JPS5951846B2 - Method for removing sulfur oxides and nitrogen oxides in waste gas - Google Patents

Method for removing sulfur oxides and nitrogen oxides in waste gas

Info

Publication number
JPS5951846B2
JPS5951846B2 JP55014235A JP1423580A JPS5951846B2 JP S5951846 B2 JPS5951846 B2 JP S5951846B2 JP 55014235 A JP55014235 A JP 55014235A JP 1423580 A JP1423580 A JP 1423580A JP S5951846 B2 JPS5951846 B2 JP S5951846B2
Authority
JP
Japan
Prior art keywords
waste gas
moving bed
gas
oxides
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55014235A
Other languages
Japanese (ja)
Other versions
JPS55129131A (en
Inventor
ハラルト・ユントゲン
カ−ル・クノ−プラウヒ
エツケハルト・リヒタ−
ハンス・ユルゲン・シユミツト
マンフレ−ト・フオルツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bergwerksverband GmbH
Original Assignee
Bergwerksverband GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bergwerksverband GmbH filed Critical Bergwerksverband GmbH
Publication of JPS55129131A publication Critical patent/JPS55129131A/en
Publication of JPS5951846B2 publication Critical patent/JPS5951846B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は、硫黄酸化物、窒素酸化物、酸素及び水蒸気を
含む廃ガスに温度約110℃乃至180℃でアンモニア
ガスを添加し、これを反応器内を上方から下方に移動す
る粉粒状の炭素含有吸着剤により形成される移動層内に
送り込み、触媒の存在下若しくは触媒を用いないで硫黄
酸化物及び窒素酸化物を除去する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves adding ammonia gas to waste gas containing sulfur oxides, nitrogen oxides, oxygen, and water vapor at a temperature of about 110°C to 180°C, and flowing the gas from above to below in a reactor. The present invention relates to an improvement in a method for removing sulfur oxides and nitrogen oxides in the presence of a catalyst or without using a catalyst by feeding them into a moving bed formed by a granular carbon-containing adsorbent that moves in the air.

燃焼炉等から排出される廃ガスの中には、最初は亜硫酸
ガスの形態をなす硫黄酸化物及び最初は一酸化窒素の形
態をなす窒素酸化物を含むものがある。
Some waste gases discharged from combustion furnaces and the like contain sulfur oxides, initially in the form of sulfur dioxide gas, and nitrogen oxides, initially in the form of nitrogen monoxide.

廃ガス乃至煙道ガス中の亜硫酸ガスを除去する方法とし
ては多くの方法が知られているが、これらはいづれも洗
浄によるか、乾燥下触媒吸着に よ る
も の で゛ あ る(Davids、
Techn0Mitteilungen71 (197
8)、第131頁乃至第135頁参照)。
Many methods are known for removing sulfur dioxide gas from waste gas or flue gas, but these all involve cleaning or catalytic adsorption under drying conditions.
(Davids,
Techn0Mitteilungen71 (197
8), pp. 131-135).

窒素酸化物も同様に洗浄によるか、若しくは還元剤とし
てアンモニアを用いる触媒還元反応により除去すること
ができる。
Nitrogen oxides can likewise be removed by washing or by a catalytic reduction reaction using ammonia as the reducing agent.

しかしながら、廃ガスを洗浄する方法は、廃ガスの温度
を下げることになり、多くの場合廃ガスを再加熱する必
要にせまられるため著しく費用がかかる。
However, methods of cleaning the waste gas are significantly more expensive as they reduce the temperature of the waste gas and often require reheating the waste gas.

一方、還元剤としてアンモニアを用いて窒素酸化物を触
媒の存在下に還元する方法は温度の、低下を招くことな
〈実施することがでる( Renz 、 Hempel
mann 。
On the other hand, the method of reducing nitrogen oxides in the presence of a catalyst using ammonia as a reducing agent can be carried out without causing a decrease in temperature (Renz, Hempel
mann.

Huber 、 “Verfahren zur A
bscheidung vonStickoxiden
und Schwefeldioxid aus A
bgasenindustrieller Fe
uerungsanlagen ”Karlsr
uhe1978、Eigenverlag 、第293
頁乃至第295頁参照)。
Huber, “Verfahren zur A.
Stickoxiden
und Schwefeldioxid aus A
bgasenindustrier Fe
Karlsr
uhe1978, Eigenverlag, No. 293
(See pages 295 to 295).

これらの公知の方法は、触媒とアルミニウム又はシリコ
ンを含有する担体物質を用いて温度250℃以上で反応
させる必要があり、しかも触媒のうち成るものは二酸化
硫黄又は三酸化硫黄によって触媒能力を減殺される。
These known methods require the reaction to take place at a temperature of 250° C. or higher using a catalyst and a support material containing aluminum or silicon, and the catalytic ability of the catalyst is reduced by sulfur dioxide or sulfur trioxide. Ru.

又、:未反応のアンモニアは、続く廃ガス冷却工程にお
いて硫酸水素アンモニウム又は硫酸アンモニウムを生成
し、好ましくない沈澱を生ずる(Renz等、op、
cit、第291頁及び第292頁)。
Also: unreacted ammonia forms ammonium bisulfate or ammonium sulfate in the subsequent waste gas cooling step, resulting in undesirable precipitation (Renz et al., op.
cit, pp. 291 and 292).

更に、アンモニアの一部は廃ガス中に含まれる酸素によ
って酸化されてN2、NO又はNO2となり、廃ガス中
の窒素酸化物を減少させるという目的に反する結果とな
る( Renz等、op、 cit、第293頁)。
Furthermore, some of the ammonia is oxidized by the oxygen contained in the waste gas to N2, NO, or NO2, which is contrary to the purpose of reducing nitrogen oxides in the waste gas (Renz et al., op. cit. p. 293).

更に、二酸化硫黄は公知方法により比較的低温で除去し
うるとしても、窒素酸化物をアンモニアで還元するには
、その前に廃ガスを再加熱する必要がある。
Moreover, even though sulfur dioxide can be removed by known methods at relatively low temperatures, it is necessary to reheat the waste gas before nitrogen oxides can be reduced with ammonia.

しかしながら、かかる再加熱はいうまでもなくエネルギ
ーの利用効率が悪く、例えば熱交換によってエネルギー
の回収を図るとしてもそれによって回収されるエネルギ
ーはごく一部にすぎないので、結局コストが高くつく。
However, it goes without saying that such reheating is inefficient in energy use, and even if energy is recovered by heat exchange, for example, only a small portion of the energy is recovered, resulting in high costs.

更に公知方法として、硫黄酸化物と窒素酸化物を単一工
程で同時に除去する方法も知られている。
Furthermore, there is also known a method for simultaneously removing sulfur oxides and nitrogen oxides in a single step.

この方法は、廃ガス中にアンモニアを吹き込み、窒素酸
化物を多孔性の触媒と接触させて還元して窒素と水蒸気
を生成せしめると共に、硫黄酸化物を硫酸水素アンモニ
ウム又は硫黄アンモニウムとして分離するものである。
This method involves blowing ammonia into the waste gas, reducing nitrogen oxides by contacting them with a porous catalyst to produce nitrogen and water vapor, and separating sulfur oxides as ammonium hydrogen sulfate or ammonium sulfur. be.

この場合、吸着剤・触媒として活性炭を用いれば、温度
180℃乃至230℃で反応させることができ(ドイツ
公開特許公報第2433076号)、アルミニウム又は
シリコン担体物質に付着させた金属酸化物を用いれば、
温度範囲を200乃至250℃とすることができる(J
apan Textile News1976、第84
頁乃至第87頁)ことが知られている。
In this case, if activated carbon is used as an adsorbent/catalyst, the reaction can be carried out at a temperature of 180°C to 230°C (German Published Patent Application No. 2433076), and if a metal oxide attached to an aluminum or silicon carrier material is used. ,
The temperature range can be 200 to 250°C (J
apan Textile News 1976, No. 84
(pages 87 to 87).

温度250℃以下では、二酸化硫黄も窒素酸化物もアン
モニアと反応する。
At temperatures below 250°C, both sulfur dioxide and nitrogen oxides react with ammonia.

即ちNOxとSO2が同濃度で存在するかぎり、温度が
高ければNOxとNH3の反応が先行し、温度が低くな
ればSO2との反応が先行するのである。
That is, as long as NOx and SO2 exist at the same concentration, the reaction between NOx and NH3 will take precedence if the temperature is high, and the reaction with SO2 will take precedence if the temperature is low.

これらの公知方法の欠点は、不都合な反応を生じるため
、アンモニアの消費量が著しく高いことである。
A disadvantage of these known processes is that the consumption of ammonia is considerably high due to the undesirable reactions that occur.

更に活性炭中の炭素の損失も大きい。又、上記硫黄酸化
物と窒素酸化物を単一工程により同時に除去する方法は
、石炭熱焼式ボイラー又は石油燃焼式ボイラーから生ず
る廃ガスの温度が、上記同時除去を行なうのに必要な反
応温度より約50℃低いため、該廃ガスを空気余熱装置
又はエレクトロフィルターによって加熱した後でないと
上記同時除去を行ない得ないという欠点がある。
Furthermore, the loss of carbon in activated carbon is also large. In addition, in the method of simultaneously removing sulfur oxides and nitrogen oxides in a single step, the temperature of the waste gas generated from a coal-fired boiler or an oil-fired boiler is equal to the reaction temperature necessary for the above-mentioned simultaneous removal. The drawback is that the simultaneous removal can only be carried out after the waste gas has been heated by an air preheater or an electrofilter.

従って、ボイラーをその熱効率を犠牲にして高温の廃ガ
スを生じうるように改良するか、若しくは廃ガスを反応
器に送り込む前に加熱しなければならないのである。
Therefore, either the boiler must be modified to produce hot waste gases at the expense of its thermal efficiency, or the waste gases must be heated before being fed to the reactor.

一方、NOxとSOxが混在する排ガス中から第1次工
程で活性炭を吸着媒体としてNOxを吸着除去し、次い
で第2次工程で同じく活性炭を吸着媒体として、上記N
Ox除去後の排ガス中からSOxを吸着除去することか
らなる工業排ガス処理法(特開昭4164570)が既
に知られている。
On the other hand, in the first step, activated carbon is used as an adsorption medium to adsorb and remove NOx from the exhaust gas containing a mixture of NOx and SOx, and then in the second step, the above-mentioned N
An industrial exhaust gas treatment method (Japanese Unexamined Patent Publication No. 4164570) is already known, which consists of adsorbing and removing SOx from the exhaust gas after Ox removal.

この特開昭49−64570号公報に開示された2段階
廃ガス処理技術は、本願の発明者の実験的知得に基づけ
ば、次に記載する重大な欠点を持つことが判明している
The two-stage waste gas treatment technology disclosed in Japanese Patent Application Laid-Open No. 49-64570 has been found to have the following serious drawbacks, based on the experimental findings of the inventor of the present application.

即ち、廃ガス中にS02 (SOx)及びNOxが同時
に存在する混合ガスの場合、活性炭のNOx吸着力は廃
ガス中の802 (SOx)によってきわめて制限され
る事実に基づく欠点である。
That is, in the case of a mixed gas in which S02 (SOx) and NOx are present simultaneously in the waste gas, the NOx adsorption power of activated carbon is severely limited by the 802 (SOx) in the waste gas.

一般にSO2(SOx)はNOxよりも優先的に活性炭
に吸着される特性を持ち、このため既開示の方法におい
ては実験の結果NOx分離のための第1次工程の吸着器
でもNOxの分離よりも主としてSO2(SOx)が硫
酸の形で分離されてしまった。
In general, SO2 (SOx) has the characteristic that it is adsorbed on activated carbon preferentially than NOx, and therefore, in the previously disclosed method, experimental results show that even in the first step adsorber for NOx separation, SO2 (SOx) is adsorbed more preferentially than NOx. Mainly SO2 (SOx) has been separated in the form of sulfuric acid.

実際、本願の発明者の実験的知得に基づけば、たとえば
浄化を要するガスの中に700ppのNOxと共に50
0pp以上の5O2(SOX)が存在する場合、NOx
分離用の第1次工程の吸着器内での吸着性は(200℃
以下の温度条件で)NOx除去率が5−10%にしかな
らなかったという問題がある。
In fact, based on the experimental knowledge of the inventor of the present application, for example, in a gas that requires purification, 50 ppm of NOx and 700 pp of NOx
If 5O2 (SOX) of 0pp or more is present, NOx
The adsorptivity in the adsorber in the first step for separation is (200℃
There is a problem in that the NOx removal rate was only 5-10% (under the following temperature conditions).

従って、既開示の技術によって、NOxとSOxを分離
して別個に捕捉しようとしても、結局はSOx (S0
2)はNOx分離用の第1次工程及びSOx分離用の第
2次工程で充分吸着除去し得るが、NOxはNOx分離
用の第1次工程でも充分吸着できず、極めて小割合しか
NOxは吸着除去できなきものである。
Therefore, even if an attempt is made to separate NOx and SOx and capture them separately using the previously disclosed technology, the end result is SOx (SOx
2) can be sufficiently adsorbed and removed in the first step for NOx separation and the second step for SOx separation, but NOx cannot be sufficiently adsorbed even in the first step for NOx separation, and only a very small proportion of NOx is removed. It cannot be removed by adsorption.

そこで、この特開昭49−64570号公報で開示され
たNOx −SOx混合排ガスを第1段NOx、−第2
段SOxの2段階で吸着除去しようとする方法の第1段
NOx除去工程に、前記西独特許公開明細書第2433
076号(1975年)開示されているアンモニアを脱
硝効果増大のために添加する技術を、付可結合すればN
Ox −SOx混合排ガスから良好にNOx、SOxめ
両ガスとも吸着除去できるのではないかという試案例も
存在した。
Therefore, the NOx-SOx mixed exhaust gas disclosed in JP-A-49-64570 was used in the first stage NOx, -second stage NOx
The above-mentioned West German Patent Publication No. 2433 is used in the first stage NOx removal step of the method in which SOx is adsorbed and removed in two stages.
No. 076 (1975), the technique of adding ammonia to increase the denitrification effect can be combined with N.
There was also a proposal that suggested that both NOx and SOx gases could be successfully adsorbed and removed from the Ox-SOx mixed exhaust gas.

しかしながら、この試案例も次のような欠点を持つこと
が、本願の発明者の実1験的知得で明らかになった。
However, it has become clear through experience by the inventor of the present application that this draft example also has the following drawbacks.

即ち、特開昭49−64570号に開示された、NOx
除去のための第1次工程にNH3ガスを添加することは
、とりもなおさず、この第1次工程で前記西独特許公開
明細書で開示された(すなわち窒素酸化物除去と硫黄酸
化物除去を同時に行う)単位反応を生じさせることであ
った。
That is, NOx disclosed in Japanese Patent Application Laid-Open No. 49-64570
Adding NH3 gas to the first step for removal is not a problem, as disclosed in the above-mentioned West German patent application (i.e., nitrogen oxide removal and sulfur oxide removal). (simultaneous) unit reactions were to occur.

この試案例においては、第1次工程でNOxもSOx
(SO2) も不満足ながら同時に吸着除去されてしま
い、第2次工程は不必要なものどなる欠点があった。
In this draft example, NOx and SOx are
(SO2) was also unsatisfactorily adsorbed and removed at the same time, resulting in an unnecessary second step.

更に重要なことは、この第2次工程が不必要となるとい
う欠点以上に大きな問題が、この試案例に存在した。
More importantly, there was a bigger problem with this draft example than the drawback that this second step was unnecessary.

即ち、この試案例の最大の欠点は前記西独公開公報で開
示された技術の欠点(この技術の欠点については既に述
べた)と同一の欠点であって、既に詳述したが再度確認
すれば、(A)添加するアンモニアの消費量が著しく多
量に必要となる、(B)活性炭の炭素消費量が大きい、
(C)廃ガスをNOx −SOx同時除去に必要な温度
条件にまで約50℃前後i再加熱しなければならない、
という欠点である。
That is, the biggest drawback of this draft example is the same as the drawback of the technology disclosed in the above-mentioned West German Publication (the drawbacks of this technology have already been described). (A) A significantly large amount of ammonia is required to be added. (B) The carbon consumption of activated carbon is large.
(C) The waste gas must be reheated to approximately 50°C to the temperature required for simultaneous NOx and SOx removal;
This is a drawback.

より詳しく述べると、通常煙道から排ガス処理装置に供
給される廃ガスの温度は110−180℃であって、S
O2はこの110−180℃の低温度域ではNOxより
はるかに早くアンモニア塩として除去されることである
To explain in more detail, the temperature of the waste gas supplied from the flue to the exhaust gas treatment device is usually 110-180°C, and S
O2 is removed as ammonia salt much faster than NOx in this low temperature range of 110-180°C.

従って、この温度域ではNOx還元だけに必要なよりも
はるかに多くのアンモニアを添加しなければ有効にNO
xは除去できない。
Therefore, in this temperature range, NOx can be effectively reduced unless much more ammonia is added than is necessary for NOx reduction alone.
x cannot be removed.

これはSOx (SO2)のアンモニア塩としての形成
がNOxの還元より優先されるためである。
This is because the formation of SOx (SO2) as an ammonia salt has priority over the reduction of NOx.

更に加えて、アンモニア塩の活性炭への沈澱によりNO
x還元のための活性炭の特性が劣化する(このことは西
独公開公報にも記載されている)とともに、この活性炭
への硫酸アンモニウムが粒子間沈澱することにより、吸
着塔内の圧力が異常に高くなり、早期に活性炭を再生さ
せる必要が生じる欠点があった。
In addition, precipitation of ammonia salts onto activated carbon reduces NO.
In addition to the deterioration of the properties of the activated carbon for x reduction (this is also stated in the West German Publication), ammonium sulfate on the activated carbon precipitates between particles, causing the pressure inside the adsorption tower to become abnormally high. However, there was a drawback that it was necessary to regenerate the activated carbon at an early stage.

更にまた、前述した如く、上記の欠点を改良しNOxと
NH3の選択的反応を良好ならしめるためには廃ガス温
度を180度以上とする必要があり、廃ガス再加熱とレ
ー)うエネルギー効果上の欠点もあった。
Furthermore, as mentioned above, in order to improve the above-mentioned drawbacks and improve the selective reaction between NOx and NH3, it is necessary to increase the exhaust gas temperature to 180 degrees or higher, which increases the energy efficiency of exhaust gas reheating. There were also drawbacks to the above.

又、特開昭55−11020号公報には窒素酸化物及び
硫黄酸化物を含有する燃焼廃ガスを除去する方法が開示
されているが、この既開示の方法の出願時添付の明細書
においては、第1段の除去工程で粒状吸着剤層を用い室
温乃至300℃で(実施例乃至本文中では200℃乃至
300℃)で空間速度5000h−1(実施例では25
00乃至10000h−1)で通過させ、SOx中のS
O3を80%以上選択的に除去しく但し、実施例1で開
示されたこの既開示の方法ではS03の除去率は0%と
成っており、特許請求の範囲に記載された発明が実施例
で裏付けされておらず、発明の成立性が疑問であるが)
、次いでこのSO3を選択的に除去した廃ガスにアンモ
ニアガスを給し、第1段の粒状吸着剤と異なる触媒を使
用して還元反応でNOxを還元する二段階の廃ガス除去
方法が理論的に開示されている。
Furthermore, JP-A-55-11020 discloses a method for removing combustion waste gas containing nitrogen oxides and sulfur oxides, but in the specification attached at the time of filing of this already disclosed method, In the first stage removal process, a granular adsorbent layer was used at room temperature to 300°C (200°C to 300°C in the examples and text) and a space velocity of 5000 h-1 (25 in the examples).
00 to 10000h-1), and the S in SOx
However, in the previously disclosed method disclosed in Example 1, the removal rate of S03 is 0%, and the invention described in the claims is not an example. Although it is not supported and the validity of the invention is questionable)
Theoretically, there is a two-stage waste gas removal method in which ammonia gas is supplied to the waste gas from which SO3 has been selectively removed, and NOx is reduced through a reduction reaction using a catalyst different from the granular adsorbent in the first stage. has been disclosed.

しかしながら、この既開示の方法は、その開示内容に具
体性が欠如しているとともに、その理論方法にも問題が
あった。
However, this disclosed method lacks specificity in its disclosed content, and its theoretical method also has problems.

勿論、この既開示の方法は、本願発明の出願前には公開
されておらず、又、出願時添付の明細書又は図面に本願
発明そのものが開示されていないものであるが、一応参
考までに出願前の技術としてその問題点を論究する。
Of course, this already disclosed method had not been disclosed before the application of the claimed invention, and the claimed invention itself was not disclosed in the specification or drawings attached at the time of filing, but this is provided for reference. We will discuss the issues as a pre-filing technology.

この既開示方法は、理論的に第一工程で硫黄酸化物中の
SO3の大部分を除去しなければならないため、装置が
人指りなものとなった。
In this disclosed method, theoretically, most of the SO3 in the sulfur oxides must be removed in the first step, so the apparatus is cumbersome.

本願の発明者の実験的知得によれば、硫黄酸化物を80
%程度除去する場合にくらべ、硫黄酸化物除去率を90
%以上と10%以上上昇させるためには、吸着剤量を2
倍にしなければならず、既開示の装置では、第1段の装
置が非常に大きな装置となる欠点か゛あった。
According to the experimental knowledge of the inventor of the present application, 80% of sulfur oxides
The sulfur oxide removal rate is 90% compared to the case where the removal rate is about 90%.
In order to increase the amount by more than 10%, the amount of adsorbent should be increased by 2.
Therefore, the previously disclosed apparatus had the disadvantage that the first stage apparatus became a very large apparatus.

又、上記既開示の方法は、実際上は既開示明細書の第2
図に示す如く、廃ガスの処理を、SO3の除去効率の観
点から、廃ガスの温度を約200℃以上として行う必要
が有るため、一旦温度が下がった廃ガスは再加熱しなけ
ればならなかった。
In addition, the method disclosed above is actually the second method of the disclosed specification.
As shown in the figure, from the viewpoint of SO3 removal efficiency, it is necessary to treat the waste gas at a temperature of approximately 200°C or higher, so once the temperature has dropped, the waste gas must be reheated. Ta.

更に、上記既開示の方法は、第1段と第2段の処理にお
ける吸着剤としてそれぞれ異なったものを使用するため
、その処理塔は必ず2つに分離する必要があると共にそ
の再生装置が第1段と第2段のそれぞれに必要であり、
装置全体が人指りになる欠点か゛あった。
Furthermore, in the previously disclosed method, different adsorbents are used in the first stage and second stage treatment, so the treatment tower must be separated into two, and the regenerator must be separated into two parts. Required for each of the 1st and 2nd stages,
There was a drawback that the entire device became a nuisance.

特に、SOxは第1段工程で完全除去できないため、第
2段工程で硫黄酸化物の吸着残金が第2段工程の吸着剤
に残り、必ず再生する必要があった。
In particular, since SOx cannot be completely removed in the first step, the adsorbed residue of sulfur oxides remains on the adsorbent in the second step and must be regenerated.

又、既開示方法は廃ガスの空間速度が、5000h−1
(実施例では2500乃至10000h−’) と大
きく、高速処理できる反面、この流速で処理できる大容
量の吸着剤量を必要とし、装置が人指りになる欠点があ
った。
In addition, in the previously disclosed method, the space velocity of waste gas is 5000 h-1
Although it is large (2,500 to 10,000 h-' in the examples) and can be processed at high speed, it requires a large amount of adsorbent that can be processed at this flow rate, which has the disadvantage that the apparatus becomes cumbersome.

本発明はこれら従来の欠点を悉く解消せんとしてなされ
たもので、温度低下した廃ガスを再加熱することなく、
第一移動層に送り込み、この第一移動層で硫黄酸化物を
20乃至80%だけ除去させ又廃ガスの空間速度を約4
00乃至1800=’と比較的小さくし、従って装置の
大きさを抑え、又、第一移動層と第二移動層で使用する
炭素含有吸着剤を同一のものとして両工程を単一装置内
に組み込めるとともにこの吸着剤の再生装置を同一のも
のとして再生工程も簡素化でき、ある程度だけSOxを
除去した廃ガスにアンモニアガスを添加し第二移動層で
NOx及びSOxを完全に除去できる方法を完成したも
のである。
The present invention was made in order to eliminate all of these conventional drawbacks, and without reheating the waste gas whose temperature has decreased,
The first moving bed removes 20 to 80% of the sulfur oxides and reduces the space velocity of the waste gas to about 4%.
00 to 1800=', thus reducing the size of the device, and using the same carbon-containing adsorbent in the first and second moving beds to perform both steps in a single device. In addition, the regeneration process can be simplified by using the same adsorbent regeneration device, and a method has been completed in which ammonia gas is added to the waste gas from which only a certain amount of SOx has been removed, and NOx and SOx can be completely removed in the second moving bed. This is what I did.

本発明の目的は、従来の硫黄酸化物及び窒素酸化物除去
方法における欠点を最少限に押さえ、比較的低い温度で
上記酸化物の除去を効率よく行うことができ、しかもア
ンモニアの消費量を少なくすることのできる方法を提供
することである。
An object of the present invention is to minimize the drawbacks of conventional methods for removing sulfur oxides and nitrogen oxides, to efficiently remove the above oxides at relatively low temperatures, and to reduce the consumption of ammonia. The aim is to provide a method that allows for

上記の目的は、本発明の方法、即ち廃ガス中の二酸化硫
黄の大部分を第一移動層において吸着剤を用いて除去し
、次いで第二移動層において触媒反応により窒素酸化物
を窒素ガスに還元すると共に所定量のアンモニアガスを
添加して残る硫黄酸化物をも除去する方法によって達成
しうる。
The above object is achieved by the method of the present invention, namely, removing most of the sulfur dioxide in the waste gas using an adsorbent in the first moving bed, and then converting the nitrogen oxides into nitrogen gas by a catalytic reaction in the second moving bed. This can be achieved by reducing the amount and adding a predetermined amount of ammonia gas to remove remaining sulfur oxides.

本発明の方法は、硫黄酸化物及び窒素酸化物の除去を比
較的低温で効率よく行う乾式手法の途を開くものである
The method of the present invention opens the door to a dry method for efficiently removing sulfur oxides and nitrogen oxides at relatively low temperatures.

本発明の方法は、第−及び第二移動層の双方において同
一の吸着剤の使用を可能とする。
The method of the invention allows the use of the same adsorbent in both the first and second mobile beds.

本発明方法は、第一移動層において20乃至80%の硫
黄酸化物を除去し、第二移動層において廃ガス中に含ま
れるNOとして算出した窒素酸化物1mo1当たり約0
.4乃至1.5molのアンモニアガスを用いて窒素酸
化物を還元させるものである。
The method of the present invention removes 20 to 80% of sulfur oxides in the first moving bed, and removes about 0% of sulfur oxides per mo1 of nitrogen oxides, calculated as NO contained in the waste gas, in the second moving bed.
.. Nitrogen oxides are reduced using 4 to 1.5 mol of ammonia gas.

炭素含有吸着剤に元素の形態の銅、鉄、リチウム、ナl
〜リウム、アルミニウム、バリウム、又はバナジウムを
1種のみ又は複数種組合わせて0.05乃至5重量%付
着させて用いれば、SO2除去率及びNOx還元率を更
に高めることができる。
Copper, iron, lithium, nal in elemental form on carbon-containing adsorbents
- If 0.05 to 5% by weight of 1 type or a combination of 1 type or a combination of 1 type, aluminum, barium, or vanadium is used, the SO2 removal rate and NOx reduction rate can be further increased.

第一移動層において硫黄酸化物の一部を分離する方が、
単一工程において硫黄酸化物の全部を除去する方法に比
べてずつと短時間で処理できる。
It is better to separate a part of the sulfur oxide in the first moving layer.
Compared to methods that remove all sulfur oxides in a single step, the process can be completed in a much shorter time.

従って、本発明においては、廃ガスを空間速度400乃
至1800h−1で、吸着剤と接触せしめるようにして
いる。
Therefore, in the present invention, the waste gas is brought into contact with the adsorbent at a space velocity of 400 to 1800 h-1.

アンモニアガスを投与するのは、硫黄酸化物を;一部除
去した段階即ち第二移動層に送り込む前においてである
The ammonia gas is dosed at the stage where the sulfur oxides have been partially removed, i.e. before being fed into the second moving bed.

而して、前記単一工程による同時除去方法に比べてアン
モニア消費量を少くすることができ、しかも第二移動層
におけるNOxとNH3との反応は効率良く行なわれる
Therefore, the amount of ammonia consumed can be reduced compared to the simultaneous removal method using a single step, and the reaction between NOx and NH3 in the second moving bed can be carried out efficiently.

第−及び第二移動層内の吸着剤の量は変化させることが
でき、且第−移動層内の吸着剤の流量と第二移動層内の
吸着剤の流量に差をもたせることもできる。
The amount of adsorbent in the first and second moving beds can be varied, and there can be a difference in the flow rate of the adsorbent in the first moving bed and the second moving bed.

第一移動層の吸着剤は約20乃至100時間後に取出し
、第二移動層の吸着剤は約20乃至200時間後に取出
すのがよい。
The adsorbent in the first moving bed is preferably removed after about 20 to 100 hours and the adsorbent in the second moving bed is removed after about 20 to 200 hours.

両移動層に充填した吸着剤の最終的な再生は、例えば洗
浄或いは加熱により、第一移動層の吸着剤と第二移動層
の吸着剤とを一緒に行なうことができる。
The final regeneration of the adsorbent packed into both moving beds can be carried out by combining the adsorbent of the first moving bed with the adsorbent of the second moving bed, for example by washing or heating.

又、両移動層は、単一の反応器に組み込んでもよいし、
或は夫々に1個の移動層を設けた別体の反応器を2個連
結してもよい。
Also, both moving beds may be incorporated into a single reactor,
Alternatively, two separate reactors each provided with one moving bed may be connected.

更に、吸着剤の供給は、各移動層に各別に行なってもよ
いし、若しくは単一の供給管を用いて行ってもよい。
Furthermore, the adsorbent may be supplied to each moving bed separately or may be supplied using a single supply pipe.

アンモニアガスは、廃ガスが第二移動層に流入する直前
に該廃ガスに直接添加するか、各移動層が別体の反応器
内に設けられている場合には、これらの反応器を連結す
る導管内に直接送り込めばよい。
Ammonia gas can be added directly to the waste gas just before it enters the second moving bed, or if each moving bed is provided in separate reactors, these reactors can be connected. It can be directly fed into the conduit.

又、このアンモニアガスの添加は、必ずしも移動層全体
に均一に行なう必要はなく、仮え不均一に行っても各別
障害はない。
Further, it is not necessary that the ammonia gas be added uniformly to the entire moving layer, and even if it is added non-uniformly, there will be no particular problem.

以下、本発明を実施するための反応器を添付図面に基づ
いて説明する。
Hereinafter, a reactor for carrying out the present invention will be explained based on the accompanying drawings.

先ず、第1図に示す単式反応器を用いる場合について説
明する。
First, the case where a single reactor shown in FIG. 1 is used will be explained.

この単式反応器は、硫黄酸化物除去用の第一シュート1
と窒素酸化物還元用の第二シュート2を単一の反応器に
組み込んだものである。
This single reactor consists of a first chute 1 for sulfur oxide removal;
and a second chute 2 for reducing nitrogen oxides are incorporated into a single reactor.

両シュート1,2は、夫々相対する多孔壁3.4及び5
,6を有する。
Both chutes 1, 2 have opposing porous walls 3.4 and 5, respectively.
, 6.

外側の多孔壁3,6の夫々に接して室11.15が形成
されている。
A chamber 11.15 is formed adjacent to each of the outer porous walls 3,6.

室11にはガス流入ロアが、室15にはガス流出口8が
、夫々設けである。
The chamber 11 is provided with a gas inflow lower, and the chamber 15 is provided with a gas outlet 8.

又、内側の多孔壁4゜5によって室9が形成されている
Further, a chamber 9 is formed by the inner porous wall 4°5.

粉粒状吸着剤は、第1図に示す如く共通の供給管を設け
てシュート1,2内に送り込むようにしてもよいし、或
いは、図示は省略するが、複数個の供給管を設けてシュ
ート1,2に各別に送り込むようにしてもよい。
The powder adsorbent may be fed into the chutes 1 and 2 by providing a common supply pipe as shown in FIG. 1 and 2 may be sent separately.

廃ガスは、ガス流入ロアから送り込まれ、多孔壁3を通
過し、第一シュート1内を移動する吸着剤層を横断して
通過し、次いで多孔壁4を通過し、て室9に流入する。
The waste gas is fed from the gas inlet lower, passes through the porous wall 3, passes across the adsorbent bed moving in the first chute 1, then passes through the porous wall 4 and enters the chamber 9. .

この室9内でアンモニア供給装置10により廃ガスにア
ンモニアを投与する。
In this chamber 9, ammonia is administered to the waste gas by means of an ammonia supply device 10.

′かくして得られたアンモニアを含む廃ガスは、多孔壁
5を通過し、第二シュート2内を移動する粉粒状吸着剤
層を横断して通過し、次いで多孔壁6を通過した後、ガ
ス流出口8から流出する。
'The ammonia-containing waste gas thus obtained passes through the porous wall 5, across the granular adsorbent bed moving in the second chute 2, and then, after passing through the porous wall 6, the gas stream It flows out from outlet 8.

吸着剤シュート1,2の下端から排出され、各別に或い
は合流せしめて適宜の再生装置に送られる。
The adsorbent is discharged from the lower ends of the chutes 1 and 2 and sent to an appropriate regenerator either separately or combined.

次に、第2図に示す複式反応器を用いる場合について説
明する。
Next, the case of using the multiple reactor shown in FIG. 2 will be explained.

この複式反応器は、第一シュート1を設けた第一反応器
■と第二シュート2を設けた第二反応器IIとを有する
This multiple reactor has a first reactor (1) provided with a first chute 1 and a second reactor II (2) provided with a second chute 2.

第−反応器I内には2個の相対する多孔壁3,4が設け
てあり、その各々によって室11.12が形成されてい
る。
In reactor I there are two opposing porous walls 3, 4, each of which forms a chamber 11, 12.

室11にはガス流入ロアが、室12には導管13が夫々
設けである。
The chamber 11 is provided with a gas inflow lower, and the chamber 12 is provided with a conduit 13, respectively.

導管13は、第一反応器Iと第二反応器IIを接続する
ためのものである。
Conduit 13 is for connecting first reactor I and second reactor II.

この第二反応器も第一反応器と同様に2個の相対する多
孔壁5,6が設けてあり、夫々室14.15を有する。
Like the first reactor, this second reactor is also provided with two opposing porous walls 5, 6, each having a chamber 14,15.

室14には前記導管13を接続してあり、室15にはガ
ス流出口8を設けである。
The chamber 14 is connected to the conduit 13, and the chamber 15 is provided with a gas outlet 8.

粉粒状吸着剤は、第2図に示す如く2個の独立した供給
管からシュート1及び2に各別に供給するようにしても
よいし、或いは第1図に示す如く1個の共通の供給管か
らシュート1及び2に夫々供給するようにしてもよい。
The particulate adsorbent may be supplied to chutes 1 and 2 separately from two independent supply pipes as shown in FIG. 2, or through one common supply pipe as shown in FIG. Alternatively, the water may be supplied to the chutes 1 and 2 from the chutes 1 and 2, respectively.

廃ガスは、ガス流入ロアから送り込まれ、多孔壁3を通
過し、第一シュート1内を移動する吸着剤層を横断して
通過し、更に多孔壁4を通過して室12内に流入する。
The waste gas is fed from the gas inlet lower, passes through the porous wall 3, passes across the adsorbent layer moving in the first chute 1, and further passes through the porous wall 4 and flows into the chamber 12. .

次いで、この廃ガスは導管13を経て室14内に送り込
まれるが、この導管13内において、或いは室14内に
おいて、アンモニアを投与される。
This waste gas is then passed through conduit 13 into chamber 14, in which it or alternatively in chamber 14 is dosed with ammonia.

かくして得られたアンモニアを含む廃ガスは、多孔壁5
を通過し、第二シュート2内を移動する吸着剤層を横断
し、次いで多孔壁6を通過して室15内に流入する。
The thus obtained waste gas containing ammonia is passed through the porous wall 5.
, traverses the bed of adsorbent moving in the second chute 2 and then flows through the porous wall 6 into the chamber 15 .

この廃ガスは、最後にはガス流出口8から第二反応器I
I外に排出される。
This waste gas is finally transferred from the gas outlet 8 to the second reactor I.
It is expelled outside.

以下、本発明の方法を実施例に基づいて具体的に説明す
る。
Hereinafter, the method of the present invention will be specifically explained based on Examples.

実施例 1 ・ 炭素含有吸着剤として、比表面積500m2/gの活性
炭(プルツイヤ−(Brunauer )、エメット(
Emmet)及びテラー(Teller) ノ定めたも
の)を使用する。
Example 1 Activated carbon (Brunauer), Emmett (Brunauer) with a specific surface area of 500 m2/g was used as a carbon-containing adsorbent.
Emmet and Teller et al.

第一シュート1内に形成される第一移動層内には1.0
m3の活性炭を使用する。
1.0 in the first moving layer formed in the first chute 1
m3 activated carbon is used.

この第−移動層は、廃ガスの流れる方向に対し直角をな
しその横断面積が1m2、深さが1mとなるようにする
This first moving layer is perpendicular to the flow direction of the waste gas and has a cross-sectional area of 1 m2 and a depth of 1 m.

第二シュート2内に形成される第二移動層には0.9m
3の活性炭を使用し、その横断面積を1.0m2、深さ
を0.9mとする。
The second moving layer formed in the second chute 2 has a length of 0.9 m.
Activated carbon No. 3 is used, and its cross-sectional area is 1.0 m2 and the depth is 0.9 m.

第一移動層に、NO: 0.072容量%、SO2:
0.1容量%、02:6,4容量%及びH2O: 10
.O容量%を含む廃ガスを温度120℃で毎時720m
3供給し、空間速度720h−’ (常温下の算出値)
で通過せしめる。
In the first moving layer, NO: 0.072% by volume, SO2:
0.1% by volume, 02:6, 4% by volume and H2O: 10
.. Waste gas containing % O by volume at 720 m/h at a temperature of 120°C
3 supply, space velocity 720h-' (calculated value at room temperature)
Let it pass.

その結果SO2の平均濃度は約0.03容量%に低下す
る(減少率70%)。
As a result, the average concentration of SO2 is reduced to about 0.03% by volume (reduction rate of 70%).

その際活性炭は、第一移動層内で約70時間使用する。The activated carbon is then used in the first moving bed for about 70 hours.

上記の廃ガスを第二移動層に供給する前に、該廃ガスに
NH3濃度が0.079容量%になるまで十分量のアン
モニアガスを添加する。
Before the waste gas is supplied to the second moving bed, a sufficient amount of ammonia gas is added to the waste gas until the NH3 concentration becomes 0.079% by volume.

次いでこれを空間速度800h−1(常温下の算出値)
として且つ活性炭の滞留時間を約90時間として処理す
れば約62%のNOが除去される。
Next, this was adjusted to a space velocity of 800h-1 (calculated value at room temperature)
If the activated carbon residence time is about 90 hours, about 62% of NO will be removed.

この第二移動層を通過せしめた後の硫黄酸化物の除去率
は、合計的95%である。
The total removal rate of sulfur oxides after passing through this second moving bed is 95%.

比較実施例 1 横断面積1,0m2、深さ1.90mの単一の移動層に
上記実施例1に使用したのと同じ活性炭を1.9m”投
入する。
Comparative Example 1 A single moving bed with a cross-sectional area of 1.0 m2 and a depth of 1.90 m is charged with 1.9 m'' of the same activated carbon as used in Example 1 above.

廃ガスに十分量のアンモニアガスを添加してNH3濃度
を0.079容量%とした後、温度120℃、空間速度
340h−1(常温下の算出値)で該単一移動層を通過
せしめる。
After adding a sufficient amount of ammonia gas to the waste gas to make the NH3 concentration 0.079% by volume, the waste gas is made to pass through the single moving bed at a temperature of 120° C. and a space velocity of 340 h −1 (calculated value at room temperature).

その際活性炭は約25時間使用する。Activated carbon is used for about 25 hours.

この結果除去されるNOは約10%にすぎない。As a result, only about 10% of NO is removed.

この場合、移動層内の圧力が増加するため、装置を25
時間以上稼動させることは不可能である。
In this case, the pressure in the moving bed increases so that the device is
It is impossible to run it for more than an hour.

硫黄の除去率は98%以上である。実施例 2 吸着剤として使用する活性炭として、硫酸銅溶液に浸漬
した後乾燥し更にこれを温度約500℃で■焼すること
により、活性炭1gにつき約0.063gの銅で被覆さ
れた比表面積470m2/g (プルツイヤ−、エメ
ット及びテレ−の定めたもの)のものを用いる。
The sulfur removal rate is over 98%. Example 2 Activated carbon used as an adsorbent was immersed in a copper sulfate solution, dried, and then fired at a temperature of about 500°C to obtain a specific surface area of 470 m2 coated with about 0.063 g of copper per 1 g of activated carbon. /g (specified by Plutzier, Emmett, and Tele) is used.

上記銅を含浸せしめた活性成約0.7m3を第一移動層
に使用する。
Approximately 0.7 m 3 of active copper impregnated with the above described copper is used for the first transfer layer.

この第一移動層の横断面積は1m2、深さは0.7mの
ものである。
This first moving layer had a cross-sectional area of 1 m2 and a depth of 0.7 m.

一方、第二移動層に用いる上記銅を含浸させた活性炭の
量は0.9m3とする。
On the other hand, the amount of the copper-impregnated activated carbon used in the second moving layer is 0.9 m3.

又、この第二移動層はその横断面積を1.0m2、深さ
を0.9mとする。
Further, this second moving layer has a cross-sectional area of 1.0 m2 and a depth of 0.9 m.

上記第1実施例の場合と同じ組成の廃ガスを同じ温度で
、空間速度1030h−” (常温下の算出値)、活性
炭の滞留時間70時間で第一移動層を通過せしめたとこ
ろ、廃ガス中のSO2の平均濃度を約0.03容量%に
減少させることができた(減少率70%)。
When waste gas having the same composition as in the first embodiment was passed through the first moving bed at the same temperature, space velocity of 1030h-'' (calculated value at room temperature), and activated carbon residence time of 70 hours, the waste gas It was possible to reduce the average concentration of SO2 in the sample to about 0.03% by volume (reduction rate of 70%).

この廃ガスを第二移動層に送り込む前に、十分量のアン
モニアガスを添加してNH3濃度を0.079容量%と
した後、これを空間測度soo’−” (常温下の算出
値)、活性炭の滞留時間90時間で第二移動層を通過せ
しめたところ、Noの除去率は66%であった。
Before sending this waste gas to the second moving bed, a sufficient amount of ammonia gas is added to make the NH3 concentration 0.079% by volume, and this is converted into a spatial measure soo'-" (calculated value at room temperature). When the activated carbon was allowed to pass through the second moving bed for a residence time of 90 hours, the No removal rate was 66%.

第二移動層通過後の硫黄除去率は約97%であった。The sulfur removal rate after passing through the second moving bed was about 97%.

比較実施例 2 前述の第1実施例の場合と同に組成の廃ガスを、上記第
2実施例に使用したのと同じ銅を含浸せしめた活性炭1
.6m3を投入した単一の移動層に、同じ温度で且つ所
要量のアンモニアを添加して、空間速度460h−1(
常温下の算出値)、活性炭滞留時間35時間で通過させ
たところ、Noの除去率は12%にすぎなかった。
Comparative Example 2 Activated carbon 1 was prepared by using waste gas having the same composition as in the first example and impregnated with the same copper as used in the second example.
.. At the same temperature and with the required amount of ammonia added to a single moving bed containing 6 m3, a space velocity of 460 h-1 (
When activated carbon was passed through the activated carbon for a residence time of 35 hours (calculated value at room temperature), the removal rate of No was only 12%.

反応時間を約35時間以上とすることは、圧力の増加に
より不可能であった。
Reaction times of more than about 35 hours were not possible due to the increased pressure.

脱硫率は99%以上であった。以上により、本発明の要
旨は十分に明らかにされた筈であり、現在の技術的知識
を応用すれば、当業者なら本発明の技術的思想を種々の
形態で直ちに応用しうる筈である。
The desulfurization rate was 99% or more. From the above, the gist of the present invention should have been sufficiently clarified, and those skilled in the art should be able to readily apply the technical idea of the present invention in various forms by applying current technical knowledge.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明方法を実施する場合に使用しうる反応器
を示すもので、第1図は移動層の形成されるシュートを
2個組み込んで単式反応器の概要を示す縦断面図、第2
図は夫々1個の移動層形成シュートを有する反応器を2
個連結して成る複式反応器の概要を示す縦断面図である
。 1.2・・・・・・シュート 3,4,5,6・・・・
・・多孔壁、7・・・・・・ガス流入口、8・・・・・
・ガス流出口、9゜11、 12. 14. 15・・
・・・・室、10・・・・・・アンモニア供給装置、1
3・・・・・・導管。
The drawings show a reactor that can be used when carrying out the method of the present invention, and FIG. 1 is a vertical sectional view showing an outline of a single reactor incorporating two chutes in which a moving bed is formed, and FIG.
The figure shows two reactors each having one moving bed forming chute.
FIG. 2 is a vertical cross-sectional view schematically showing a multiple reactor in which individual reactors are connected. 1.2... Shoot 3, 4, 5, 6...
... Porous wall, 7... Gas inlet, 8...
・Gas outlet, 9°11, 12. 14. 15...
... Chamber, 10 ... Ammonia supply device, 1
3... Conduit.

Claims (1)

【特許請求の範囲】 1 硫黄酸化物、窒素酸化物、酸素及び水蒸気を含む廃
ガスにアンモニアガスを添加し、これを反応器内を上方
から下方にかけて流送さ゛れる粉粒状の炭素含有吸着剤
により形成される移動層内を通過させて廃ガス中の硫黄
酸化物及び窒素酸化物を除去する方法において、温度1
10乃至180℃の廃ガスを使用し、第一移動層と第二
移動層内に同一の炭素含有吸着剤を充填し、該廃ガスを
まず第一移動層内に空間速度約400乃至1800h−
1で送り込んで前記硫黄酸化物の20乃至80%を前記
吸着剤に吸着させて除去し、次いでこの廃ガスにアンモ
ニアガスを添加した後これを第二移動層に送り込み、触
媒反応により窒素酸化物を窒素に還元すると共に残る硫
黄酸化物を除去し、この第一移動層内に充填する炭素含
有吸着剤を20乃至100時間で、及び第二移動層内に
充填する炭素含有吸着剤を20乃至200時間で、取り
出し同一再生装置で再生し、再び第−移動層及び第二移
動層内に充填することを特徴とする廃ガス中の硫黄酸化
物及び窒素酸化物を除去する方法。 2 廃ガス中に含まれるNOとして算出した窒素酸化*
’lMo1につき約0.4乃至1.5Mol(7) 7
ンモニアガスを添加する特許請求の範囲第1項記載の
方法。 3 前記炭素含有吸着剤の表面に、銅、鉄、リチウム、
ナトリュウム、アルミニウム、バリュウム、又はバナジ
ウムのうち1種又は複数種を約0.05乃至5重量%付
着させて用いる特許請求の範囲第1項記載の方法。
[Claims] 1. A granular carbon-containing adsorbent in which ammonia gas is added to waste gas containing sulfur oxides, nitrogen oxides, oxygen, and water vapor, and the ammonia gas is flowed from the top to the bottom in a reactor. In a method for removing sulfur oxides and nitrogen oxides from waste gas by passing it through a moving bed formed by
Using waste gas at a temperature of 10 to 180°C, the first moving bed and the second moving bed are filled with the same carbon-containing adsorbent, and the waste gas is first introduced into the first moving bed at a space velocity of about 400 to 1800 h-
1, 20 to 80% of the sulfur oxides are adsorbed on the adsorbent and removed, and then ammonia gas is added to this waste gas, which is then sent to the second moving bed, where nitrogen oxides are removed by a catalytic reaction. is reduced to nitrogen and the remaining sulfur oxides are removed, and the carbon-containing adsorbent packed in the first moving bed is heated for 20 to 100 hours, and the carbon-containing adsorbent packed in the second moving bed is heated for 20 to 100 hours. A method for removing sulfur oxides and nitrogen oxides from waste gas, which comprises taking out and regenerating in the same regenerator after 200 hours, and filling the first moving bed and the second moving bed again. 2 Nitrogen oxidation calculated as NO contained in waste gas*
Approximately 0.4 to 1.5 Mol per 'lMo1 (7) 7
The method according to claim 1, wherein ammonia gas is added. 3 Copper, iron, lithium,
The method according to claim 1, wherein one or more of sodium, aluminum, barium, or vanadium is deposited in an amount of about 0.05 to 5% by weight.
JP55014235A 1979-03-24 1980-02-06 Method for removing sulfur oxides and nitrogen oxides in waste gas Expired JPS5951846B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29117122 1979-03-24
DE2911712A DE2911712C2 (en) 1979-03-24 1979-03-24 Process for removing sulfur oxides and nitrogen oxides from exhaust gases

Publications (2)

Publication Number Publication Date
JPS55129131A JPS55129131A (en) 1980-10-06
JPS5951846B2 true JPS5951846B2 (en) 1984-12-17

Family

ID=6066374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55014235A Expired JPS5951846B2 (en) 1979-03-24 1980-02-06 Method for removing sulfur oxides and nitrogen oxides in waste gas

Country Status (2)

Country Link
JP (1) JPS5951846B2 (en)
DE (1) DE2911712C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107469600A (en) * 2017-09-27 2017-12-15 重集团大连工程建设有限公司 A kind of composite bed purifying column

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3101053C2 (en) * 1979-03-24 1984-11-29 Bergwerksverband Gmbh, 4300 Essen Process for removing sulfur oxides and nitrogen oxides from exhaust gases and apparatus for carrying out this process
DE3039477A1 (en) * 1979-03-24 1982-05-06 Bergwerksverband Gmbh, 4300 Essen Desulphurisation and denitrification of waste gas - by passing across two travelling beds of partly charged and then fresh carbonaceous adsorbent
US4704084A (en) * 1979-12-26 1987-11-03 Battelle Development Corporation NOX reduction in multisolid fluidized bed combustors
US4915921A (en) * 1980-10-18 1990-04-10 Bergwerksverband Gmbh Method for the removal of sulfur oxide and nitrogen oxide from exhaust gases
JPS5843224A (en) * 1981-09-10 1983-03-12 Mitsui Mining Co Ltd Dry type flue gas desulfurization and denitration method
JPS5843223A (en) * 1981-09-10 1983-03-12 Mitsui Mining Co Ltd Dry type desulfurization and denitration method
DE3138665A1 (en) * 1981-09-29 1983-04-21 Bergwerksverband Gmbh, 4300 Essen ADSORPTION REACTOR FOR REMOVING SO (DOWN ARROW) 2 (DOWN ARROW) FROM EXHAUST GASES AND METHOD FOR OPERATING THE SAME
JPS58153523A (en) * 1982-03-05 1983-09-12 Hitachi Ltd Dry type stack gas desulfurization and denitration method
DE3342500A1 (en) * 1983-11-24 1985-06-13 Heinrich Dr.rer.nat. 8032 Gräfelfing Frühbuss METHOD FOR REMOVING SO (DOWN ARROW) X (DOWN ARROW) AND NO (DOWN ARROW) X (DOWN ARROW) FROM EXHAUST GAS
DE3410895A1 (en) * 1984-03-24 1985-10-03 Perfluktiv-Consult AG, Basel METHOD AND SYSTEM FOR REDUCING THE POLLUTANT CONTENT OF SMOKE GASES
DE3427905A1 (en) * 1984-07-28 1986-02-06 Steag Ag, 4300 Essen Apparatus for the denitration of a flue gas stream in a catalyst bed and apparatus for carrying out the process
DE3433093A1 (en) * 1984-09-08 1986-03-20 Bergwerksverband Gmbh, 4300 Essen HONEYCOMB CATALYSTS COATED WITH CATALYTICALLY ACTIVE MATERIAL FOR NO (ARROW DOWN) X (ARROW DOWN) REDUCTION AND METHOD FOR THE PRODUCTION THEREOF
EP0193135A3 (en) * 1985-03-01 1987-10-21 Hugo Petersen Ges. für verfahrenstechn. Anlagenbau mbH & Co KG Process for eliminating sulfur dioxide and nitrogen oxides from waste gases
JPS61287423A (en) * 1985-06-12 1986-12-17 Sumitomo Heavy Ind Ltd Treatment of exhaust gas
DE3523326A1 (en) * 1985-06-29 1987-01-08 Steag Ag METHOD FOR SEPARATING NO (DOWN ARROW) X (DOWN ARROW) FROM GASES, ESPECIALLY SMOKE GASES
DE3604045C1 (en) * 1986-02-08 1987-01-29 Steag Ag Process for the separation of nitrogen oxides from flue gases
DE3604204C2 (en) * 1986-02-11 1994-10-27 Uhde Gmbh Process and device for cleaning gases, in particular for desulfurization and denitrification of flue gases
DE3727642A1 (en) * 1987-08-19 1989-03-02 Bayer Ag CATALYST, METHOD FOR ITS PRODUCTION AND USE THEREOF
DE8717866U1 (en) * 1987-09-25 1990-10-25 Steag Ag, 4300 Essen, De
DE3824728C1 (en) * 1988-07-21 1990-02-22 L. & C. Steinmueller Gmbh, 5270 Gummersbach, De
DE3926597A1 (en) * 1989-08-11 1991-02-14 Graeff Roderich Wilhelm Appts. to adsorb moisture, etc. from gas stream - has reserve absorbent in external store to compensate for erosion and shrinkage of absorbent
DE4031968A1 (en) * 1990-10-09 1992-04-16 Bayer Ag CATALYST FOR REDUCING NITROGEN OXIDS FROM EXHAUST GASES AND METHOD FOR THE PRODUCTION THEREOF
DE4209962C1 (en) * 1992-03-27 1993-09-16 Bergwerksverband Gmbh, 45307 Essen, De
JP4846930B2 (en) * 2001-07-18 2011-12-28 電源開発株式会社 Exhaust gas treatment equipment
TWI419732B (en) 2011-02-22 2013-12-21 Iner Aec Executive Yuan Compact two-stage granular moving-bed apparatus
CN103203161A (en) * 2013-02-28 2013-07-17 煤炭科学研究总院 Flue gas combined desulfurization denitration demercuration device and method
DE102014016369A1 (en) * 2014-11-06 2016-05-12 Man Diesel & Turbo Se A method of operating an internal combustion engine with an internal combustion engine and an exhaust aftertreatment system downstream of the internal combustion engine for the purification of the exhaust gas
CN108465360B (en) * 2018-04-08 2020-12-04 中冶长天国际工程有限责任公司 High-efficient denitration ammonia injection system
CN108355471A (en) * 2018-04-28 2018-08-03 武汉都市环保工程技术股份有限公司 A kind of cross-current type parallel connection moving-bed active coke desulphurization denitration purifying column
CN111871173B (en) * 2020-07-03 2022-05-27 河北唯沃环境工程科技有限公司 Desulfurization and denitrification integrated treatment device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2157062A1 (en) * 1971-11-17 1973-05-30 Bamag Verfahrenstechnik Gmbh Waste gas nitrogen oxides removal - as ammonium nitrate /nitrite on activated charcoal
CA1007829A (en) * 1972-09-01 1977-04-05 Exxon Research And Engineering Company Removal of nitrogen oxides and sulfur oxides from gases
DE2433076A1 (en) * 1973-07-12 1975-02-06 Takeda Chemical Industries Ltd METHOD OF REMOVING NITROGEN OXYDES FROM EXHAUST GASES
JPS5636971B2 (en) * 1974-05-08 1981-08-27
DE2550190C2 (en) * 1975-11-07 1983-10-27 Bergwerksverband Gmbh, 4300 Essen Process for the desulphurization of flue gases
DE2626931C3 (en) * 1976-06-16 1979-04-05 Basf Ag, 6700 Ludwigshafen Copolyamides and their use for finishing leather or leather replacement material
DE3342500A1 (en) * 1983-11-24 1985-06-13 Heinrich Dr.rer.nat. 8032 Gräfelfing Frühbuss METHOD FOR REMOVING SO (DOWN ARROW) X (DOWN ARROW) AND NO (DOWN ARROW) X (DOWN ARROW) FROM EXHAUST GAS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107469600A (en) * 2017-09-27 2017-12-15 重集团大连工程建设有限公司 A kind of composite bed purifying column

Also Published As

Publication number Publication date
DE2911712A1 (en) 1980-09-25
JPS55129131A (en) 1980-10-06
DE2911712C2 (en) 1991-10-31

Similar Documents

Publication Publication Date Title
JPS5951846B2 (en) Method for removing sulfur oxides and nitrogen oxides in waste gas
Knoblauch et al. Application of active coke in processes of SO2-and NOx-removal from flue gases
JP4293642B2 (en) Method and catalyst for directly oxidizing H 2 under gas S contained in gas to sulfur
US6610264B1 (en) Process and system for desulfurizing a gas stream
JP2635861B2 (en) Method for removing nitrogen oxides from flue gas
JP3237795U (en) Integrated desulfurization and denitration system for flue gas based on low temperature adsorption principle
US5294409A (en) Regenerative system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream
SE411170B (en) WAY TO REMOVE PARTICULAR MATERIAL AND SULFUR OXIDES FROM EXHAUST GASES AND APPLIANCE FOR CARRYING OUT THE KIT
JPS5843224A (en) Dry type flue gas desulfurization and denitration method
JPS6268527A (en) Method of removing sulfur oxide from gas by using absorbing material capable of being regenerated by reaction with hydrogen sulfide
US4283380A (en) Process and installation for desulphurizing gases containing SO2
JPH0154089B2 (en)
JPH0138529B2 (en)
JPH0394815A (en) Method for desulfurizing and denitrating exhaust gas from sintering apparatus
JP3486696B2 (en) Desulfurization method using gas containing sulfurous acid gas as gas to be treated
CN207941382U (en) A kind of system of ozone oxidization combination desulfurization and denitration
EP0514941A1 (en) Process for the separation of sulphur oxides from offgases
JPH0747227A (en) Purification of exhaust gas containing nitrogen oxide in low concentration
JPS5864117A (en) Dry stack-gas desulfurization process
AU718019B2 (en) Exhaust gas treatment process
JPH08196920A (en) Regenerating method for denitrating catalyst
JPS61502526A (en) SO↓2 and NOx separation method
JPH0966222A (en) Treatment of exhaust gas
JPS5841893B2 (en) Hiengasu Shiyorihouhou
CN108144426A (en) A kind of ozone oxidization combination desulfurization and the system and method for denitration