拌用Ar
の吹込速度は4Nm3/分である。 羽目の材質は内管がCu、外管がステンレス鋼と第2図
の場合と同様であるが、内管内径は7.75mmφ、内
外管間隙は0.8mmと形状は稍々小さい。 複合吹錬によって第2表B欄(複合吹錬後)に示した如
く、 〔C量が0.09%、自由
[0] can be controlled with high precision. Further, alloying elements such as Mn, which are required depending on the purpose of the steel material, are adjusted by adding the alloy to the ladle from the converter during or after tapping into the ladle. Furthermore, in order to prevent the molten steel from being oxidized by air during tapping from the converter to the ladle, it is desirable to seal the area around the molten steel with an inert gas such as Ar during tapping. Furthermore, since the surface of the molten steel tapped into the ladle is in contact with the air, it is preferable to add flux, rice husks, etc. to prevent heat radiation and air oxidation. In the above-mentioned series of steps, the processing time is longer due to the time required for stirring and refining than the steps required in the pre-continuous casting stage, but it is significantly shorter than in the case of vacuum processing as described above, and There is also no need to make the temperature particularly higher than in the case of normal continuous casting. Next, the molten steel that has been subjected to such deoxidation treatment is cast in a continuous casting machine, but the free [O] in the molten steel is 70 μm as mentioned above.
Since the following conditions are satisfied, CO is not generated and slabs without defects such as pinholes can be stably produced. During continuous casting, measures are taken to prevent re-oxidation of molten steel, that is, a long nozzle is used as the ladle nozzle, a submerged nozzle is used as the tumbler nozzle, and Ar is applied between the ladle and tundifushi 1 and between the tandice and the mold. It is desirable to take known measures such as sealing with an inert gas between the parts. Next, an example of the present invention was prepared using a 250 mm thick slab and a 116 mm thick slab.
The case of producing billets of mm diameter will be described in detail. First, when manufacturing a 250 mm thick slab, Table 1 A
Hot metal 270 with the component concentration and temperature listed in the column (before treatment)
t is charged into the 270 t converter 2 shown in Fig. 2, and the hot metal 1
40 kg of quicklime and 18 kg of lightly burnt dolomite were added to conduct composite blowing. Note that iron ore was appropriately added during blowing in order to adjust the molten steel temperature. Tuyere 1 has an inner diameter of 12.7 mm, and a gap of 1.1 m between the inner and outer tubes.
It has a double tube structure with an inner tube made of Cu and an outer tube made of stainless steel. The oxygen blowing rate during oxygen blowing was 40,000 Nm3/hour, and the stirring Ar blowing rate was 9 Nm3/min. As shown in column B of Table 1 (after composite blowing), [C] is 0.09% and free [O] is 2781)n
As shown in Figure 1, this is close to the equilibrium state when the PCO is 21 atmospheres. In addition, [C] is blown at a value of 0.05% or more, and [P] is also 0.1% due to the dephosphorizing effect of quicklime.
It has been reduced from 18% to 0.013%. Next, after composite blowing, a total of 25N is applied from each inner pipe of the two tuyeres 1.
Ar was blown into the molten steel for 8 minutes at a rate of m3/min for stirring and refining. As a result, as shown in column C of Table 1 (after stirring and refining), free [O] was deoxidized to 180 ppm. Next, the steel was tapped from the converter into a ladle, and during tapping, the flow of converter slag into the ladle was suppressed as much as possible using the tapping loss writing gate method. As a result, the slag thickness on the self-melting steel surface of the ladle could be set to 50 mm. At this time of tapping, 100 kg of rod-shaped AI was added to the molten steel.
(approximately 0.37 kg per molten steel), and at the same time Mn
An appropriate amount of HCFe-Mn (Fe-Mn alloy) was added for component adjustment. . In addition, in order to promote the floating of Al2O3-based inclusions produced by AI deoxidation, after the ladle was covered, an immersion lance was inserted into the molten steel, and the steel was stirred with Ar at a pressure of 3 kg/cm2 for 5 minutes. The concentrations of each component after this AI deoxidation treatment are shown in the first table column (after AI deoxidation treatment); (Si) is 0.010%, T[A
I] was 0.005%, which is a sufficient value for molten steel for products equivalent to rimmed steel, and free [O] was 53 pIlrn, with no risk of bubbles being generated during continuous casting. Then, in a continuous slab casting machine with a thickness of 250 mm, the inside of the ladle and the tundish and between the tundish and the mold were sealed with Ar, and a long nozzle was used for the ladle nozzle, and a submerged nozzle was used for the tundish nozzle, and the drawing speed was set at l. , 2 m/min, no air bubbles or pinholes were generated, and a slab with good surface quality was produced. Next, the case of producing a 116 mm billet will be described. 77 tons of molten steel having the component concentration and temperature listed in column A (before treatment) of Table 2 was charged into a composite blowing furnace (70 having the same structure as shown in Fig. 2), and the molten steel (31 kg of quicklime and light burnt dolomite) was added to the furnace.
Composite blowing was performed by adding 8 kg of fluorite and 1.3 kg of fluorite. Note that iron ore was appropriately added during blowing in order to adjust the molten steel temperature. The oxygen supply rate was 11゜00ONm3/hour, and the stirring Ar
The blowing speed is 4 Nm3/min. The material of the lining is Cu for the inner tube and stainless steel for the outer tube, which is the same as in the case of FIG. 2, but the inner diameter of the inner tube is 7.75 mmφ, and the gap between the inner and outer tubes is 0.8 mm, which is slightly smaller. As shown in column B of Table 2 (after composite blowing), [C amount is 0.09%, free

〔0〕が295pII
I′nとなり、これは第1図に示す如き、Pco=1気
圧のときの平衡状態に近い。 またCC)]は前記0.05%以上の値にて吹止められ
ており、更に〔P〕 も生石灰による脱燐効果により0
、120%から0.015%に低減されている。 次に複合吹錬の後、2個の羽口の各内管から合計8Nm
3/分の割合でArガスを10分間溶鋼中に吹込み攪拌
精錬を行った。 その結果第2表C欄(攪拌精錬後)に示した如く、自由
〔O〕は200pIITIに迄低下した。 次いで転炉から取鍋へ出鋼したが、出鋼開始時には出鋼
口にボロ布を詰めてスラグ流出を防止した。 また出鋼末期には第4図に示すようなスラグボール法に
よって出鋼口を閉塞してスラグの流出を防止した。 第4図は転炉3が横転し、転炉炉壁土部に設置した出鋼
口4から溶鋼が出鋼されている状態を模式的に示したも
のであり、転炉頭部開口から水平方向に挿入されたボー
ル投下器具5の先端に収納された耐火物性のスラグボー
ル6が、出鋼末期の適宜時点で出鋼口の上方から出鋼口
に向けて投下され、出鋼口を閉塞して転炉スラグの流出
を防止する様子を表わしている。 このようにしてスラグカット出鋼することにより、取鍋
溶鋼面上のスラグ厚は30mmとすることができた。 この出鋼時において、溶鋼中に棒状のAIを7.7kg
(溶鋼1を当り約0.1kg)を添加して若干の脱酸処
理を行い、同時にMn成分調整のためHCFe−Mnを
適量添加した。 このAI脱酸処理後の溶鋼中の自由〔O〕は第2表り欄
(AI脱酸処理後)に示すように150ppmと、ビレ
ットを連続鋳造する際のタンディツシュ段階迄の基準1
00−180 p剛こ適合している。 なおこの実施例ではAI添加による脱酸を行ったが、終
点CC,lが高い場合は終点の自由〔O〕が低く、攪拌
精錬後の時点で溶鋼中の自由〔O〕が180pm似下と
なる場合でもあるので、この場合はタンディツシュ段階
迄はAI添加による脱酸をする必要はないことは言うま
でもない。 このようにして溶製された溶鋼を116mm口のビレッ
ト連続鋳造機にて鋳造する際に、溶鋼1を当り200g
の割合でAI線を鋳型内溶鋼に供給した。 引抜速度は2.2m/分であり、やはり溶鋼の再酸化を
防止するためArによるシールを行った。 その結果、気泡の発生従ってピンホールの発生は皆無で
あり、表面性状の良好な鋳片が製造できた。 鋳型内溶鋼の各成分濃度を第2表E欄(鋳型内溶鋼)に
示したが、Si脱酸は全く行っていないので、 〔Si
〕が0.012%と低いことは当然であるが、T、
(:A1)も0.010%と従来のAlキルド鋼の0、
030%以上に比して極めて低く、リムド鋼相当の溶鋼
として十分な値を示している。 さらに自由
[0] is 295pII
I'n, which is close to the equilibrium state when Pco=1 atm as shown in FIG. In addition, CC)] is blown at a value of 0.05% or more, and [P] is also zero due to the dephosphorizing effect of quicklime.
, has been reduced from 120% to 0.015%. Next, after compound blowing, a total of 8Nm is extracted from each inner pipe of the two tuyeres.
Ar gas was blown into the molten steel for 10 minutes at a rate of 3/min to perform stirring and refining. As a result, as shown in column C of Table 2 (after stirring and refining), the free [O] decreased to 200 pIITI. Steel was then tapped from the converter into a ladle, and at the start of tapping, the tapping opening was stuffed with rags to prevent slag from flowing out. In addition, at the final stage of tapping, the tapping port was closed using the slag ball method as shown in Figure 4 to prevent slag from flowing out. Figure 4 schematically shows the state in which the converter 3 is overturned and molten steel is being tapped from the tap port 4 installed in the converter wall soil, and the molten steel is being tapped in the horizontal direction from the converter head opening. A refractory slag ball 6 stored at the tip of a ball dropping device 5 inserted into the tap is dropped from above the tap hole toward the tap hole at an appropriate point in the final stage of tapping to block the tap hole. This shows how converter slag is prevented from flowing out. By performing slag cutting and tapping in this manner, the slag thickness on the surface of the molten steel in the ladle was able to be 30 mm. At this time of tapping, 7.7 kg of rod-shaped AI was added to the molten steel.
(approximately 0.1 kg per molten steel) was added to perform a slight deoxidation treatment, and at the same time, an appropriate amount of HCFe-Mn was added to adjust the Mn component. The free [O] in the molten steel after this AI deoxidation treatment is 150 ppm as shown in the second table (after AI deoxidation treatment), which is the standard 1 up to the tundish stage when billets are continuously cast.
00-180p is fully compatible. In this example, deoxidation was performed by adding AI, but when the end point CC,l is high, the end point free [O] is low, and the free [O] in the molten steel is approximately 180 pm or less after stirring and refining. In this case, it goes without saying that there is no need to perform deoxidation by adding AI up to the tanditsu stage. When casting the molten steel produced in this way using a continuous billet casting machine with a diameter of 116 mm, each molten steel weighs 200 g.
The AI wire was supplied to the molten steel in the mold at a rate of . The drawing speed was 2.2 m/min, and Ar sealing was performed to prevent re-oxidation of the molten steel. As a result, there was no generation of air bubbles or pinholes, and a slab with good surface quality could be produced. The concentration of each component of the molten steel in the mold is shown in Table 2 column E (molten steel in the mold), but since no Si deoxidation was performed, [Si
] is naturally as low as 0.012%, but T,
(:A1) is also 0.010%, which is 0 for conventional Al-killed steel.
This is extremely low compared to 0.30% or more, and is sufficient for molten steel equivalent to rimmed steel. more freedom

〔0〕も53pxと極めて低いので気泡の発
生も当然に起らなかった。 上述の二つの実施例は、いずれも成品中のC量が0.0
3〜0610%程度の低炭素リムド鋼相当品についての
ものであるが、成品中のC濃度が0.11〜0.25%
程度の中、高炭素リムド鋼相当品についても本発明か゛
適用可能であることは言うまでもない。 けだし〔C〕が高い程酸素吹錬終点自由
[0] was also extremely low at 53 px, so naturally no bubbles were generated. In both of the above two examples, the amount of C in the product was 0.0.
This is about a product equivalent to low carbon rimmed steel with a carbon content of 0.11 to 0.25%.
It goes without saying that the present invention is also applicable to products equivalent to high carbon rimmed steel. The higher the level [C], the freer the oxygen blowing end point.

〔0〕は低く、
その後の脱酸処理が軽度であるからである。 以上詳述した如く1、本発明に係る複合吹錬、攪拌精錬
を中心とした一連の製鋼法は、Si脱酸を全く行わずに
AI脱酸も極く軽度にとどめた溶鋼を連続鋳造可能なら
しめ、ピンホール等の欠陥を有しないリムド鋼相当の鋳
片を高歩留り、且つ高能率で得ることを可能としたもの
であり、また真空処理を行わないので、設備が人指りな
ものとはならず、また真空処理にて脱酸を行う場合に比
して全工程所要時間が短かいため、溶鋼温度の低下が小
さく、操業上極めて有利である。 このように本発明に係る製鋼法は、従来の製鋼過程を大
幅に変動させることな〈従来不可能とされていた低(A
le、 (Si、l鋼、即ちリムド鋼相当品の連続鋳
造化を可能としたものであり、まさにこの種技術に画期
的な貢献をなすものといえる。
[0] is low;
This is because the subsequent deoxidation treatment is mild. As detailed above, 1. The series of steel manufacturing methods centered on composite blowing and stirring refining according to the present invention enables continuous casting of molten steel with no Si deoxidation at all and only slight AI deoxidation. It is possible to obtain slabs equivalent to rimmed steel without defects such as break-in and pinholes at a high yield and with high efficiency, and since vacuum treatment is not performed, the equipment is easy to use. Moreover, since the time required for the entire process is shorter than when deoxidizing is performed in a vacuum, the drop in molten steel temperature is small, which is extremely advantageous in terms of operation. In this way, the steel manufacturing method according to the present invention achieves low A
This made it possible to continuously cast Si, L steel, that is, a product equivalent to rimmed steel, and it can be said to be an epoch-making contribution to this type of technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は複合吹錬及び攪拌精錬の効果を示すグラフ、第
2図は複合吹錬炉の模式的縦断面図、第3図はAI添加
量と(Si)との関係を示すグラフ、第4図はスラグボ
ール法によるスラグカット出鋼設備の概念図である。 1・・・・・・羽口、2,3・・・・・・転炉、4・・
曲出鋼口、5・・・・・・ボール投下器具、6・・・・
・・スラグボール。
Figure 1 is a graph showing the effects of composite blowing and stirring refining, Figure 2 is a schematic vertical cross-sectional view of a composite blowing furnace, Figure 3 is a graph showing the relationship between the amount of AI added and (Si), Figure 4 is a conceptual diagram of slag cut steel tapping equipment using the slag ball method. 1...tuyere, 2,3...converter, 4...
Curved steel opening, 5...Ball dropping device, 6...
...Slug ball.

Claims (1)

【特許請求の範囲】 1 浴面下よりガスを導入し得るようにした転炉におい
て、吹止め〔C〕を0.05%以上とすべく酸素吹錬し
、酸素吹錬中の適宜期間及び酸素吹錬後、鋼浴面下より
ガスを導入して攪拌精錬を行い、該攪拌精錬後には転炉
から取鍋へ転炉スラグの混入を抑制しつつ出鋼し、この
出鋼中及び/又は出鋼後、AI添加による脱酸を行い、
自由〔0〕が70ppm以下、T、 (AI’lが0.
020%以下、〔Si〕が不可避的含有量である溶鋼を
溶製し、該溶鋼を連続鋳造機により鋳造することを特徴
とする製鋼法。 2 浴面下よりガスを導入し得るようにした転炉におい
て、吹止め〔C〕を0.05%以上とすべく酸素吹錬し
、酸素吹錬中の適宜期間及び酸素吹錬後、鋼浴面下より
ガスを導入して攪拌精錬を行い、該攪拌精錬後には転炉
から取鍋へ転炉スラグの混入を抑制しつつ出鋼し、要す
ればこの出鋼中及び/又は出鋼後、AI添加による脱酸
を行い、自由(0)が100〜180pI1m、[Si
)が不可避的含有量である溶鋼を溶製し、該溶鋼を連続
鋳造機により鋳造するに際し、該連続鋳造機を構成する
鋳造内の溶鋼中にAIを添加して脱酸を行い、鋳型内溶
鋼の自由〔0〕を70pμs以下、’T、(Al、l
を0.020%以下、 (Si)を不可避的含有量とな
らしめることを特徴とする製鋼法。
[Scope of Claims] 1. In a converter in which gas can be introduced from below the bath surface, oxygen blowing is carried out to achieve a blow stop [C] of 0.05% or more, and an appropriate period and time during oxygen blowing are carried out. After oxygen blowing, stirring and refining is performed by introducing gas from below the surface of the steel bath, and after the stirring and refining, steel is tapped while suppressing the mixing of converter slag from the converter to the ladle. Or after tapping, deoxidize by adding AI,
Freedom [0] is 70 ppm or less, T, (AI'l is 0.
A steel manufacturing method characterized by producing molten steel having an unavoidable content of [Si] of 0.020% or less, and casting the molten steel using a continuous casting machine. 2 In a converter where gas can be introduced from below the bath surface, oxygen blowing is carried out to achieve a blow stop [C] of 0.05% or more, and during the appropriate period during oxygen blowing and after oxygen blowing, steel Stirring and refining is performed by introducing gas from below the bath surface, and after the stirring and refining, steel is tapped while suppressing the contamination of converter slag from the converter to the ladle. After that, deoxidation was performed by adding AI, and free (0) was 100 to 180 pI1m, [Si
), and when casting the molten steel using a continuous casting machine, AI is added to the molten steel in the casting constituting the continuous casting machine to deoxidize it and When the freedom [0] of molten steel is 70 pμs or less, 'T, (Al, l
A steel manufacturing method characterized by making (Si) an unavoidable content of 0.020% or less.
JP54170135A 1979-12-25 1979-12-25 Steel manufacturing method Expired JPS5952921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54170135A JPS5952921B2 (en) 1979-12-25 1979-12-25 Steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54170135A JPS5952921B2 (en) 1979-12-25 1979-12-25 Steel manufacturing method

Publications (2)

Publication Number Publication Date
JPS5690920A JPS5690920A (en) 1981-07-23
JPS5952921B2 true JPS5952921B2 (en) 1984-12-22

Family

ID=15899302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54170135A Expired JPS5952921B2 (en) 1979-12-25 1979-12-25 Steel manufacturing method

Country Status (1)

Country Link
JP (1) JPS5952921B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763619A (en) * 1980-10-06 1982-04-17 Nippon Kokan Kk <Nkk> Production of continuous cast steel
JPS5834124A (en) * 1981-08-25 1983-02-28 Kawasaki Steel Corp Controlling method for content of nitrogen in killed steel
CN115011751B (en) * 2022-06-22 2023-08-25 包头钢铁(集团)有限责任公司 Endpoint manganese alloying control method for high manganese steel converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1284155A (en) * 1961-02-15 1962-02-09 Ct Nat De Rech S Metallurg A S Method and installation for controlling the effervescence and calming of steel in continuous casting and steel in accordance with that obtained by said process or similar process
JPS5425209A (en) * 1977-07-27 1979-02-26 Sumitomo Metal Ind Ltd Method of producing super low carbon steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1284155A (en) * 1961-02-15 1962-02-09 Ct Nat De Rech S Metallurg A S Method and installation for controlling the effervescence and calming of steel in continuous casting and steel in accordance with that obtained by said process or similar process
JPS5425209A (en) * 1977-07-27 1979-02-26 Sumitomo Metal Ind Ltd Method of producing super low carbon steel

Also Published As

Publication number Publication date
JPS5690920A (en) 1981-07-23

Similar Documents

Publication Publication Date Title
US6547849B2 (en) Ladle refining of steel
US3459537A (en) Continuously cast steel slabs and method of making same
GB1599176A (en) Killed steels for continuous casting
JPH0230711A (en) Manufacture of extremely low carbon steel having superior cleanness
CN113186458A (en) Medium carbon aluminum killed steel for cold heading and smelting method thereof
JP4207820B2 (en) How to use vacuum degassing equipment
US3822735A (en) Process for casting molten silicon-aluminum killed steel continuously
US3392009A (en) Method of producing low carbon, non-aging, deep drawing steel
JPS5952921B2 (en) Steel manufacturing method
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JP3616423B2 (en) Vacuum refining method for ultra-low carbon stainless steel
JP3473388B2 (en) Refining method of molten stainless steel
JP2613525B2 (en) Continuous casting method of aluminum killed steel for cold rolling
JP2729458B2 (en) Melting method of low nitrogen steel using electric furnace molten steel.
JP3719056B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JPS6010086B2 (en) Steel manufacturing method
JPS5952922B2 (en) Steel manufacturing method
JPS5922766B2 (en) Steel manufacturing method
JP2985720B2 (en) Vacuum refining method for ultra low carbon steel
JP2003155517A (en) Method for producing low carbon and high manganese steel
CN117230270A (en) Converter low-silicon high-oxygen H08A smelting method
JPS6345901B2 (en)
SU908841A1 (en) Process for producing steel
JP3525891B2 (en) Continuous casting method of small section high Cr steel
JPH0293017A (en) Method for smelting extra-low carbon steel