JPS5952894A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS5952894A
JPS5952894A JP16551282A JP16551282A JPS5952894A JP S5952894 A JPS5952894 A JP S5952894A JP 16551282 A JP16551282 A JP 16551282A JP 16551282 A JP16551282 A JP 16551282A JP S5952894 A JPS5952894 A JP S5952894A
Authority
JP
Japan
Prior art keywords
layer
type
region
cladding layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16551282A
Other languages
Japanese (ja)
Inventor
Kenji Ikeda
健志 池田
Jun Osawa
大沢 潤
Kazuhisa Takahashi
和久 高橋
Wataru Suzaki
須崎 渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16551282A priority Critical patent/JPS5952894A/en
Publication of JPS5952894A publication Critical patent/JPS5952894A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To avoid the surface recombination of an injection carrier preventing an end breakdown from happening to secure high output restraining leakage current to be concentrated in active layers by a method wherein an end forming a resonator is formed into a part made of a crystalline material making the forbidden band width of the material wider than that of the active layers. CONSTITUTION:An N type Al0.35Ga0.65As layer 111, a GaAs layer 112, a P type Al0.35Ga0.65As layer 113, a P type GaAs layer 114 are successively grown on an N type GaAs substrate crystal 10. A P type GaAs layer 114 is coated with An Si3N4 film 16 removing all parts excluding the width W and the length L further removing all the layers down to the surface of the N type GaAs substrate crystal 10 by etching process utilizing the residual Si3N4 film as a mask. Secondly, an N type Al0.5Ga0.5As layer 12 is grown and then the Si3N4 film 16 is removed forming another Si3N4 film 17 again all over the surface while Zn etc. is diffused through the intermediary of a hole opened centering on a strip mesa 11 forming a P<+> type layer 114a and a P type Al0.5Ga0.5As region 121 respectively on the surface of the P type GaAs layer 114 and the N type Al0.5Ga0.5As region 12. Finally after forming a P side electrode 14 and an N side electrode 15, a laser oscillating surface may be formed completing the element.

Description

【発明の詳細な説明】 この発明は高出力動作に耐え、高い信頼性を有する半導
体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser that can withstand high-power operation and has high reliability.

半導体レーザ装置の高出力動作の上限を与える大きな要
素として、高い光出力密度のためにレーザ端面(共振器
面)が破壊をするということがあることはよく知られて
いる。この端面の破壊FiV、−e面再結合電流などに
よって活性層に蓄えられた注入キャリアが流出してしま
い、活性層の内部では反転分布が実現されているような
状態でも、上記端面では反転分布に至らず、光の吸収が
起こり、発振光の一部がこの端面附近で吸収式れ局部的
な発熱が生じる。そして、温度が上昇すると禁制帯幅が
狭くなり、ますます吸収係数が大きくなって、更に光を
吸収発熱する。従って、高い光出力を得ようとする場合
、半導体レーザの端面近彷にお・ける光ビームの断面積
を太きぐするために光導波層を別途設ける等の工夫をす
る方策や、端面にpn接合が露出しないようにトラフ(
Trough)構造とする方策が考えられる。従来は、
この端面にpn接合を蕗出略せない方法として、クラン
ク形TJSレーザ〔第13回向体素子コンファレンスx
:3−4−2(1981)」や、ウィンドストライグレ
ー′す(IF;I・;EJournal of Qua
ntum Electron QE−17(1981)
P。
It is well known that one of the major factors that limits the high output operation of semiconductor laser devices is that the laser end face (cavity face) is destroyed due to high optical output density. The injected carriers stored in the active layer flow out due to the fracture FiV of this end face, the -e plane recombination current, etc., and even if population inversion is realized inside the active layer, population inversion occurs at the end face. However, light absorption occurs, and part of the oscillated light is absorbed near this end face, causing local heat generation. Then, as the temperature rises, the forbidden band narrows, the absorption coefficient becomes larger, and more light is absorbed and heat is generated. Therefore, when trying to obtain high optical output, measures such as providing a separate optical waveguide layer in order to increase the cross-sectional area of the light beam near the end face of the semiconductor laser, and pn Trough (
A possible solution is to create a Trough structure. conventionally,
As an unavoidable method of creating a pn junction on this end face, a crank-type TJS laser [13th Rotating Body Element Conference
: 3-4-2 (1981)" and Wind Strike Gray's (IF; I; E Journal of Qua
ntum Electron QE-17 (1981)
P.

2112)等の例に見るように、拡散工程に工夫をして
光が通過または反射する面にpn接合が位1ムし2ない
構造にするか、端面形成後各柚誘tfi体薄膜を被Nき
せるなとの方法が用いらhてい/ζ。せブ辷、ここに述
へた例は勿論、現在知らh−Cいるノアプリベロー形共
振器を備える構造の半導体レーザの殆んどは、結晶の労
開面を共振面とするものである。従って、ウェハの段階
でレーザ特性を知ることが不可能でるる他に、弁開とい
う−まだ工苑化できてい°ない工程を踏まねばならず、
量産1化という面では不利であった。勿論、化学エツチ
ングで一対の平行平面からなる共振面を形成し、外聞工
程を除去しようとする試みはなされてきでいるが、まだ
実用的な技術は完成さ、れていない。これは、少なくと
もレーザを構成する活性層とこれを挾む2つのクラッド
層とを化学エツチングする必費が−の鞘にでは平坦度が
劣悪であること如よるものと考えられる。
As seen in examples such as 2112), the diffusion process can be devised to create a structure in which there are only 1 and 2 pn junctions on the surface through which light passes or is reflected, or a thin film of each citron-based TFI material can be coated after the end faces are formed. The method used is not used. In addition to the examples described here, most of the currently known h-C semiconductor lasers having a structure including a no-applied resonator have the expanded plane of the crystal as the resonant plane. Therefore, not only is it impossible to know the laser characteristics at the wafer stage, but it is also necessary to go through the process of opening the valve, which has not yet been developed.
It was disadvantageous in terms of mass production. Of course, attempts have been made to form a resonant surface consisting of a pair of parallel planes by chemical etching and eliminate the external process, but a practical technique has not yet been perfected. This is thought to be due to the fact that at least the active layer constituting the laser and the two cladding layers sandwiching it are chemically etched, resulting in poor flatness.

この発明は、共振器を形成する端面を1.つの伝導形を
もつ1つの結晶714才・Iから在る部分に形成するよ
うにすることによって、化学エツチングでも良好な端面
を形成することを可能とするのけ勿論、上記結晶材料の
禁制(i) 11t°iを粘性層のそれより広くするこ
とによって、注入キャリアの巻曲11)結合を避けて端
面ff、壊を防止して高出力化を図るとともに1接合の
構成例工夫を加え、上記共振器端面部の結晶材料への漏
れ電流を抑止し油性層への電流集中を計り高ずうヒ率の
半導体レーザを得ることを目的としている。
In this invention, the end faces forming the resonator are 1. By forming one crystal with two conductivity types in the area where it exists, it is possible to form a good end face even by chemical etching. ) By making 11t°i wider than that of the viscous layer, the coiling of the injected carrier 11) is avoided to avoid bonding and prevent the end face ff and breakage, thereby achieving high output, and by adding an ingenuity to the configuration of one bond. The aim is to suppress leakage current to the crystal material at the end face of the resonator and to concentrate the current in the oily layer to obtain a semiconductor laser with a high Zu Hi factor.

第1図はこの発1111の第1の実施tCUの肌11・
i構成を示す斜視図、第2図および第31XI Vi−
ぞれぞれ兜1図の■−■線およびIn−1[[線におけ
る詳細断面図で、αQはn形GaAs基板、(1りはス
トリップメサ部でその詳述は後述する。(1乃はn形k
l−o 、5Ga o、5A 8領域、(12A) 、
 (12B)はn形AZO,5Gao、5As領域(1
2)の相互に平行、しかも平坦でノアプリペロー共振器
を構成する面、o鴫は絶縁層、(14) 、 (I5)
は電極である。
Figure 1 shows the skin 11 of the first implementation tCU of this issue 1111.
Perspective view showing i configuration, Fig. 2 and Fig. 31XI Vi-
In the detailed cross-sectional views taken along the lines ■-■ and In-1 [[ of Figure 1, respectively, αQ is an n-type GaAs substrate, (1 is a strip mesa portion, and its details will be described later. (1-1) is n-type k
lo, 5Gao, 5A 8 region, (12A),
(12B) is an n-type AZO, 5Gao, 5As region (1
2) The planes that are parallel to each other and that constitute the Noah Appreault resonator are insulating layers, (14) and (I5)
is an electrode.

そして、ストリップメサ部(1す//in形AtO,3
5GaO;65A8層(111)、 p形または無添加
のGaAs活性)ilj(112)。
Then, the strip mesa part (1 inch type AtO, 3
5GaO; 65A8 layer (111), p-type or undoped GaAs activity) ilj (112).

p形AZo、35Gao、6sA8層(113) 、p
形GaAe ff4 (114)およびZnなどのp形
不純物を拡散して形成された+ P形層(114a)からなり、(121)はこのp形不
純物の拡散によってn形AZo4Ga(1,5A8領域
(I21の表面部に形成されたp形Ato、5Gao、
5A8領域である。そして、このストリップメサ部の幅
をw、L(妊をLとする。
p-type AZo, 35Gao, 6sA 8 layers (113), p
It consists of a +P type layer (114a) formed by diffusing p-type impurities such as GaAe ff4 (114) and Zn, and (121) is an n-type AZo4Ga (1,5A8 region ( p-type Ato, 5Gao formed on the surface of I21,
It is a 5A8 area. The width of this strip mesa portion is w and L (the width is L).

このレーザの動作は次の通りである。電極(14)が正
、電極(15)が負になるよう忙電圧を印加して順電流
を流すと、活性領域(112)K正孔と電子とが高濃度
に閉じ込められ発光再結合する。活性層(112)はそ
の下のn形At0.35 ” 0.65 A8層(11
1)および上のp形AZo;3sGaO,esAa層(
113)よりも禁制帯幅が狭く、屈折率が大きいので、
光は活性層(112)に沿って導波、増幅はれる。そし
て、この光はn形AZo、s G a o、s A8領
域(12)との境界面でiJ 0.0856反射される
が、多くは若干広がりつつ、この領域(12)の中へ入
り空気との界面(12A)および(12B)に達する。
The operation of this laser is as follows. When a forward current is applied by applying a busy voltage so that the electrode (14) is positive and the electrode (15) is negative, K holes and electrons in the active region (112) are confined in a high concentration and recombine by luminescence. The active layer (112) is formed by the n-type At0.35'' 0.65 A8 layer (11
1) and the upper p-type AZo; 3sGaO, esAa layer (
Since the forbidden band width is narrower and the refractive index is larger than that of 113),
Light is guided and amplified along the active layer (112). Then, this light is reflected by iJ 0.0856 at the interface with the n-type AZo, s Ga o, s A8 region (12), but most of it spreads out a little and enters this region (12) and enters the air. interfaces (12A) and (12B) are reached.

ここでは屈折率の差が大きいので約29%が反射され、
残りは外へ放出きれる。そして、反射された光の大部分
は再度活性層(112)へ戻り、増幅を受ける。このよ
うにして、往復した光の振幅が元の振幅と等しいかまた
はそれ以上になり、かつ、位相が同一になる波艮の光で
発振が起こる。′第31題に示すように粘性7@(11
2)とn Ilg AZ o、5(Ja o、s A 
B g域(12)との境界面から端面(12A) 、 
(12B)までの距1グILをそれぞれtA、tBとす
ると、n形Atu、sGag、5As itt域(l4
中に導波機構がないために生じる開口損失はtA、tB
に依存し、また活性)〜(112)の厚さにも依存する
。しかし、)IIN當の粘性層(112)の厚烙0.1
〜0.2μmに対して、上記へ、tBをblJm程展捷
たはそれ以下にすれば、開口損失をほぼ無視できる杓度
に低減できる。なお、この発明の本質とは余り関係ない
が、ストライプメサ部(n)の長−gLは約300μm
1幅Wは約1μmである。そして、この発明の要点であ
るp形AZo 、s Ga o 、s A日領域(12
1)はn形AZo 、s Ga o 、5A 8領域(
1′4との界面に拡散電位の高いp’n接合を形成する
ので、レーザの動作電圧ではこのpn接合を流れる漏れ
電流は無視できる程度に小さくなり、電流は殆んどがp
形、AZo45Gao、65AB M(113) −n
形A7−o、a5Gao、asAB層(111)を通っ
て流れ、レーザ発振に寄与する。従って、レーザ発振効
率を高めることができる0 次に、上記第1の実施例の製造工程忙ついて概説する。
Here, the difference in refractive index is large, so about 29% is reflected.
The rest can be released outside. Most of the reflected light then returns to the active layer (112) again and is amplified. In this way, oscillation occurs with the wave light whose amplitude of the reciprocated light is equal to or greater than the original amplitude and whose phase is the same. 'As shown in Problem 31, the viscosity 7@(11
2) and n Ilg AZ o, 5 (Ja o, s A
B From the interface with the g area (12) to the end surface (12A),
Letting the distance 1g IL to (12B) be tA and tB, respectively, n-type Atu, sGag, 5As itt region (l4
The aperture loss caused by the lack of a waveguide mechanism is tA, tB
and also the thickness of (112). However, the thickness of the viscous layer (112) of ) IIN is 0.1
For ~0.2 μm, if tB is expanded to blJm or less, the aperture loss can be reduced to an almost negligible degree. Although not related to the essence of this invention, the length -gL of the striped mesa portion (n) is approximately 300 μm.
One width W is approximately 1 μm. Then, the p-type AZo, sGao, sA day region (12
1) is n-type AZo, sGao, 5A 8 region (
Since a p'n junction with a high diffusion potential is formed at the interface with
Shape, AZo45Gao, 65AB M(113) -n
It flows through the A7-o, a5Gao, and asAB layers (111) and contributes to laser oscillation. Therefore, the laser oscillation efficiency can be increased. Next, the manufacturing process of the first embodiment will be summarized.

第4図(a) 、 (c) 、 (e) 、fg)はそ
の主要段階での部分斜視図で、第4図fb) 、(d)
 r ff) 、fh)はそれぞれIVB−IVB H
#! 、 IVD−IVD 1tilj 、 IV F
 −IV F N 、 IV H−IVB線における拡
大部分断面図である。−まず、n形GaA3基板結晶0
0上にn形ALo、a5Gao、a5A8 Jt’i 
(11,1) 、GaAs層(11,2,)、p形At
O,35GaO,’85A8層(1+、l、])形Ga
As次に、p形(yaAB 層(114)の上[S’1
3N411ffl tlllJ k 仮着させ、写真蝕
刻で幅W1.長さLの部分を除いて他を除去し、残った
8i3N4膜をマスクとして化学エツチング法によって
、n形GaAs基板結晶Oqの表面部で除去する〔第4
図(c)および(d)〕。この場合各層の端面は化学的
性質の異いて0.1−1Am程度の段差を生じる場合が
多い。次に液相エピタキシャル成長法でn形Ato、5
Gao5AF3を成長させρ4す る。この場合ストリップメサ部(田土に513N4膜(
15)を残しておくと、その上には結晶は成長せず、そ
の他の部分にn形AZO,5Gag、5AB層02)が
形成される上を中心として、lII’= (W+10)
μm+にさく L+ 10)μm桿度の窓をおけ、この
窓を介して、Znなどのp形不純物を65℃の湿度で2
0分間拡散1〜て、p形GaAs層(114)の表面部
にはp+形Jj7 (11−4a)を、n形ALo、5
Ga、5As領域(12)の表面部にはp形AZo 、
5GEL o 、s A e領域(12!l)を形成す
る〔第4図(g)および(h)〕。次に真空蒸着法によ
ってp II!I電極(14)およびn側電極(+57
 (第4図では省略)を形成した後に第4図(g)に2
点鎖線で示すX−X線及びY−Y線で健闘し7てレーザ
共振面を゛形成して、半導体レーザ素子を完成する。
Figures 4(a), (c), (e), fg) are partial perspective views at its main stages, and Figures 4fb), (d)
r ff) and fh) are IVB-IVB H, respectively.
#! , IVD-IVD 1tilj, IV F
-IVFN, is an enlarged partial sectional view taken along IVH-IVB line. - First, n-type GaA3 substrate crystal 0
0 on n-type ALo, a5Gao, a5A8 Jt'i
(11,1), GaAs layer (11,2,), p-type At
O,35GaO,'85A8 layer (1+, l, ]) type Ga
Next, on the p-type (yaAB layer (114) [S'1
3N411ffl tlllJ k Temporarily attached and photo-engraved to width W1. The remaining 8i3N4 film is removed at the surface of the n-type GaAs substrate crystal Oq by chemical etching using the remaining 8i3N4 film as a mask.
Figures (c) and (d)]. In this case, the end faces of each layer have different chemical properties and often have a step difference of about 0.1-1 Am. Next, by liquid phase epitaxial growth method, n-type Ato, 5
Grow Gao5AF3 to ρ4. In this case, the strip mesa part (513N4 film on the rice field)
15), no crystal will grow on it, and n-type AZO, 5Gag, 5AB layers 02) will be formed in other parts.
μm + L+ 10) A window with a μm diameter is placed, and p-type impurities such as Zn are introduced through this window at a humidity of 65°C.
After 0 minutes of diffusion, p+ type Jj7 (11-4a) and n-type ALo, 5 were added to the surface of the p-type GaAs layer (114).
On the surface of the Ga, 5As region (12), p-type AZo,
5GEL o , s A e region (12!l) is formed [Fig. 4 (g) and (h)]. Next, p II! is applied using a vacuum deposition method. I electrode (14) and n-side electrode (+57
After forming (omitted in Figure 4), 2 is shown in Figure 4 (g).
A laser resonant surface is formed using X--X lines and Y--Y lines shown by dashed dotted lines, and a semiconductor laser device is completed.

上記第1の実施例では第4図(c) j fdlの段階
で、n形GaAs基板結晶QOの表面までエツチング除
去してその後へn形AZo 、5Gao、s AB領域
Bを成長させてい庭が、これは一般に一旦空気にさらし
たALaA8結晶上にはエピタキシャル成長しにくいか
らで、上記n形AZo、5Gao、sA8領域(12)
の成長工程において、mci等のエツチングガスを導入
してやh fJ: AtGaAs衣面の酸化膜が除去で
き、AtQaAs層の上へもエピタキシャル成長が可能
である。
In the first embodiment described above, at the stage of FIG. 4(c) j fdl, the surface of the n-type GaAs substrate crystal QO is etched away, and then the n-type AZo, 5Gao, s AB region B is grown. This is because it is generally difficult to epitaxially grow on the ALaA8 crystal once exposed to air, and the above n-type AZo, 5Gao, and sA8 regions (12)
In the growth process, the oxide film on the AtGaAs layer can be removed by introducing an etching gas such as mci, and epitaxial growth can also be performed on the AtQaAs layer.

第5図はこれを用いたこの発明の第、2の実施例を示す
斜視図、第6図はその■−■線での断面図で、前記第1
の実施例と同等部分は同一符号で示す。この第2の実施
例ではストリツプメーシ゛部(11)形成用のエツチン
グをn形AtO,35GaO,65AEI In (I
ll)の途中で止めたものであり、また、第1の実施例
ではn形Ato 、asGELo 、6s A8層(1
11)の、Eに直接GaAs活性層(112)を形成し
たが、この第2の実施例では両層間にn形AZa 、 
s s Ga o +a s A8ノず<1(115)
を介在きせており、この層D15)は光の導波層として
働き、ビームを拡げる結果、放射角が挟まり、端面(1
2A) 。
FIG. 5 is a perspective view showing the second embodiment of the present invention using this, and FIG. 6 is a cross-sectional view taken along the line ■-■.
Parts equivalent to those in the embodiment are indicated by the same reference numerals. In this second embodiment, the etching for forming the strip forming part (11) was performed using n-type AtO, 35GaO, 65AEI In (I
In addition, in the first embodiment, the n-type Ato, asGELo, 6s A8 layer (1
11), the GaAs active layer (112) was formed directly on E, but in this second example, n-type AZa,
s s Ga o + a s A8 nozu < 1 (115)
This layer D15) acts as a light waveguide layer, and as a result of expanding the beam, the radiation angle is narrowed and the end face (1
2A).

(12B)で反射して再度ストリップメサ部(11)へ
光が再入射するときの効率を高めることができる。才た
、第1の実施例ではp形GaAs層(114)及びn形
AZ’o 、s Ga o、s A8領域(国の表面部
へのp形不純物の拡散にSi3N4膜(i場をマスクと
して用いたが、第2の実施例ではマスクを用いずにZn
などのp形不純物の拡散を行なってp形#(l14a)
を形成するとともに、n形AZ。、5Gao、sA8 
’1iJl域(IZ)の全衣面部にp形AZO、s G
ao、s As N (121)を形成している。これ
はn形AZo 、5Ga o 、s A 8領域(12
)内にできるp 11接合の拡散電位が、活性層と接し
て形成されるpn?、合の拡散電位より高いので、この
ようにしても第1の実施例における漏れ電流低減の効果
り゛第2の実施例でも発揮できる。
It is possible to improve the efficiency when the light is reflected by the strip mesa portion (12B) and re-enters the strip mesa portion (11). In the first embodiment, a p-type GaAs layer (114) and an n-type AZ'o, sGao, sA8 region (with a Si3N4 film (i-field masked) for diffusion of p-type impurities to the surface area) are used. However, in the second example, Zn was used without using a mask.
By diffusing p-type impurities such as p-type #(l14a)
and n-type AZ. , 5Gao, sA8
'1 iJl area (IZ) p-type AZO, s G
ao,s As N (121) is formed. This is n-type AZo, 5Gao, sA 8 region (12
) The diffusion potential of the p11 junction formed within the pn? , is higher than the diffusion potential of the first embodiment, so that the effect of reducing leakage current in the first embodiment can also be achieved in the second embodiment.

また、第1の実施例のI+!遣方法の説明てtよ共振端
面(12A) 、 (12B)を健闘を用いて形成した
が、結晶の面方位を選び、例えば、(Joo) ]用を
有する結晶に[010)方向にストリップメサ部(lI
)を形成すればBr −C!(30H系のエツチヤント
を用いて表面に垂直な平面を容易に形成できる。この場
合、結晶組成や伝導形が異なるとエツチング速度が異な
り、その界面で段差を生じるが、この発明では両実施例
とも光が反射される活性層(112)の延長上の面(1
2A) 、 (12B )にはこのような部位は存在せ
ず単一組成であるから、段差を生じることなく、光学的
平面が得られる。
Also, I+! of the first embodiment! The resonant end faces (12A) and (12B) were formed using a good technique, but by selecting the plane orientation of the crystal, for example, a strip mesa was formed in the [010) direction on a crystal with (Joo)]. Part (lI
), Br −C! (A plane perpendicular to the surface can be easily formed using a 30H-based etchant. In this case, if the crystal composition or conductivity type differs, the etching rate will differ and a step will occur at the interface. However, in this invention, both embodiments An extended surface (1) of the active layer (112) from which light is reflected
2A) and (12B) do not have such a portion and have a single composition, so an optical plane can be obtained without creating a step.

なお、′以上実施例の製造にマスク材として813N4
膜を用いたがSiO□やAt203膜を用いてもよいこ
とは勿論、・p形不純物としてZnの代りにCdなどを
用いてよく、拡散の代りにイオン注入を用いてもよい。
Note that 813N4 was used as a mask material in the production of the above examples.
Although a film is used, it goes without saying that a SiO□ or At203 film may also be used. Cd or the like may be used instead of Zn as the p-type impurity, and ion implantation may be used instead of diffusion.

まだ、エツチングにリアクチイア°イオンエツチングや
イオンミーリングを用いてもよく、結晶成長に液相成長
法の代りに気相成」そや分子線エピタキシャル成艮法合
用いてもよい。更にGa、A s系について説明したが
工nP系などのその他の化合物半導体でもよい。
However, reactive ion etching or ion milling may be used for etching, and vapor phase growth or molecular beam epitaxial growth may be used instead of liquid phase growth for crystal growth. Furthermore, although Ga and As-based semiconductors have been described, other compound semiconductors such as nP-based semiconductors may also be used.

以上詳述したように、この発明になる半導体レーザでは
ストリップメサ部の側周面に接する第3のクラッド層を
設けたのでレーザ共振端面に発振光を吸収する層がなく
、かつ光路上の端面にpn接合がなく、端面劣化が少な
く、従来より高い光出力密度で安定に動作する。まだ、
第3クラッド層の表面部の少なくともストリップメサ部
一部の側周面に接する領域に伝導形の反転領域を形成(
〜たのでこの第3クラッド層を通る漏れ電流が減少し、
発振効率も上昇する。−!た、端面を襞間という量産性
に乏しい工程によらず、エツチングによって形成できる
という利点もある。
As detailed above, in the semiconductor laser according to the present invention, since the third cladding layer is provided in contact with the side peripheral surface of the strip mesa part, there is no layer for absorbing oscillation light on the laser resonant end facet, and the end facet on the optical path Since there is no pn junction in the optical fiber, there is little deterioration of the end face, and the device operates stably with a higher optical output density than conventional devices. still,
A conductive type inversion region is formed in a region of the surface portion of the third cladding layer that is in contact with the side peripheral surface of at least a part of the strip mesa portion (
~, so the leakage current through this third cladding layer is reduced,
Oscillation efficiency also increases. -! Another advantage is that the end face can be formed by etching instead of the process of forming creases, which is difficult for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例の概略セタ成を示す斜
視図、第2図および第3図はそれぞれ第1図のU−U#
および1■−III線での1)1面図、第4図(a)。 (c) 、 (e) 、 (g)はこの第1の実施例の
ソリ造主要段階での部分斜視図、第4図(bl 、 (
di 、 (fl 、 (h)はそれぞれIVB−IV
B lli!3!、 1VD−IVJ)森、 IVF 
−IVF Ia 、 +vu −IVH、y、rcノ拡
大部分断面図、日!5図はこの発明の第2の実施例の概
略栴成を示す刷視図、第6図は第5図のv1−■線での
断面図である。 図において、0Ill−I′n形GaAs基板(半導体
結晶基板Lilりはストリップメサ部、(1?Jは11
形At0.5Ga  AS領域(第3のクラッド層)、
(111)はno、5 形”0.350a0.65 As層(第1のクラッド層
) 、(112)はGaAs N (活性層)、(11
3)はp形”fl、35GaO,65As N (第2
のクラッド層)、(114)けp形GaA3層(訣面半
導体層)、(121)はP形GaAs領域(第2伝導形
領域)である。 なお、図中同一符号は同一または相当部分を示す0 イー暖人 葛野信−(外1名) −徊 手続補正書(自発) t1°訂庁長1ハL(役 ] 事件の表示    持腐1昭51−165512号
2 発明の名称    半導体レーザ 3、 1ili+l(を4ると yl(件との関係   特許71暫lji人代表右 片
 111  仁 八 l’l♂4代理人 住 所     東に〔都f−代UU+丸の内、 I’
+ 12m:3シ;5、補正の対象 明細書の発明の計細なi!52.明の楠U6、補正の内
容 明細書をつぎのとおり1.′巨1する。
FIG. 1 is a perspective view showing a schematic configuration of a first embodiment of the present invention, and FIGS. 2 and 3 are U-U# in FIG. 1, respectively.
and 1) one-view view along line 1■-III, FIG. 4(a). (c), (e), and (g) are partial perspective views of this first embodiment at the main stages of sled construction;
di, (fl, (h) are IVB-IV, respectively
Blli! 3! , 1VD-IVJ) Mori, IVF
-IVF Ia, +vu -IVH, y, rc enlarged partial cross-sectional view, day! FIG. 5 is a perspective view schematically showing the construction of a second embodiment of the present invention, and FIG. 6 is a sectional view taken along the line v1--■ in FIG. In the figure, 0Ill-I'n type GaAs substrate (semiconductor crystal substrate LiI is a strip mesa part, (1?J is 11
type At0.5Ga AS region (third cladding layer),
(111) is no, 5 type 0.350a0.65 As layer (first cladding layer), (112) is GaAs N (active layer), (11
3) is p-type "fl, 35GaO, 65As N (second
cladding layer), (114) is a p-type GaA three layer (cross-layer semiconductor layer), and (121) is a p-type GaAs region (second conductivity type region). In addition, the same reference numerals in the diagram indicate the same or equivalent parts. No. 165512/1971 2 Name of the invention Semiconductor laser 3, 1ili+l(4 and yl(Relationship with patent 71 temporary lji person's representative right side) 111 Jin 8 l'l♂4 agent's address To the east [city f -Yo UU + Marunouchi, I'
+ 12m: 3c; 5. Details of the invention in the specification to be amended! 52. Mei no Kusunoki U6, the details of the amendment are as follows: 1. 'Make a big one.

Claims (1)

【特許請求の範囲】[Claims] (1)第1伝導形の半導体基板結晶上に少なくとも第1
伝導形の第1のクラッド層、この第1のクラッド層よシ
光屈折率が大きく禁制帯幅の狭い活性層、この活性層よ
り光層・折率が小さく禁制帯幅の広い第2伝導形の第2
のクラッド層、およびこの第2のクラッド層より禁制帯
幅の狭い第2伝導形の表面半導体層がI順次積層され、
上記表面半導体層、上記第2のクラッド層、上記活性層
および少なくとも上記第1のクラッド層の環式方向の一
部を所定幅Wおよび所定長−JLの領域が残るように整
形されたス) IJンプメブ部を備え、上記ストリップ
メサ部の側周面に上記活性層より禁制帯幅の広い第1伝
導形の第3のクランド層が接するように形成きれ、上記
活性層の上記長さLの方向の延長線上の上記第3のクラ
ッド層の2つの平行端面を光学的共振面とする半導体レ
ーザにおいて、上記第3のクラッド層の表面部の少なく
とも上記ス) リップメサ部の側周面に接する領域に第
2伝導形領域を設けたことを特徴とする半導体し・−ザ
(1) At least a first
A conductive type first cladding layer, an active layer having a larger optical refractive index than this first cladding layer and a narrower forbidden band width, and a second conductive type optical layer having a smaller refractive index and wider forbidden band width than this active layer. the second of
A cladding layer and a surface semiconductor layer of a second conductivity type having a narrower forbidden band width than the second cladding layer are sequentially stacked,
A portion of the surface semiconductor layer, the second cladding layer, the active layer, and at least the first cladding layer in the annular direction is shaped so that a region of a predetermined width W and a predetermined length −JL remains. A third ground layer of the first conductivity type having a wider forbidden band width than the active layer is formed so as to be in contact with the side peripheral surface of the strip mesa part, and the length L of the active layer is In a semiconductor laser whose optical resonant surfaces are two parallel end surfaces of the third cladding layer on an extension of the direction, at least the area of the surface portion of the third cladding layer that is in contact with the side circumferential surface of the lip mesa portion. A semiconductor device characterized in that a second conductivity type region is provided in the semiconductor device.
JP16551282A 1982-09-20 1982-09-20 Semiconductor laser Pending JPS5952894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16551282A JPS5952894A (en) 1982-09-20 1982-09-20 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16551282A JPS5952894A (en) 1982-09-20 1982-09-20 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS5952894A true JPS5952894A (en) 1984-03-27

Family

ID=15813798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16551282A Pending JPS5952894A (en) 1982-09-20 1982-09-20 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5952894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122419A (en) * 2013-12-24 2015-07-02 三菱電機株式会社 Semiconductor laser element manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107783A (en) * 1975-03-19 1976-09-24 Hitachi Ltd HANDOT AIREEZA
JPS56112782A (en) * 1980-02-08 1981-09-05 Nec Corp Semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107783A (en) * 1975-03-19 1976-09-24 Hitachi Ltd HANDOT AIREEZA
JPS56112782A (en) * 1980-02-08 1981-09-05 Nec Corp Semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122419A (en) * 2013-12-24 2015-07-02 三菱電機株式会社 Semiconductor laser element manufacturing method

Similar Documents

Publication Publication Date Title
JPS59144193A (en) Semiconductor laser
US4280108A (en) Transverse junction array laser
JPS6343908B2 (en)
JPS5952894A (en) Semiconductor laser
JPH01227485A (en) Semiconductor laser device
JPH073908B2 (en) Method for manufacturing semiconductor light emitting device
JPS6334993A (en) Semiconductor laser device
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS614291A (en) Surface light-emission laser
JPH065984A (en) Semiconductor laser and manufacture thereof
JPS61253882A (en) Semiconductor laser device
GB2109155A (en) Semiconductor laser manufacture
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPS62281384A (en) Semiconduvctor laser element and manufacture thereof
JPS59149078A (en) Semiconductor laser
JPH04345079A (en) Semiconductor laser equipment and its manufacture
JPS60189986A (en) Semiconductor laser
JPS5968989A (en) Semiconductor laser device
JPH0677607A (en) Semiconductor laser element and fabrication thereof
JPS60176286A (en) Semiconductor laser
JPS60134489A (en) Semiconductor laser device
JPS6362289A (en) Semiconductor laser
JPS60163483A (en) Semiconductor laser
JP2000228560A (en) Semiconductor laser and its manufacture
JPH03106090A (en) Semiconductor laser element