JPS5952856B2 - Phase adjustment method - Google Patents

Phase adjustment method

Info

Publication number
JPS5952856B2
JPS5952856B2 JP52004656A JP465677A JPS5952856B2 JP S5952856 B2 JPS5952856 B2 JP S5952856B2 JP 52004656 A JP52004656 A JP 52004656A JP 465677 A JP465677 A JP 465677A JP S5952856 B2 JPS5952856 B2 JP S5952856B2
Authority
JP
Japan
Prior art keywords
delay
circuit
signal
point
delay circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52004656A
Other languages
Japanese (ja)
Other versions
JPS5389604A (en
Inventor
豪「ぞう」 鹿毛
賢吉 平出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP52004656A priority Critical patent/JPS5952856B2/en
Publication of JPS5389604A publication Critical patent/JPS5389604A/en
Publication of JPS5952856B2 publication Critical patent/JPS5952856B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter

Landscapes

  • Small-Scale Networks (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【発明の詳細な説明】 本発明は、2以上の地点間のデジタル信号の位相遅延量
を高速のパルスにより作動する遅延回路を用いて、あら
かじめ定められた値に設定するための位相調整方式に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phase adjustment method for setting the phase delay amount of a digital signal between two or more points to a predetermined value using a delay circuit operated by high-speed pulses. It is something.

第1図は従来の位相調整方法の実施例である。FIG. 1 shows an example of a conventional phase adjustment method.

信号は遅延回路21を通つて親局側変調器22により変
調され、回線ライン23を通つて子局側復調器24によ
つてデータとして再生される。この信号は、子局側変調
器25により再び変調され、I回線ライン23と同じ遅
延量を有する回線ライン26を通つて、親局側復調器2
7により復調される。復調器27の出力は、遅延回路2
1と同じ遅延量を有する遅延回路28を通る。遅延回路
21り入力部と、遅延回路28の出力部の2つの信号の
位相差△φ (遅延時間△τ)を位相差測定回路29に
より測定し、この測定結果がある基準値△φc(遅延時
間△τc)と一致するまで遅延回路21々よび28の遅
延量を変えていく。親局から子局への回線と、子局から
親局への回線にバラン’スがとれているとすれば、子局
までの遅延位相は△φc/2(遅延時間△τc/2)で
与えられる。回路30および回路31はそれぞれ遅延回
路21および28を動作させるために、必要な高速クロ
ックパルスを発生させるための高速クロックパルス発生
回路である。ここで高速クロックパルスは被遅延信号と
同期がとれている必要がある。この説明図を図2に示す
。第2図aは遅延回路の具体例であり、b、cはaを説
明するためのタイムチャートで゛ある。図2のをは同期
がとれている場合で、図2のcはとれていない場合であ
る。いずれも高速クロックChの立上りで動作するシフ
トレジスタを用いたとする。をの場合はτ1の整数倍の
遅れとなるが、cの場合は初期の遅れが不足となるため
全体の遅れはその整数倍とはならない。回路30の高速
クロックパルスは、信号Sの発生源をこの高速クロック
パルスを分周して作つたクロックパルスを使つて動作さ
れていれば、そのまま信号と同期がとれているために、
同期をとるための特別な操作は必要としないが回路3]
の高速クロツクパルス発生回路は、復調器27の出力信
号に高速クロツクパルスを同期させて発振させるための
特別に操作が必要であり、複雑になる欠点がある。子局
が多数となると、各子局から送られてくる信号に同期し
た高速クロツクが必要となり径済性の面でも不利となる
。本発明の目的はこれらの欠点を除去するために子局か
ら送りかえしてまた信号と同期のとれた高速クロツタパ
ルス列を全く必要とすることなく、親局と子局間の位相
調整を行なうようにした位相調整方式を提供するもので
ある。
The signal passes through a delay circuit 21, is modulated by a master station modulator 22, passes through a line 23, and is reproduced as data by a slave station demodulator 24. This signal is modulated again by the slave station modulator 25, passes through a line 26 having the same delay as the I line 23, and is sent to the master station demodulator 25.
It is demodulated by 7. The output of the demodulator 27 is sent to the delay circuit 2
It passes through a delay circuit 28 having the same delay amount as 1. The phase difference △φ (delay time △τ) between the two signals at the input part of the delay circuit 21 and the output part of the delay circuit 28 is measured by the phase difference measurement circuit 29, and the reference value Δφc (delay The delay amounts of the delay circuits 21 and 28 are changed until they match the time Δτc). If the line from the master station to the slave station and the line from the slave station to the master station are balanced, the delay phase to the slave station is △φc/2 (delay time △τc/2). Given. Circuit 30 and circuit 31 are high-speed clock pulse generation circuits for generating necessary high-speed clock pulses to operate delay circuits 21 and 28, respectively. Here, the high speed clock pulse needs to be synchronized with the delayed signal. An explanatory diagram of this is shown in FIG. FIG. 2a shows a specific example of a delay circuit, and FIG. 2b and c are time charts for explaining step a. 2 shows a case in which synchronization is achieved, and c in FIG. 2 shows a case in which synchronization is not achieved. In both cases, a shift register that operates at the rising edge of a high-speed clock Ch is used. In the case of , the delay is an integer multiple of τ1, but in the case of c, the initial delay is insufficient, so the overall delay is not an integer multiple of τ1. If the high-speed clock pulse of the circuit 30 is operated using a clock pulse created by frequency-dividing the high-speed clock pulse from the source of the signal S, the high-speed clock pulse of the circuit 30 will remain synchronized with the signal.
No special operation is required for synchronization, but circuit 3]
The high-speed clock pulse generating circuit of 2.0 requires a special operation for oscillating the high-speed clock pulse in synchronization with the output signal of the demodulator 27, and has the disadvantage of being complicated. When the number of slave stations increases, a high-speed clock synchronized with the signal sent from each slave station is required, which is disadvantageous in terms of cost efficiency. The purpose of the present invention is to eliminate these drawbacks by adjusting the phase between the master station and the slave station without the need for a high-speed clock pulse train that is sent back from the slave station and synchronized with the signal. This provides a phase adjustment method that provides

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

第3図に本発明の具体的実施例を示す。FIG. 3 shows a specific embodiment of the present invention.

遅延回路41を通つて親局側変調器42により変調され
、回線ライン43を通つて子局側復調器44によつてデ
ータとして再生される。この信号は子局側変調器45に
より変調された回線ライン46を通り、親局側復調器4
7によりデータとして復調される。回路48は、親局側
から子局側へ送る信号を遅延させるための遅延回路であ
り、この遅延回路48の出力と、復調器47の出力の位
相差である基準△φCに一致する様に設定される。回路
50は遅延回路41と48を動作させるための高速クロ
ツクパルス発生回路である。ここで遅延回路48では同
じ値△τだけ遅延量が減少する様にしておく。このこと
は、例えば遅延回路41でシフトレジスタをl段付加し
た場合、遅延回路48では1段へらせばよい。さて第3
図について変調器42の入力部から復調器44の出力ま
での信号の遅延時間をτxとすると、変調器45から復
調器47の出力までの遅延時間は変調器42と45ライ
ン43と46復調器44と47がそれぞれ同様のものぜ
あると、τxとなる。ここで遅延回路41の遅延量を△
τとし遅延回路48の遅延量をτMax−△τとする。
τMaxは遅延回路48の最大遅延量である。
The signal is modulated by a modulator 42 on the master station side through a delay circuit 41, and reproduced as data by a demodulator 44 on the slave station side through a line 43. This signal passes through a line 46 modulated by a slave station modulator 45, and then passes through a master station demodulator 4.
7 is demodulated as data. The circuit 48 is a delay circuit for delaying the signal sent from the master station side to the slave station side. Set. Circuit 50 is a high speed clock pulse generation circuit for operating delay circuits 41 and 48. Here, the delay amount in the delay circuit 48 is set to decrease by the same value Δτ. This means that, for example, if one stage of shift register is added to the delay circuit 41, the delay circuit 48 only needs to have one stage. Now the third
Regarding the figure, if the delay time of the signal from the input of the modulator 42 to the output of the demodulator 44 is τx, the delay time from the modulator 45 to the output of the demodulator 47 is the modulator 42 and 45 lines 43 and 46 demodulator If 44 and 47 are similar, it becomes τx. Here, the delay amount of the delay circuit 41 is △
Let τ be the delay amount of the delay circuit 48 as τMax−Δτ.
τMax is the maximum delay amount of the delay circuit 48.

遅延回路41の入力部から復調器47の出力部までの信
号遅延と、遅延回路48の出力部までの信号遅延との差
が基準値△τCに一致する様に、遅延回路41および4
8において△τを調整したとすれば、△τ+2τx−(
τMax−△τ)=△τCしたがつて、親局側遅延回路
41の入部から子局側復調器44の出力部までの信号遅
延時間τhはτh=△τ+τx=(τMax+△τC)
/2により、遅延回路48の最大遅延量τMaxと基準
遅延量△τCのみで決まる定まつた値となる。図4は本
発明の第2の実施例である。第3図において回路48へ
通す信号としては、回路41へ、通す信号と同期してい
て、位相差測定回路49において、回路41の入力から
、回路47の出力までの信号の遅延量と、回路48の信
号遅延量との差が、測定出来れば回路41へ通すものと
同じ信号パターンでなくてもよい。例えば、第4図に示
す様に、親局側からの信号Sを、第1の遅延回路71へ
通し変調器72で変調し、回線ライン73を通つて、復
調器74で復調し、再び変調器75で変調し回線ライン
76を通つて復調器77で復調して、位相差測定回路7
9へ入力する。
The delay circuits 41 and 4 are configured such that the difference between the signal delay from the input of the delay circuit 41 to the output of the demodulator 47 and the signal delay from the output of the delay circuit 48 matches the reference value ΔτC.
If △τ is adjusted in 8, then △τ+2τx−(
τMax−△τ)=△τC Therefore, the signal delay time τh from the input of the master station delay circuit 41 to the output of the slave station demodulator 44 is τh=△τ+τx=(τMax+△τC)
/2, it becomes a fixed value determined only by the maximum delay amount τMax of the delay circuit 48 and the reference delay amount ΔτC. FIG. 4 shows a second embodiment of the invention. In FIG. 3, the signal passed to the circuit 48 is synchronized with the signal passed to the circuit 41, and in the phase difference measuring circuit 49, the amount of delay of the signal from the input of the circuit 41 to the output of the circuit 47, and the amount of delay of the signal passed to the circuit 41 are measured. The signal pattern does not have to be the same as that passed to the circuit 41, as long as the difference between the signal delay amount and the signal delay amount of 48 can be measured. For example, as shown in FIG. 4, a signal S from the master station is passed through a first delay circuit 71, modulated by a modulator 72, passed through a line 73, demodulated by a demodulator 74, and modulated again. The phase difference measurement circuit 7
Enter into 9.

他方信号Sはパタンマツチ回路81で゛パタンマツチを
とる。ここで゛回路8]はパタンマツチがとれた場合の
み低レベルを出力する様にしておく。回路81の出力を
遅延回路78へ通し、遅延回路78の出力を位相差測定
部79へ入力する。回路71の入力部における信号Sと
パタンマツチ回路81の出力信号は、同期がとれている
ので、遅延回路71および78を動作させる高速クロツ
クパルスは同一のものが使用できる。位相差測定回路7
9は、内部に回路81と同じパタンマツチ回路82を設
けておき、回路82の出力はパタンマツチがとれた場合
のみ、低レベルを出力する様にしておく。回路83は瞬
時的に低ノレベルを示す2つの信号の時間差を角度表示
する位相差測定回路である。以上により、本発明の具体
例第3図の場合と全く同様にして第4図の場合も1つの
高速タロツクパルス発生回路のみで、親局と子局間の位
相調整,が可能になる。
On the other hand, the signal S is subjected to pattern matching by a pattern matching circuit 81. Here, "circuit 8" is configured to output a low level only when a pattern match is achieved. The output of the circuit 81 is passed to the delay circuit 78, and the output of the delay circuit 78 is input to the phase difference measuring section 79. Since the signal S at the input of circuit 71 and the output signal of pattern match circuit 81 are synchronized, the same high speed clock pulse can be used to operate delay circuits 71 and 78. Phase difference measurement circuit 7
9 is provided with a pattern matching circuit 82 which is the same as the circuit 81, and the output of the circuit 82 is set to be low level only when a pattern match is achieved. The circuit 83 is a phase difference measuring circuit that displays the time difference between two signals instantaneously showing a low level as an angle. As described above, in the case of FIG. 4, just as in the case of the specific example of the present invention in FIG. 3, phase adjustment between the master station and the slave station can be performed using only one high-speed tarlock pulse generation circuit.

以上説明した様に、本発明によれば同じ信号を遅延回路
41と遅延回路48へ通しているため、信号と同期して
いる高速クロツクパルスの発生回路は、子局が多数あつ
てもただ1つあればよいとノいう利点がある。
As explained above, according to the present invention, since the same signal is passed through the delay circuits 41 and 48, there is only one high-speed clock pulse generation circuit that is synchronized with the signal even if there are many slave stations. It has the advantage of being nice to have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法による位相調整方式の具体例。 第2図は遅延回路の具体例および遅延回路を動作させる
ための高速クロツタパルスと遅延回路入力信号とのタイ
ムチヤートで、bは両者に同期がとれている場合、Cは
同期がとれていない場合である。第3図は本発明の第1
の実施例、第4図本発明の第2の実施例。21,28,
41,48,71,78:遅延回路、22,42,72
:親局側変調器、23,26,43,46,73,76
:回線ライン、24,44,74:子局側復調器、25
,45,75:子局側変調器、27,47,77:親局
側復調器、29,49,79,83:位相差測定回路、
30,31,50,80:高速パルス発生回路、81,
82パタンマツチ回路。
Figure 1 shows a specific example of a conventional phase adjustment method. Figure 2 shows a specific example of a delay circuit and a time chart of the high-speed clock pulse for operating the delay circuit and the delay circuit input signal. be. Figure 3 shows the first embodiment of the present invention.
Embodiment of FIG. 4 A second embodiment of the present invention. 21, 28,
41, 48, 71, 78: Delay circuit, 22, 42, 72
: Master station side modulator, 23, 26, 43, 46, 73, 76
: Line line, 24, 44, 74: Slave side demodulator, 25
, 45, 75: slave station side modulator, 27, 47, 77: master station side demodulator, 29, 49, 79, 83: phase difference measurement circuit,
30, 31, 50, 80: high-speed pulse generation circuit, 81,
82 pattern match circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 離れた地点間の信号伝送系において、第1地点に第
1の遅延回路を設け、前記第1の遅延回路を通つた信号
を第2の地点へ送り、第2の地点で受けた信号を第1の
地点へ送り返し、第1の地点において、前記第1の遅延
回路を通して第2の地点へ送る信号、あるいは前記第1
の遅延回路を通して第2の地点へ送る信号と同期のとれ
た信号に対し、第1の遅延回路において挿入した遅延量
と同じ値だけの遅延量をあらかじめ定められた遅延量か
ら減少させていくようにした第2の遅延回路へ通し、前
記第2の遅延回路の出力と、前記第2の地点から送り返
されて来た信号の位相差を測定し、前記位相測定結果が
ある決められた値になるように、前記第1々よび第2の
遅延回路の遅延量を同時に変えることにより、第1の地
点と第2の地点の信号遅延時間を調整することを特徴と
する位相調整方式。
1. In a signal transmission system between distant points, a first delay circuit is provided at a first point, a signal passing through the first delay circuit is sent to a second point, and a signal received at the second point is transmitted. a signal sent back to a first point, and at the first point, sent through the first delay circuit to a second point;
For the signal synchronized with the signal sent to the second point through the delay circuit, the delay amount is reduced from the predetermined delay amount by the same value as the delay amount inserted in the first delay circuit. the output of the second delay circuit and the signal sent back from the second point is measured, and the phase measurement result is a certain determined value. A phase adjustment method characterized in that the signal delay time at the first point and the second point is adjusted by simultaneously changing the delay amounts of the first and second delay circuits.
JP52004656A 1977-01-18 1977-01-18 Phase adjustment method Expired JPS5952856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52004656A JPS5952856B2 (en) 1977-01-18 1977-01-18 Phase adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52004656A JPS5952856B2 (en) 1977-01-18 1977-01-18 Phase adjustment method

Publications (2)

Publication Number Publication Date
JPS5389604A JPS5389604A (en) 1978-08-07
JPS5952856B2 true JPS5952856B2 (en) 1984-12-21

Family

ID=11589977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52004656A Expired JPS5952856B2 (en) 1977-01-18 1977-01-18 Phase adjustment method

Country Status (1)

Country Link
JP (1) JPS5952856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664449U (en) * 1993-03-02 1994-09-13 積水化成品工業株式会社 Hydroponics equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664449U (en) * 1993-03-02 1994-09-13 積水化成品工業株式会社 Hydroponics equipment

Also Published As

Publication number Publication date
JPS5389604A (en) 1978-08-07

Similar Documents

Publication Publication Date Title
JPS5952856B2 (en) Phase adjustment method
JP2693758B2 (en) Frame pulse generation method
JPH07168652A (en) Synchronous resetting circuit
JPS6058616B2 (en) Communication device
JPS60254939A (en) Phase aligning circuit
JP2745775B2 (en) Synchronous operation compatible measuring device
JPH02192240A (en) Transmission delay correcting system
JPH04170830A (en) Clock synchronizing type serial data transmitter
JP2616622B2 (en) Frame correlation device
JP2977955B2 (en) Sampling circuit
JPS5810900B2 (en) Isou Saisei Gohoshiki
JP2602350B2 (en) Communication device
JPS6412411B2 (en)
JPS5916438A (en) Communication system
JP2001086106A (en) Data transmitter and transmission system
JPH05136690A (en) Clock generating circuit
JPH04276936A (en) Frame synchronizing circuit
JPS59221045A (en) Timing control system of data transmission and reception
JPS6380636A (en) System and circuit for data transmission
JPH03280740A (en) Clock changeover circuit
JPH05204850A (en) Device and method for communication information synchronization for bus and bus type connection system
JPH03204251A (en) Clock synchronizing circuit
JPH08330932A (en) Synchronous circuit controller
JPH04278613A (en) Clock device of duplex constitution
JPS6365741A (en) Regeneration circuit