JPS58153523A - Dry type stack gas desulfurization and denitration method - Google Patents
Dry type stack gas desulfurization and denitration methodInfo
- Publication number
- JPS58153523A JPS58153523A JP57033899A JP3389982A JPS58153523A JP S58153523 A JPS58153523 A JP S58153523A JP 57033899 A JP57033899 A JP 57033899A JP 3389982 A JP3389982 A JP 3389982A JP S58153523 A JPS58153523 A JP S58153523A
- Authority
- JP
- Japan
- Prior art keywords
- sox
- gas
- activated carbon
- ammonium sulfate
- desulfurization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は排ガス中O硫黄酸化物及び窒素酸化物を除去す
る乾式排煙脱硫・脱硝法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dry flue gas desulfurization/denitrification method for removing O-sulfur oxides and nitrogen oxides from flue gas.
働焼排ガス中の硫黄酸化物tよ)効果的に除去する方法
として、本発明者らは燃料石炭から安価な活性炭【製造
し、咳活性炭による乾式排煙脱硫法を特開昭54−34
617号、特開昭54−59161号などく提案した。As a method for effectively removing sulfur oxides from combustion flue gas, the present inventors manufactured inexpensive activated carbon from fuel coal and described a dry flue gas desulfurization method using activated carbon in JP-A-54-34.
No. 617 and Japanese Patent Application Laid-open No. 54-59161.
脱硝装置を組み込む場合には当脱硫法の前段階あるいは
脱硫装置0iIR階で行うことになる!管圧、これらの
乾式#煙脱硫・脱硝法KThいて排ガス中和アンモニア
ガスを混入させ、窒素酸化物の一部を脱硫工程の活性炭
を触媒として、窒素ガスに接触還元することが知られて
いる。一般に窒素酸化物の窒素ガスへの還元反応は(1
)式のように、NHsと排ガス中のNO,0愈が反応し
、N倉、HsOt生成する。If a denitrification device is installed, it will be carried out at the pre-stage of this desulfurization method or on the desulfurization equipment 0iIR floor! It is known that in these dry-type smoke desulfurization and denitrification methods KTh, neutralized ammonia gas is mixed into the exhaust gas, and a portion of the nitrogen oxides are catalytically reduced to nitrogen gas using activated carbon in the desulfurization process as a catalyst. . Generally, the reduction reaction of nitrogen oxides to nitrogen gas is (1
), NHs and NO in the exhaust gas react, producing N and HsOt.
NO十NHs+ ” Os →Ns +3−Hm O・
”(1)2
一方、排ガス中の硫黄革化物(はとんどが80m)は活
性炭によって物−吸着、酸化反応及び水和反応が並発し
、Hs 80a・nl(tOとして細孔内に吸着する。NO1NHs+ ”Os →Ns +3-Hm O・
” (1) 2 On the other hand, the sulfur leather in the exhaust gas (80m long) undergoes adsorption, oxidation reaction, and hydration reaction simultaneously due to activated carbon, and Hs 80a・nl (tO) is adsorbed in the pores. do.
80s+HsO+”Os→Hs80j ”−”・(2
)81804 +IIH1O→Hs 804 ・nHs
O・・・(3)排ガス中和50mが共存する場合Kl
i、NHs k添加すると、硫酸とN Hsが反広し酸
性硫安及び硫安を生成する。80s+HsO+”Os→Hs80j ”-”・(2
)81804 +IIH1O→Hs 804 ・nHs
O...(3) When exhaust gas neutralization 50m coexists, Kl
i. When NHs is added, sulfuric acid and NHs react and form acidic ammonium sulfate and ammonium sulfate.
■ムSO4+NHI→(NH4)H804””(4)H
sSOa+2NHs→(NH4)m 80m ”・
(5)したがって、排ガスにアンモニアガスを混入して
、活性炭による触媒作用によって接触還元を行い、かつ
活性炭による脱硫を行う場合、NHsの添加量は、当初
の排ガス中に含まれる窒素酸化物の1モル当量と硫黄酸
化物の2モル当量を合計した化学当量以上を必要とする
。さらK N Hsの添加量が多くなると、(5)式に
示すような反応によって活性炭0IIA孔内に吸着され
えH1804・nルOが硫安となる。この硫安は固体状
であるため、使用済活性炭を加熱脱着工程で再生を行う
場合、活性炭の損耗が大自(なり、シたがって再生活性
炭を再使用するシステムでは結果的に脱硫・脱硝率が低
下することになる。 j” 、、11本発明の目的は
、アンモニアガス添加量を低減させることKよって脱硫
・脱硝のコストの低減を計り、同時に脱硫・脱硝率を向
上させることがで自る乾式排煙脱硫・脱硝法を提供する
ことにある。■MuSO4+NHI→(NH4)H804""(4)H
sSOa+2NHs→(NH4)m 80m”・
(5) Therefore, when ammonia gas is mixed into the exhaust gas and catalytic reduction is performed by the catalytic action of activated carbon, and desulfurization is performed by the activated carbon, the amount of NHs added is 1% of the nitrogen oxides originally contained in the exhaust gas. The total chemical equivalent of the molar equivalent and 2 molar equivalents of the sulfur oxide is required. Furthermore, when the amount of KNHs added increases, H1804.nruO becomes ammonium sulfate because it is adsorbed in the activated carbon pores by the reaction shown in equation (5). Since this ammonium sulfate is in a solid state, when used activated carbon is regenerated through a thermal desorption process, the activated carbon is subject to considerable wear and tear (therefore, in a system that reuses recycled activated carbon, the desulfurization and denitrification rates are reduced). 11 The object of the present invention is to reduce the amount of ammonia gas added, thereby reducing the cost of desulfurization and denitrification, and at the same time improving the desulfurization and denitrification rates. Our objective is to provide a dry flue gas desulfurization and denitrification method.
本発明は、排ガスを一旦榊素質吸着剤と接触させ、排ガ
ス中の硫黄酸化物の大部分t−吸着除去し、次いで排ガ
ス中の硫黄酸化物量及び窒素酸化物量【検出し、硫黄酸
化物量OA’モル当量と窒素酸る後に炭素質吸着剤と接
触させることによって上記目的を達成したものである。In the present invention, exhaust gas is once brought into contact with a Sakaki elemental adsorbent, most of the sulfur oxides in the exhaust gas are removed by t-adsorption, and then the amount of sulfur oxides and nitrogen oxides in the exhaust gas is detected, and the amount of sulfur oxides OA' is detected. The above object was achieved by contacting the carbonaceous adsorbent with a molar equivalent of nitrogen and then contacting the carbonaceous adsorbent.
すなわち、排ガス中の硫黄酸化物量t−Aモル当量とし
、アンモニアガスを添加しない状態で炭素質吸着剤と接
触させて脱硫する両段の吸着工4MKおける脱硫率t9
0%とし九場合、帥段の吸着工程出口の排ガス中の硫黄
酸化物中はA1モル当量(=1−α9ム)に減少するの
で酸性硫安、硫安を生成する反応K 714 Vhられ
アンモニア量IA’/Aの割合に低減できる−とくなり
、加熱脱着工、INKおける炭素質吸着剤の損耗量を低
減させることが □できる。In other words, the amount of sulfur oxide in the exhaust gas is t-A molar equivalent, and the desulfurization rate t9 in a double-stage adsorption machine 4MK that desulfurizes by contacting with a carbonaceous adsorbent without adding ammonia gas.
In the case of 0%, the sulfur oxide in the exhaust gas at the outlet of the adsorption process of the main stage is reduced to A1 molar equivalent (=1-α9m), so the reaction that produces acidic ammonium sulfate and ammonium sulfate is K714 Vh and the ammonia amount IA It is possible to reduce the amount of carbonaceous adsorbent in the thermal desorption process and INK.
以下、本発明の乾式排煙脱硫・脱硝法の実施例を第1図
のフローシートによって説明する。Hereinafter, an embodiment of the dry flue gas desulfurization/denitrification method of the present invention will be described with reference to the flow sheet shown in FIG.
ボイラ100に燃料石炭1が供給される。ボイラト00
で発生する燃焼排ガス4Fi、一旦脱しん器101[導
びき、燃−排ガス5は吸着塔102に導く。吸着塔10
2は通常は移動層型式1kIIRす、ここで燃焼排ガス
中の硫黄酸化物中の大部分を除去する。硫黄酸化物の大
部分が吸着除去された燃焼排ガス6はまず、排ガス中の
硫黄酸化物濃度及び窒素酸化物量[【検出端7から検知
器105に4き検出し、それぞれOatから所要アンモ
ニア供給me決める一アン毫ニアは流れ8からアンモニ
ア供給制御弁106を通シ、流れ9から排ガス6に供給
し合流させ、流れlOとなる。アンモニアガスを含有し
た排ガス10Fi、次に吸着塔103に4龜、前記しえ
反応酸に従い排ガス中の硫黄酸化物ri酸性硫安及び硫
安とし、排ガス中の窒素酸化物は窒素ガスに還元するこ
とによって脱硫、脱硝を行う。Fuel coal 1 is supplied to the boiler 100. Boirato 00
The flue gas 4Fi generated in the dehydrator 101 is first guided to the adsorption tower 102. Adsorption tower 10
2 is usually a moving bed type 1kIIR, in which most of the sulfur oxides in the combustion exhaust gas are removed. The combustion exhaust gas 6 from which most of the sulfur oxides have been adsorbed and removed is first detected by the detector 105 from the detection end 7 to the concentration of sulfur oxides and the amount of nitrogen oxides in the exhaust gas. The determined one ammonia is supplied from the stream 8 through the ammonia supply control valve 106, and is supplied from the stream 9 to the exhaust gas 6, where they are combined to form a stream 10. The exhaust gas 10Fi containing ammonia gas is then transferred to the adsorption tower 103, and the sulfur oxides in the exhaust gas are converted into acidic ammonium sulfate and ammonium sulfate according to the reaction acid, and the nitrogen oxides in the exhaust gas are reduced to nitrogen gas. Performs desulfurization and denitrification.
次に脱硫、脱硝され圧排ガス11は脱しん器107に4
き、その後流れ12から大気に開放される。吸着塔10
2.103は移動層型式で通常は行うので、Hs 80
4・nHa、Oを吸着している活性炭は流れ13から抜
く、さらに吸着塔103では、活性炭には(NH4)
H804あるいは(NH4)雪804として硫黄酸化物
が吸着しているので流れ14からそれらの吸着剤を抜く
、流れ13.14は次に加熱脱着再生塔104に導き活
性炭の再生【行う。Next, the compressed exhaust gas 11 that has been desulfurized and denitrified is sent to the desulfurizer 107.
It is then released from stream 12 to the atmosphere. Adsorption tower 10
2.103 is usually carried out using a moving bed type, so Hs 80
The activated carbon adsorbing 4.nHa and O is removed from the stream 13, and further in the adsorption tower 103, the activated carbon has (NH4) adsorbed.
Since sulfur oxides are adsorbed as H804 or (NH4) snow 804, these adsorbents are removed from stream 14. Streams 13 and 14 are then led to thermal desorption regeneration tower 104 to regenerate activated carbon.
Ha SOa 、 (NH4) H804−(NH4)
18041−吸着した活性炭は温度350〜5oocで
加熱脱着され、次式に示す反応によりSO冨、co、、
co。HaSOa, (NH4) H804-(NH4)
18041-The adsorbed activated carbon is thermally desorbed at a temperature of 350 to 5 ooc, and SO-rich, co,
co.
Hl o、Nl 、一部のNHst含むガスが発生する
。A gas containing Hlo, Nl, and some NHst is generated.
(NH4)寓804→(NH4) H80a +NHs
(NH4)H804→NHs +80s +Hi 0N
Hs + SOs →SOs +HI O+ ’
3 Nmこれらのガスを含む脱着ガスは流れ15から
^濃f80gガス処理装置108に導き処理する。(NH4) Fable 804 → (NH4) H80a +NHs
(NH4)H804→NHs +80s +Hi 0N
Hs + SOs →SOs +HI O+ '
3 Nm The desorption gas containing these gases is led from stream 15 to a concentrated f80g gas treatment unit 108 for treatment.
通常は流れ15の脱着ガスとカーボンとt反応させ一部
硫黄として回収し、さらに2H18/80zの製置コン
トロールによるクラウス反応等によって)bS、 SO
z’を元素状硫黄に還元する。ざらに高層[80mガス
処ll装置10gのテールガスは流れ16から接電吸着
塔1020入口側に供給し2次公害を発生させないよう
クローズド化を計る。Normally, the desorption gas in stream 15 is reacted with carbon, and a portion is recovered as sulfur, and further by Claus reaction etc. using 2H18/80z production control) bS, SO
Reduce z' to elemental sulfur. The tail gas of 10 g of the 80 m high-rise gas treatment device is supplied from the flow 16 to the inlet side of the electrostatic adsorption tower 1020 to prevent secondary pollution from occurring.
一方、再生活性炭17は分級機109に4き微粒活性炭
Fi流れ4からボイツ100の燃料に混入させ処理する
。微粒子を分級した再生活性炭18は流れ19.20に
分流し、それぞれ流れ19はms、o吸着塔102へ、
流れ20は後段の吸着塔103に供給する。−万、活性
炭の補充は活性炭の循m畢Kaれ21から行う、補充活
性炭は通常、燃料石炭lの−mt*れ3から抜き、破砕
分級し適宜粒径の石炭を吸着剤製造装置11(l送シ、
該石炭t!2!気とall[1j$o 〜350c程度
テ低温鈑化後に乾留し、しかる後、吸!活性vcIII
!lめるために水蒸気賦活などt行い製造することがe
11る。On the other hand, the recycled activated carbon 17 is mixed into the fuel of the Boitz 100 from the fine activated carbon Fi stream 4 in the classifier 109 for treatment. The regenerated activated carbon 18 that has classified the fine particles is divided into streams 19 and 20, and the streams 19 are sent to the ms and o adsorption towers 102, respectively.
Stream 20 is fed to a downstream adsorption column 103. Activated carbon is replenished from the activated carbon circulation 21.Replenishment activated carbon is usually extracted from the fuel coal 1 -mt*re 3, crushed and classified, and coal of an appropriate particle size is produced in the adsorbent production equipment 11 ( l send,
The coal t! 2! After drying at a low temperature of about 1J$ ~ 350c, carbonize it, then smoke it! active vcIII
! In order to reduce the
11.
次に上記のフローシートにシける脱硫、脱硝効果を実験
例に基づいて説明する。Next, the desulfurization and denitrification effects of the above flow sheet will be explained based on experimental examples.
第2図には石炭系から製造した活性炭を用い脱硫・脱硝
試験【行った結果を示す。燃焼排ガスは次の模擬排ガス
組成で行つ”11801700 ppm 。Figure 2 shows the results of a desulfurization and denitrification test using activated carbon produced from coal-based materials. The combustion exhaust gas was conducted with the following simulated exhaust gas composition: 11801700 ppm.
NNO300pp 、 025%、Hm01G%、N露
バランスガスとした。温度は130C一定とし、空間n
xm’F18Valk5000h−’ とIJ、 横軸
d反応接触時間とし、縦軸は脱硫率、脱硝率として表わ
している。NHsの添加量は理論反応量の1.o5の2
000ppmとし友、第2図において、ηSO富が脱硫
率t、vNOが脱硝率をそれぞれ表わしている。The balance gas was 300pp of NNO, 025%, 1G% of Hm, and N dew. The temperature is constant at 130C, and the space n
xm'F18Valk5000h-' and IJ, the horizontal axis d is the reaction contact time, and the vertical axis is the desulfurization rate and the denitrification rate. The amount of NHs added is 1.0% of the theoretical reaction amount. o5 no 2
In Fig. 2, ηSO richness represents the desulfurization rate t, and vNO represents the denitrification rate.
ここで上記のフローシートにおける吸着塔102におい
て80gの大部分を吸着除去した仁とt想定し免除の効
果を示す。Here, the effect of exemption will be shown assuming that most of 80 g is adsorbed and removed in the adsorption tower 102 in the above flow sheet.
吸着塔1020人080* t−700ppmとし、脱
硫率928%で80mの大部分【吸着除去し九とすれば
、第1図の流些6で検出されるS(hは50 ppmで
ある。そこで模擬排ガス組成ksO*50 ppm−N
O500pprn、 Os 5%、HmO1O%、
@[1:10C,8V=5000h’一定として、Ni
1s添加量t−場論反り量の約1.1倍量660 pp
mとして脱硫・脱硝試験を行った結果を第3図に示す。If the adsorption tower is 1020 people 080*t-700 ppm, and the desulfurization rate is 928%, the majority of the 80 m will be adsorbed and removed (9), then the S (h) detected at stream 6 in Figure 1 will be 50 ppm. Simulated exhaust gas composition ksO*50 ppm-N
O500pprn, Os 5%, HmO1O%,
@[1:10C, 8V=5000h' constant, Ni
1s addition amount t - Approximately 1.1 times the field theory warpage amount 660 pp
Figure 3 shows the results of a desulfurization and denitrification test conducted with m.
第2図及びtss図から明らかなように、第3図の方が
長時間にわたって高い脱硫率及び脱硝率を示している。As is clear from FIG. 2 and the TSS diagram, FIG. 3 shows a higher desulfurization rate and higher denitrification rate over a longer period of time.
したがって排ガス中の硫黄酸化物の大部分を予め#i段
の吸着工程において除去し、然る後KNHI t−添加
し、脱硝を行うことによって脱硝率を向上させる仁とが
でき、さらに同一吸着塔で同時に脱硫、脱硝を行う場合
に比べてN Hs添加量【約33%m度低減で自る。Therefore, it is possible to improve the denitrification rate by removing most of the sulfur oxides in the exhaust gas in advance in the #i stage adsorption process, and then adding KNHI to perform denitrification. Compared to the case where desulfurization and denitrification are performed at the same time, the amount of NHs added can be reduced by about 33%.
また上記のフローシートによる実施例では使用する活性
炭はボイラ等で使用する燃料石炭から製造できるので、
従来O#A性炭を用いるより、活性炭製造工程から副生
ずるガス、タール分を熱とし回収できるのでよp安価と
なシ、脱硫コスト低減に有効である。In addition, in the example based on the above flow sheet, the activated carbon used can be manufactured from fuel coal used in boilers, etc.
Compared to using conventional O#A carbon, gas and tar by-produced from the activated carbon manufacturing process can be recovered as heat, making it much cheaper and effective in reducing desulfurization costs.
以上のように本発明和よれば、吸着工程を二段に分け、
#股の吸着工程で排ガス中の大部分の硫黄酸化物を吸着
除去後、この工程を経た排ガス中080s、NOとの理
論化学当蓋相当のアンモニア【添加し、次いで後段の吸
着工程を行うものであるから、紡段の吸着工程で除去し
た硫黄酸化物量に相当する2倍の化学当量のN H重量
【低減できることになる。さらVcN Hs添加量の低
減によってアンモニアとの反応によって生成する硫安の
量を低減させることができるから、加熱脱着工程におけ
る炭素質吸着剤の損耗i*を低減でき脱硫。As described above, according to the present invention, the adsorption process is divided into two stages,
#After removing most of the sulfur oxides from the exhaust gas in the crotch adsorption step, ammonia [which is equivalent to the theoretical chemical equivalent of 080s and NO] is added to the exhaust gas that has gone through this step, and then the latter adsorption step is performed. Therefore, the weight of N H can be reduced by twice the chemical equivalent of the amount of sulfur oxides removed in the adsorption step of the spinning stage. Furthermore, by reducing the amount of VcN Hs added, the amount of ammonium sulfate produced by reaction with ammonia can be reduced, so the loss i* of the carbonaceous adsorbent in the thermal desorption process can be reduced.
脱硝効果を向上させることができる。The denitrification effect can be improved.
第1図は本発明の一実施Nk示すフローシート、縞2図
は従来の乾内脱硫・脱硝法における脱硫・脱硝試験結果
を示す図、第3図祉第1図に示す実施例における脱硫・
I試験結果を示す図である。Fig. 1 is a flow sheet showing one embodiment of the present invention, Fig. 2 shows the results of desulfurization and denitrification tests in the conventional dry desulfurization and denitrification method, and Fig. 3 shows the desulfurization and denitrification test results in the example shown in Fig. 1.
It is a figure showing the I test result.
Claims (1)
去するに際し、鋺記排ガスと炭素質吸着剤とtI!触さ
せて排ガス中の硫黄酸化物の大部分【吸着除去し、次−
で排ガス中の硫黄酸化物濃度A′及び窒素酸化物層1[
Btそれぞれ検出し、2A’ +BO化学轟量相轟のア
ンモニアガス【排ガスに供給し混合させ友後、排ガスと
炭素質吸着剤とt接触させることt4I黴とする乾式排
煙脱硫・脱硝法。 2、特許請求の範囲第1項において、炭素質吸着剤が、
燃料石炭を低温酸化、乾留、賦活を行い製造した活性炭
で1)hことt−特徴とする乾式排煙脱硫・脱硝法。[Claims] 1. When removing sulfur oxides and nitrogen oxides contained in exhaust gas, the exhaust gas, carbonaceous adsorbent and tI! Most of the sulfur oxides in the exhaust gas are adsorbed and removed.
The sulfur oxide concentration A' in the exhaust gas and the nitrogen oxide layer 1 [
A dry flue gas desulfurization and denitrification method that detects Bt, 2A' + BO chemically, and ammonia gas [is supplied to the flue gas and mixed, and then brought into contact with the flue gas and a carbonaceous adsorbent to form mold. 2. In claim 1, the carbonaceous adsorbent is
A dry flue gas desulfurization/denitrification method using activated carbon produced by subjecting fuel coal to low-temperature oxidation, carbonization, and activation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57033899A JPS58153523A (en) | 1982-03-05 | 1982-03-05 | Dry type stack gas desulfurization and denitration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57033899A JPS58153523A (en) | 1982-03-05 | 1982-03-05 | Dry type stack gas desulfurization and denitration method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58153523A true JPS58153523A (en) | 1983-09-12 |
Family
ID=12399368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57033899A Pending JPS58153523A (en) | 1982-03-05 | 1982-03-05 | Dry type stack gas desulfurization and denitration method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58153523A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105836760A (en) * | 2016-03-17 | 2016-08-10 | 山东钢铁股份有限公司 | Method and system for producing ammonia water from salt extracting waste steam of HPF-process desulfurization liquid with ammonia as alkali source |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55106526A (en) * | 1979-02-08 | 1980-08-15 | Sumitomo Heavy Ind Ltd | Removing method for nitrogen oxide and sulfur oxide from waste gas |
JPS55129131A (en) * | 1979-03-24 | 1980-10-06 | Bergwerksverband Gmbh | Method of removing sulfur oxide and nitrogen oxide waste gas |
JPS56163739A (en) * | 1980-04-18 | 1981-12-16 | Bergwerksverband Gmbh | Method of removing sulfur oxide and nitrogen oxide in waste gas |
-
1982
- 1982-03-05 JP JP57033899A patent/JPS58153523A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55106526A (en) * | 1979-02-08 | 1980-08-15 | Sumitomo Heavy Ind Ltd | Removing method for nitrogen oxide and sulfur oxide from waste gas |
JPS55129131A (en) * | 1979-03-24 | 1980-10-06 | Bergwerksverband Gmbh | Method of removing sulfur oxide and nitrogen oxide waste gas |
JPS56163739A (en) * | 1980-04-18 | 1981-12-16 | Bergwerksverband Gmbh | Method of removing sulfur oxide and nitrogen oxide in waste gas |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105836760A (en) * | 2016-03-17 | 2016-08-10 | 山东钢铁股份有限公司 | Method and system for producing ammonia water from salt extracting waste steam of HPF-process desulfurization liquid with ammonia as alkali source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2611872C (en) | Waste gas treatment process including removal of mercury | |
CA2193638C (en) | Exhaust gas treating systems | |
KR890000512B1 (en) | Process for removal of nitrogen oxides and sulfur oxides from waste gases | |
US7311891B2 (en) | Process for the recovery of sulfur from Claus tail gas streams | |
JPS5911329B2 (en) | How to remove nitrogen oxides and sulfur oxides from exhaust gas | |
AU2020440900A1 (en) | Method for desulphurizating and denitrating flue gas in integrated manner based on low-temperature adsorption | |
JP2931153B2 (en) | Method for removing acid gas from combustion exhaust gas | |
US5120517A (en) | Process for the removal of sulfur oxides and nitrogen oxides from flue gas | |
JPS6268527A (en) | Method of removing sulfur oxide from gas by using absorbing material capable of being regenerated by reaction with hydrogen sulfide | |
US6106791A (en) | Exhaust gas treating systems | |
CA1153317A (en) | Process for dry desulfurization of flue gas | |
KR20080059958A (en) | Simultaneous flue gas desulfurization and denitrification with ozone and active coke | |
CN110575741A (en) | Flue gas desulfurization and denitrification device and method | |
JPS58153523A (en) | Dry type stack gas desulfurization and denitration method | |
JPS61287423A (en) | Treatment of exhaust gas | |
US4855117A (en) | Process for removing sulfur oxides from a gas by means of an absorption mass regenerable by reaction with elemental sulfur | |
JPH1147536A (en) | Method for treating exhaust gas | |
US4781903A (en) | Process for removing sulfur oxides from a gas by means of an absorption mass regenerable by reaction with elemental sulfur | |
JPS5864117A (en) | Dry stack-gas desulfurization process | |
CN107890755A (en) | With the production technology and processing system of system for preparing sulfuric acid processing activated coke method coke oven flue gas desulphurization denitration acid vapour | |
JPS6260132B2 (en) | ||
JPH05285340A (en) | Method for simultaneously desulfurizing and denitrating exhaust gas | |
JPH08155299A (en) | Enhancement of desulfurizing and denitrating capacity of carbonaceous catalyst | |
JPH08299755A (en) | Flue gas desulfurization method and device therefor | |
JPH06262038A (en) | Method for treatment of exhaust gas |