JPS6345901B2 - - Google Patents

Info

Publication number
JPS6345901B2
JPS6345901B2 JP55071011A JP7101180A JPS6345901B2 JP S6345901 B2 JPS6345901 B2 JP S6345901B2 JP 55071011 A JP55071011 A JP 55071011A JP 7101180 A JP7101180 A JP 7101180A JP S6345901 B2 JPS6345901 B2 JP S6345901B2
Authority
JP
Japan
Prior art keywords
steel
molten steel
tundish
ladle
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55071011A
Other languages
Japanese (ja)
Other versions
JPS56168941A (en
Inventor
Noboru Hirota
Yasushige Myagawa
Naonori Morya
Hiroaki Shinagawa
Jun Kadoi
Hirofumi Furukawa
Yasuo Fujikawa
Koichi Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nisshin Steel Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7101180A priority Critical patent/JPS56168941A/en
Publication of JPS56168941A publication Critical patent/JPS56168941A/en
Publication of JPS6345901B2 publication Critical patent/JPS6345901B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/113Treating the molten metal by vacuum treating

Description

【発明の詳細な説明】 本発明はブローホールおよび非金属介在物の少
ない連鋳スラブの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a continuously cast slab with fewer blowholes and nonmetallic inclusions.

鋼の連続鋳造法は、造塊−分塊法に比べて歩留
が良く工程も省略できるので近年の鋼製造工程の
主流となりつつあり、その製造可能範囲も拡大し
てきた。
Continuous casting of steel has a higher yield than the ingot-blowing method and can omit steps, so it has become the mainstream of steel manufacturing processes in recent years, and the range of possible manufacturing has expanded.

一方、製鋼工程における脱酸型式には、未脱酸
方式(リムド鋼)、弱脱酸方式(セミキルド鋼)
および強脱酸方式(キルド鋼)の3型式があり、
弱および強脱酸方式では、製鋼炉からの出鋼中も
しくは真空脱ガス処理中に、Al、Siその他の脱
酸剤を添加して溶鋼中の溶存酸素を除去する。こ
の脱酸型式の相異による得失は、大略次のようで
ある。すなわち、未脱酸鋼は、Al、Si等の添加
がないので原価面で有利であるだけでなく造塊法
で製造する場合は表面品質も優れているが、その
反面内部の均質性に問題がある。これに対して強
脱酸方式は、内部の均質性は改善されるものの原
価の不利と非金属介在物の問題が不可避である。
弱脱酸方式は両者の中間的存在といえる。
On the other hand, deoxidizing methods in the steelmaking process include non-deoxidizing method (rimmed steel) and weak deoxidizing method (semi-killed steel).
There are three types: and strong deoxidation method (killed steel).
In the weak and strong deoxidizing methods, dissolved oxygen in molten steel is removed by adding deoxidizing agents such as Al, Si, etc. during tapping from a steelmaking furnace or during vacuum degassing treatment. The advantages and disadvantages of this difference in deoxidation types are roughly as follows. In other words, undeoxidized steel is not only advantageous in terms of cost because it does not contain additions of Al, Si, etc., but also has excellent surface quality when manufactured by the ingot method, but on the other hand, it has problems with internal homogeneity. There is. On the other hand, the strong deoxidizing method improves internal homogeneity, but inevitably suffers from disadvantages in cost and the problem of nonmetallic inclusions.
The weak deoxidation method can be said to be an intermediate between the two.

連続鋳造法は造塊法に比べて内部の均質な鋼片
を製造するのに適した方法であるので、未脱酸鋼
の連続鋳造法が可能になれば原価面でも品質面で
も非常な利益を生じる。しかしながら、連続鋳造
法の最近の発展によつて鋼種的には低炭素鋼から
高炭素鋼、合金鋼までの製造が可能になり、材料
面では薄板から厚板、高張力鋼などの製造が可能
となつているにもかかわらず、脱酸型式について
はいまだ未脱酸鋼の連続鋳造化が営業生産的水準
で可能となつていない。
Continuous casting is a method that is more suitable for producing internally homogeneous steel slabs than ingot casting, so if continuous casting of unoxidized steel becomes possible, there will be significant benefits in terms of both cost and quality. occurs. However, recent developments in continuous casting methods have made it possible to manufacture a range of steel types from low carbon steel to high carbon steel and alloy steel, and in terms of materials, it is now possible to manufacture thin plates, thick plates, high-strength steel, etc. Despite this, it has not yet become possible to continuously cast unoxidized steel at a commercially productive level.

連続鋳造法で未脱酸鋼の製造が困難である理由
は、大略次のとおりである。すなわち、未脱酸状
態の溶鋼では凝固に際して溶鋼中の溶存酸素と炭
素が反応してCOガスを生成するが、連続鋳造法
では、凝固殻の生長が速いのでCOガス気泡が凝
固殻表面に捕捉されて鋳片にピンホール状の欠陥
を生じ、圧延工程で製品とするに耐えない線状の
疵となるためである。
The reasons why it is difficult to produce non-deoxidized steel using the continuous casting method are roughly as follows. In other words, in undeoxidized molten steel, dissolved oxygen and carbon in the molten steel react during solidification to produce CO gas, but in continuous casting, the solidified shell grows quickly, so CO gas bubbles are trapped on the surface of the solidified shell. This is because pinhole-like defects occur in the slab, resulting in linear flaws that cannot be used as a product during the rolling process.

このようなことから、連続鋳造に際しては、気
泡発生を防ぐためにキルド化することがこれまで
一般的であり、しかも脱酸コントロールが厳密に
できないために安全側を狂つてSi、Al等の脱酸
剤を過剰に使用してきた。このため、コスト的に
高くなるだけでなく、脱酸生成物が鋳片に捕捉さ
れて起こる製品表面疵の問題、脱酸剤の過剰使用
による材質劣化の問題が顕在化していた。また、
脱酸生成物(主としてAl2O3)により、取鍋、タ
ンデイシユ等の出口のノズル閉塞が起こり、連続
鋳造を困難にすることがあつた。
For this reason, in continuous casting, it has been common practice to perform a killed process to prevent the generation of bubbles, and since deoxidation control cannot be strictly controlled, deoxidation of Si, Al, etc. has been carried out on the side of safety. The drug has been used in excess. For this reason, not only the cost increases, but also the problem of product surface flaws caused by the deoxidation products being trapped in the slab, and the problem of material deterioration due to excessive use of the deoxidizer have become apparent. Also,
Deoxidation products (mainly Al 2 O 3 ) sometimes clog the nozzle at the outlet of a ladle, tundish, etc., making continuous casting difficult.

このため、例えば、米国特許第3412781号明細
書に見られるように冷間圧延用鋼板を連続鋳造に
よつて安定かつ多量に生産することを目的として
鋼成分のバランスを図つた技術が紹介され、ま
た、特公昭47−47209号、特公昭51−4935号公報
等に見られるように鋳造作業の高能率化高速鋳造
化をはかるとともに表面性状を狙つた技術が紹介
された。しかしながらこれらの技術によつて得た
鋼板は汎用性に乏しくかつ製造工程においても
種々の問題を有するものであつた。
For this reason, for example, as seen in U.S. Pat. No. 3,412,781, a technology has been introduced that aims to balance the steel components with the aim of producing stable and large quantities of cold rolling steel sheets by continuous casting. In addition, as seen in Japanese Patent Publication No. 47-47209 and Japanese Patent Publication No. 4935-1987, techniques aimed at improving the efficiency and speed of casting operations and improving surface quality were introduced. However, the steel plates obtained by these techniques lack versatility and have various problems in the manufacturing process.

そこで、本発明者等は各種調査研究を行なつた
結果、上記いずれの技術も脱酸剤としてAlとSi
を併用しているため、鋼中Siの存在により材質的
にリムド鋼より硬く、またこの方法による脱酸型
式においては生成する非金属介在物はAl2O3
SiO2−MnO系の比較的低融点生成物であり熱延
薄鋼板として使用する場合の加工性は必ずしも満
足できるものではないことを解明した。
Therefore, as a result of various research studies, the present inventors have found that none of the above techniques uses Al and Si as deoxidizing agents.
Due to the presence of Si in the steel, the material is harder than rimmed steel, and in the deoxidation type using this method, the nonmetallic inclusions generated are Al 2 O 3
It was found that this is a relatively low melting point product of the SiO 2 -MnO system, and its workability is not necessarily satisfactory when used as hot rolled thin steel sheets.

このようにSi脱酸することによるSi含有量の高
い(Si0.03%)鋼による欠点は、Siが固溶Siま
たはシリケート介在物として直接的または間接的
に影響を及ぼしているものである。ここにSi−
freeによる連続鋳造用弱脱酸鋼が要望される経緯
がある。Si−free鋼としては特開昭50−8713号、
特開昭53−73422号に見られるが、溶製時の脱酸
制御が困難であり、また、連続鋳造時の高速引抜
が必須としている。
The disadvantage of steel with a high Si content (Si 0.03%) due to Si deoxidation in this way is that Si has an effect directly or indirectly as solid solution Si or silicate inclusions. Si- here
There is a history of demand for weakly deoxidized steel for continuous casting using free. As Si-free steel, JP-A No. 50-8713,
As seen in JP-A-53-73422, it is difficult to control deoxidation during melting, and high-speed drawing during continuous casting is essential.

本発明に目的は、このような従来の連続鋳造法
の各種の問題を解決することであり、ブロホール
および非金属介在物の少ない健全な連鋳スラブを
経済的および操業的有利に製造することである。
The purpose of the present invention is to solve various problems of such conventional continuous casting methods, and to produce sound continuous cast slabs with few blowholes and nonmetallic inclusions economically and operationally. be.

この目的において本発明法の連鋳スラブの製造
法は、取鍋に受鋼した炭素量が0.15%以下の未脱
酸溶鋼をこの取鍋内で真空脱ガス処理すると共に
Alによる脱酸を行ない、得られた弱脱酸溶鋼を
連続鋳造機のタンデイシユに注入し、このタンデ
イシユ内の溶鋼を再度真空脱ガス処理してから鋳
型に注入することを特徴とする。
For this purpose, the continuous casting slab manufacturing method of the present invention involves vacuum degassing treatment of undeoxidized molten steel with a carbon content of 0.15% or less received in a ladle, and
The method is characterized in that the weakly deoxidized molten steel obtained by deoxidizing with Al is poured into a tundish of a continuous casting machine, and the molten steel in this tundish is subjected to vacuum degassing treatment again before being poured into a mold.

本発明法の実施にあたり、取鍋内の真空脱ガス
処理は取鍋全体を真空容器中にセツトする取鍋真
空脱ガス装置、あるいは取鍋内溶鋼を真空室に還
流させるRHまたはDH装置などの公知の装置を
用いて行なうことができる。また、タンデイシユ
内の溶鋼の真空脱ガス処理は例えば特公昭53−
4483号公報に記載された連続真空脱ガス装置を用
いて好適に実施し得る。
In implementing the method of the present invention, the vacuum degassing treatment inside the ladle can be carried out using a ladle vacuum degassing device in which the entire ladle is set in a vacuum container, or an RH or DH device in which the molten steel in the ladle is returned to a vacuum chamber. This can be carried out using a known device. In addition, the vacuum degassing treatment of molten steel in the tundish is, for example,
This can be suitably carried out using the continuous vacuum degassing apparatus described in Japanese Patent No. 4483.

第1図は本発明法の実施に好適に使用すること
ができる装置を示すもので、取鍋脱ガス後のタン
デイシユ脱ガス工程の例を示している。第1図に
おいて、1は連鋳用鋳型、2はこの鋳型1に流す
溶鋼を保持するためのタンデイシユ、3はこのタ
ンデイシユ2に溶鋼を注入する取鍋であり、タン
デイシユ2には溶鋼を真空処理するための真空容
器4を備えている。この真空容器4は、頂部に排
気孔5、底部に吸込管6および吐出管7を有し、
排気孔5は排気装置(図示しない)に連結され
る。吸込管6は吐出管7よりも若干短く、吐出管
7の端部がタンデイシユノズル8に連結するよう
にこの真空容器4をタンデイシユ2内にセツト
し、この状態で吸込管6の端部はタンデイシユ2
の底よりも上方に位置する関係になつている。し
たがつて、排気装置の駆動によつて容器内が減圧
されると、タンデイシユ2内の溶鋼は吸込管6よ
り容器内に吸上げられ、吐出管7からタンデイシ
ユノズル8に吐出される。タンデイシユノズル8
には浸漬ノズル9が取付けてあり、鋳型1内に滞
留する溶鋼内に浸漬されたこの浸漬ノズル9を経
て溶鋼は鋳型1に連続供給される。このようにし
て、タンデイシユ内溶鋼が鋳型1に注入される前
に連続真空脱ガス処理されるが、これだけでは本
発明の目的は十分に達成できない。このタンデイ
シユ2に注入された溶鋼自体も溶存酸素を所定値
以下にまで低下させておく必要がある。このた
め、取鍋3の溶鋼10も真空脱ガス処理されると
共にAl脱酸された弱脱酸鋼を使用し、この取鍋
3からタンデイシユ2への注入もシール用ノズル
11を使用し、また鋳型1には人工の溶融スラグ
層12を形成させておく。
FIG. 1 shows an apparatus that can be suitably used for carrying out the method of the present invention, and shows an example of a tundish degassing step after ladle degassing. In Fig. 1, 1 is a mold for continuous casting, 2 is a tundish for holding the molten steel poured into the tundish 1, 3 is a ladle for pouring the molten steel into the tundish 2, and the tundish 2 is used to vacuum-process the molten steel. It is equipped with a vacuum container 4 for This vacuum container 4 has an exhaust hole 5 at the top, a suction pipe 6 and a discharge pipe 7 at the bottom,
The exhaust hole 5 is connected to an exhaust device (not shown). The suction pipe 6 is slightly shorter than the discharge pipe 7, and the vacuum container 4 is set in the tundish 2 so that the end of the discharge pipe 7 is connected to the tundish nozzle 8. is tendishyu 2
The relationship is such that it is located above the bottom of the . Therefore, when the pressure inside the container is reduced by driving the exhaust device, the molten steel in the tundish 2 is drawn up into the container through the suction pipe 6 and is discharged from the discharge pipe 7 to the tundish nozzle 8. Tundish nozzle 8
An immersion nozzle 9 is attached to the immersion nozzle 9, and molten steel is continuously supplied to the mold 1 through the immersion nozzle 9, which is immersed in the molten steel remaining in the mold 1. In this way, the molten steel in the tundish is subjected to continuous vacuum degassing treatment before being poured into the mold 1, but this alone cannot sufficiently achieve the object of the present invention. The dissolved oxygen of the molten steel itself injected into the tundish 2 must be reduced to a predetermined value or less. For this reason, the molten steel 10 in the ladle 3 is also vacuum degassed and Al-deoxidized weakly deoxidized steel, and the injection from the ladle 3 into the tundish 2 is also performed using the sealing nozzle 11. An artificial molten slag layer 12 is formed in the mold 1.

以下に本発明法の好ましい実施の態様を説明す
る。
Preferred embodiments of the method of the present invention will be described below.

転炉工程で、炭素含有量が0.15%以下の溶鋼、
例えばC=0.10%の炭素含有量の溶鋼を溶製する
と、溶存酸素は300〜500ppm程度である。これを
取鍋に出鋼し、この出鋼中に鋼の調質を目的とし
てMn源を添加する。これにより取鍋内受鋼は
200〜300ppmまで溶存酸素が低下するが、この
Mn添加はAlやSiなどのように脱酸を目的とする
のではなく、取鍋内には未脱酸状態の溶鋼が収容
される。次いで、この取鍋を真空容器内にセツト
して真空脱ガス処理し、C+O=COの反応を進
行させると同時にAl添加による脱酸を行ない鋼
中炭素0.08%以下、溶存酸素100ppm以下にまで
低下させる。この鋼中炭素と酸素は必ずしも化学
量論的に減少しない。これは転炉スラグまたは出
鋼中での大気中からの酸素の供給が不可避である
からである。この取鍋脱ガス処理を終えた溶鋼は
次に第1図に示すようにタンデイシユに注入し、
鋳型1への注入前に連続真空処理され、再度C+
O=COの反応によつて、C=0.05%程度、0<
50ppmまで脱炭脱酸される。この溶存酸素が
50ppm以下にまで脱酸された溶鋼は浸漬ノズルお
よび人工スラグによつて大気と遮断された状態で
鋳型に注入でき、鋳型内では凝固にさいしても
COガスの発生は軽微となつてブローホール疵の
ない健全な連鋳スラブが得られる。
In the converter process, molten steel with a carbon content of 0.15% or less,
For example, when molten steel with a carbon content of C=0.10% is produced, dissolved oxygen is about 300 to 500 ppm. This steel is tapped into a ladle, and a Mn source is added during this tapping for the purpose of refining the steel. As a result, the receiving steel inside the ladle is
Dissolved oxygen decreases to 200 to 300 ppm, but this
Mn is not added for the purpose of deoxidizing like Al or Si, but the ladle contains molten steel in an undeoxidized state. Next, this ladle is placed in a vacuum container and subjected to vacuum degassing treatment to advance the C+O=CO reaction and at the same time deoxidize by adding Al, reducing the carbon in the steel to 0.08% or less and dissolved oxygen to 100ppm or less. let Carbon and oxygen in the steel do not necessarily decrease stoichiometrically. This is because oxygen must be supplied from the atmosphere in the converter slag or tapped steel. The molten steel that has been degassed in the ladle is then poured into a tundish as shown in Figure 1.
Continuous vacuum treatment and C+ again before pouring into mold 1
Due to the reaction of O=CO, C=about 0.05%, 0<
Decarboxylated and deoxidized to 50ppm. This dissolved oxygen
Molten steel that has been deoxidized to 50 ppm or less can be injected into the mold while being isolated from the atmosphere using an immersion nozzle and artificial slag, and even during solidification inside the mold,
The generation of CO gas is minimal, and a sound continuously cast slab without blowhole defects can be obtained.

本発明法は前記のように取鍋に受鋼した未脱酸
溶鋼をSi脱酸剤の添加なしで、取鍋内とタンデイ
シユ内の2段階からなる真空脱ガス処理によつて
鋼中炭素と酸素との反応により脱酸を行なうこと
を特徴とするものである。この2段階からなる真
空脱ガス処理に代えて、いづれか1方のみの1段
階でこれを実施することは、特別な操業または鋼
種を除いて、実操業上面で有利とはならない。例
えば、取鍋内脱ガス処理のみ(Alの添加を含む)
によつて減圧下におけるCO平衡値の10ppm程度
まで酸素を除去してこれを鋳造しようとしても、
この真空処理剤溶鋼の取鍋移送中や鋳造期間中に
取鍋内またはタンデイシユ内において大気圧下の
平衡状態に長時間保持されるから、この間に溶鋼
中の酸素が増加して、鋳片表面にピンホールが発
生する条件となることが避けられない。また、タ
ンデイシユ内での真空脱ガス処理のみによつて
は、その真空脱ガス装置の形状並びに処理量に自
づと限界があり、鋳型以降の溶鋼処理量1〜
8T/分の如き通常の鋳造条件に対して、反応速
度論的に十分な脱ガス能力を有するような大型装
置を設計することが実際上困難である。例えば転
炉で溶製された溶鋼は炭素含有量が低くなるにつ
れて溶存酸素量は増加する傾向があるが、特に炭
素含有量が0.15%以下にまで脱炭された転炉溶製
鋼に対しては、タンデイシユ内での真空脱ガス処
理だけで十分な脱ガスを行なうことは実質上困難
である。
The method of the present invention removes carbon from the undeoxidized molten steel received in the ladle as described above by performing a two-step vacuum degassing treatment in the ladle and in the tundish without adding any Si deoxidizing agent. It is characterized by deoxidizing by reaction with oxygen. Instead of this two-stage vacuum degassing treatment, it is not advantageous in terms of actual operation to carry out only one of the two stages in one stage, except for special operations or steel types. For example, only in-ladle degassing treatment (including addition of Al)
Even if you try to remove oxygen to about 10 ppm of the CO equilibrium value under reduced pressure and cast it,
During the transfer of the vacuum treatment agent to the ladle and during the casting period, the ladle or tundish is maintained in an equilibrium state under atmospheric pressure for a long period of time, and during this time the oxygen in the molten steel increases and the surface of the slab It is unavoidable that this will become a condition for pinholes to occur. In addition, depending on the vacuum degassing treatment only in the tundish, there are limits to the shape of the vacuum degassing equipment and the throughput, and the throughput of molten steel after the mold is 1 to 1.
It is practically difficult to design a large-scale device that has sufficient degassing ability in terms of reaction kinetics for normal casting conditions such as 8 T/min. For example, in molten steel made in a converter, the amount of dissolved oxygen tends to increase as the carbon content decreases, but especially for molten steel made in a converter whose carbon content has been decarburized to 0.15% or less. However, it is practically difficult to perform sufficient degassing only by vacuum degassing treatment within the tundish.

本発明にあつては、取鍋内溶鋼の真空脱ガス処
理に加えてタンデイシユ内溶鋼の真空脱ガス処理
を併用することによつて、従来の連続鋳造法の大
きな課題であつた弱脱酸鋼の連続鋳造を実現した
ものであり、Si脱酸剤添加に基づくSiO2−Al2O3
−MnO系介在物の熱間加工性に及ぼす悪影響な
どを未然に回避しながら、リミングアクシヨンに
よるブローホールの発生を防止して健全な連鋳ス
ラブを経済的かつ操業的に有利に製造可能とした
ものである。そして、本発明によると、従来の弱
脱酸鋼の連続鋳造にあつてはピンホール発生防止
対策として必須とされている高速引抜きは必ずし
も必要としない。
In the present invention, by using vacuum degassing treatment of molten steel in a tundish in addition to vacuum degassing treatment of molten steel in a ladle, it is possible to produce weakly deoxidized steel, which was a major problem in conventional continuous casting methods. This technology realized continuous casting of SiO 2 −Al 2 O 3 based on the addition of Si deoxidizer.
-While avoiding the negative effects of MnO-based inclusions on hot workability, it is now possible to economically and operationally advantageously produce sound continuous cast slabs by preventing the occurrence of blowholes due to rimming actions. This is what I did. According to the present invention, high-speed drawing, which is essential as a measure to prevent the occurrence of pinholes in conventional continuous casting of weakly deoxidized steel, is not necessarily required.

第2図に既述の実施態様に従つて製造した本発
明法のスラブの断面写真を示す。この写真に見ら
れるように本発明法によると弱脱酸溶鋼からブロ
ーホールが低減した連鋳片が得られる。第3図の
写真は弱脱酸溶鋼の従来法によるスラブの断面写
真であり、従来法ではこの第3図の写真に見られ
る程度のブローホールが存在したのが普通であつ
た。
FIG. 2 shows a cross-sectional photograph of a slab manufactured by the method of the present invention according to the embodiment described above. As seen in this photograph, according to the method of the present invention, continuous cast pieces with fewer blowholes can be obtained from weakly deoxidized molten steel. The photograph in FIG. 3 is a cross-sectional photograph of a slab obtained by the conventional method of mildly deoxidized molten steel, and in the conventional method, blowholes as seen in the photograph in FIG. 3 were usually present.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の実施に使用する装置の要部
断面図、第2図は本発明法によつて得られた連鋳
スラブの狭断面の金属組織を示すマクロエツチ真
真、第3図は従来法の未脱酸溶鋼の連鋳スラブの
狭断面の金属組織を示すマクロエツチ写真であ
る。 1……鋳型、2……タンデイシユ、3……取
鍋、4……真空容器、9……浸漬ノズル、11…
…シール用ノズル、12……人工スラグ。
Fig. 1 is a cross-sectional view of the main part of the equipment used to carry out the method of the present invention, Fig. 2 is a macro etch diagram showing the metal structure of a narrow cross section of a continuously cast slab obtained by the method of the present invention, and Fig. 3 is a macroetch photograph showing the metal structure of a narrow cross section of a continuous cast slab of undeoxidized molten steel produced by the conventional method. 1...Mold, 2...Tendishi, 3...Ladle, 4...Vacuum container, 9...Immersion nozzle, 11...
...Sealing nozzle, 12...Artificial slag.

Claims (1)

【特許請求の範囲】[Claims] 1 取鍋に受鋼した炭素量が0.15%以下の未脱酸
溶鋼をこの取鍋内で真空脱ガス処理すると共に
Alによる脱酸を行ない、得られた弱脱酸溶鋼を
連続鋳造機のタンデイシユに注入し、このタンデ
イシユ内の溶鋼を再度真空脱ガス処理してから鋳
型に注入することからなるブローホールおよび非
金属介在物の少ない連鋳スラブの製造法。
1. Undeoxidized molten steel with a carbon content of 0.15% or less received in a ladle is vacuum degassed in this ladle, and
Blowholes and non-metallic metals are created by deoxidizing with Al, injecting the resulting weakly deoxidized molten steel into the tundish of a continuous casting machine, and then vacuum-degassing the molten steel in the tundish again before injecting it into the mold. A method for producing continuously cast slabs with fewer inclusions.
JP7101180A 1980-05-28 1980-05-28 Manufacture of continuous casting slab with few blowholes and little nonmetallic inclusion Granted JPS56168941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7101180A JPS56168941A (en) 1980-05-28 1980-05-28 Manufacture of continuous casting slab with few blowholes and little nonmetallic inclusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7101180A JPS56168941A (en) 1980-05-28 1980-05-28 Manufacture of continuous casting slab with few blowholes and little nonmetallic inclusion

Publications (2)

Publication Number Publication Date
JPS56168941A JPS56168941A (en) 1981-12-25
JPS6345901B2 true JPS6345901B2 (en) 1988-09-12

Family

ID=13448125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7101180A Granted JPS56168941A (en) 1980-05-28 1980-05-28 Manufacture of continuous casting slab with few blowholes and little nonmetallic inclusion

Country Status (1)

Country Link
JP (1) JPS56168941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332309U (en) * 1989-08-03 1991-03-28
JPH0525122Y2 (en) * 1988-09-30 1993-06-25

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101047579B1 (en) 2008-12-30 2011-07-07 주식회사 포스코 Tapping device and tapping method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956830A (en) * 1972-10-05 1974-06-03
JPS5497520A (en) * 1978-01-19 1979-08-01 Sumitomo Metal Ind Ltd Production of steel to be enameled

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956830A (en) * 1972-10-05 1974-06-03
JPS5497520A (en) * 1978-01-19 1979-08-01 Sumitomo Metal Ind Ltd Production of steel to be enameled

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525122Y2 (en) * 1988-09-30 1993-06-25
JPH0332309U (en) * 1989-08-03 1991-03-28

Also Published As

Publication number Publication date
JPS56168941A (en) 1981-12-25

Similar Documents

Publication Publication Date Title
US3125440A (en) Tlbr b
US3459537A (en) Continuously cast steel slabs and method of making same
US3208117A (en) Casting method
US3822735A (en) Process for casting molten silicon-aluminum killed steel continuously
US3392009A (en) Method of producing low carbon, non-aging, deep drawing steel
US3998261A (en) Casting steel ingots
JPS6345901B2 (en)
US4066444A (en) Process for deoxidizing steel by means of molten aluminum
JP4392364B2 (en) Method for producing ultra-low carbon steel
JP3124469B2 (en) Method for producing slabs with few inclusion defects
SU1073296A1 (en) Semikilled steel deoxidation process
JPS5952921B2 (en) Steel manufacturing method
RU2156307C1 (en) Process of out-of-furnace treatment of electrical sheet steel
JPH02247052A (en) Method for continuously casting cast slab for steel strip
JPS5514132A (en) Preventing method for oxygen entry of cast ingot in continuous casting and device thereof
JPS6010086B2 (en) Steel manufacturing method
RU2034042C1 (en) Extra-lowcarbon non-aging steel production method
RU2034679C1 (en) Method to work metal in the process of continuous casting and a device to implement it
RU2312903C2 (en) Pseudo-rimming steel production method
SU789591A1 (en) Method of producing low-carbon steel
SU971561A1 (en) Method for producing hollow ingot
RU2016088C1 (en) Method of out-of-furnace treatment of steel
JPH0293017A (en) Method for smelting extra-low carbon steel
SU781218A1 (en) Method of low-alloy steel production
RU2031755C1 (en) Method to apply vacuum treatment to a steel containing too small amount of carbon at continuous casting in a flow line