JPS5843223A - Dry type desulfurization and denitration method - Google Patents

Dry type desulfurization and denitration method

Info

Publication number
JPS5843223A
JPS5843223A JP56141702A JP14170281A JPS5843223A JP S5843223 A JPS5843223 A JP S5843223A JP 56141702 A JP56141702 A JP 56141702A JP 14170281 A JP14170281 A JP 14170281A JP S5843223 A JPS5843223 A JP S5843223A
Authority
JP
Japan
Prior art keywords
ammonia
bed
gas
moving bed
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56141702A
Other languages
Japanese (ja)
Other versions
JPH0366006B2 (en
Inventor
Takeshi Hamada
武士 濱田
Katsunobu Komatsubara
小松原 克展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP56141702A priority Critical patent/JPS5843223A/en
Priority to AU87870/82A priority patent/AU558983B2/en
Priority to DE3232544A priority patent/DE3232544C2/en
Priority to CA000411111A priority patent/CA1193829A/en
Publication of JPS5843223A publication Critical patent/JPS5843223A/en
Publication of JPH0366006B2 publication Critical patent/JPH0366006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To prevent blocking of a flue or the inlet of a moving bed due to production and attachment of ammonium sulfate, to reduce pressure drop of flue gas, and to prevent its uneven flow, by injecting ammonia directly into the moving bed of a carbonaceous adsorbent. CONSTITUTION:Ammonia or diluted ammonia 3 is directly injected into the moving bed 4 of a carbonaceous adsorbent 2 through an ammonia distributor 7, and a flue gas 1 is passed through the bed 4 at right angles to the moving direction of the bed 4 at the same time to remove SOx and NOx from the gas 1, thus permitting ammonium sulfate or hydrogensulfate to be produced only on the adsorbent 2 moving in the bed 4, and carried out of the bed 4 continuously, therefore prevented from blocking the flue or the inlet of the bed 4 as often happened in the conventional process caused by deposition and growth of the sulfate etc. on the perforated plate or the louvers of the inlet, pressure drop of the gas 1 to be reduced, uneven flow of the gas 1 to be prevented, and the uniform flow to be ensured for a long time.

Description

【発明の詳細な説明】 本発明は乾式脱硫脱硝方法におけるアンモニア注入方法
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an ammonia injection method in a dry desulfurization and denitrification method.

炭素質吸着剤によシ形成される移動層に廃ガスを通過さ
せ、該廃ガス中の硫黄酸化物を除去すると同時にアンモ
ニアを添加することにより窒素酸化物をも除去する乾式
同時脱硫脱硝法はよく知られている。この場合、アンモ
ニアはアンモニアガス単独またけ他の適当なガ誓で希釈
した後、移動層へ流入する前の当該廃ガスのダクト内に
注入するのが従来の方法であった(wc1図)。すなわ
ち、図において廃ガス1はテンモニアミキシング装置6
から注入されるアンモニアガスまたはアンモニア含有ガ
スと共に炭素質吸着剤2かもなる移動層4と直交流にて
接触する。この方法では、煙道内およびルーバーまたは
多孔板で保持されている移動層の廃ガス入口部分等に硫
酸アンモニウムまたは酸性硫酸アンモニウムが生成付着
し、成長するため廃ガスの流路面積を減らし結果的に廃
ガスの圧力損失を増加させ、かつ廃ガスが偏流し、脱責
、脱硝性能全低下させるという欠点があった。
The dry simultaneous desulfurization and denitration method involves passing waste gas through a moving bed formed by a carbonaceous adsorbent to remove sulfur oxides from the waste gas and at the same time removing nitrogen oxides by adding ammonia. well known. In this case, the conventional method is to dilute ammonia alone with ammonia gas or other suitable gas, and then inject it into the waste gas duct before it flows into the moving bed (see Figure 1). That is, in the figure, the waste gas 1 is mixed with the temponia mixing device 6.
The ammonia gas or ammonia-containing gas injected from the carbonaceous adsorbent 2 is brought into contact with the moving bed 4 in cross flow. In this method, ammonium sulfate or acidic ammonium sulfate is generated and adhered to the flue and the exhaust gas inlet part of the moving layer held by a louver or perforated plate, and grows, reducing the flow path area of the exhaust gas. This has the disadvantage that it increases the pressure loss of the gas, causes the waste gas to drift, and completely reduces the denitrification and denitrification performance.

また乾式同時脱硫脱硝装置で取扱う廃ガメの温度は、通
常愉温〜180℃であ夛、この温度範囲ではアンモニア
と硫黄酸化物との反応はアンモニアと窒素酸化物との反
応より先行するため、単一移動層を用い、移動層へ流入
する前の廃ガスにアンモニアを注入する従来法では太き
h脱硝率が得られないこと、およびアンモニアの消費量
が著るしく多くなるとiう欠点があった。そこで、第2
図に示すように、炭素質吸着剤2からなる移動層を2基
設置し、廃ガス1L第一移動層4¥r通過した後、第二
移動層5を通過させ、第一移動層の前ではアンモニアを
添加しないか、少量のアンモニア6′ヲ添加し、炭素質
吸着剤の吸着作用によって主に脱ffL’fr行なわせ
た後、第−移動層管通過した廃ガスにアンモニア3會注
入し、第二移動層において主に脱硝を行なわせる方法も
提案されているが、この方法は移動層′fr2基設置す
る必要があシ装置コストが高くなる欠点を有している。
In addition, the temperature of the waste tortoise handled in the dry simultaneous desulfurization and denitrification equipment is usually between pleasant temperature and 180℃, and in this temperature range, the reaction between ammonia and sulfur oxides precedes the reaction between ammonia and nitrogen oxides. The conventional method of using a single moving bed and injecting ammonia into the waste gas before it flows into the moving bed has the disadvantages that a high denitrification rate cannot be obtained and that the amount of ammonia consumed is significantly increased. there were. Therefore, the second
As shown in the figure, two moving beds made of carbonaceous adsorbent 2 are installed, and after 1L of waste gas passes through the first moving bed 4r, it passes through the second moving bed 5, and before the first moving bed. Then, either no ammonia is added or a small amount of ammonia 6' is added, and ffL'fr is mainly removed by the adsorption action of the carbonaceous adsorbent, and then three doses of ammonia are injected into the waste gas that has passed through the first moving bed pipe. A method has also been proposed in which denitrification is mainly carried out in the second moving bed, but this method has the disadvantage of requiring two moving beds 'fr, which increases the cost of the equipment.

本発明者らは上記従来法の欠点全解消するた11 め鋭意研究した結果、アンモニアの添加全炭素1 質吸着剤からなる移動層に直接性なうことによシこの目
的が達せられること七発見して本発明に到達した。
The inventors of the present invention have conducted extensive research to eliminate all of the drawbacks of the conventional methods described above, and have found that this objective can be achieved by adding ammonia directly to a moving bed made of an all-carbon monocarbon adsorbent. This discovery led to the present invention.

すなわち、本発明は、硫黄酸化物および窒素酸化物を含
有する廃ガスを炭素質吸着剤により形成される移動層に
通過させ、別途添加されたアンモニアの還元作用によシ
硫黄酸化物と同時に窒素酸化物を除去する乾式脱硫脱硝
方法において、アンモニアを炭素質吸着剤の充填層に直
   □液注入することを特徴とする方法である。
That is, in the present invention, waste gas containing sulfur oxides and nitrogen oxides is passed through a moving bed formed by a carbonaceous adsorbent, and sulfur oxides and nitrogen are simultaneously removed by the reducing action of ammonia added separately. This dry desulfurization and denitrification method for removing oxides is characterized by directly injecting ammonia into a packed bed of carbonaceous adsorbent.

と−で用いられる炭素質吸着剤としては通常用いられる
活性炭、半成コークス等があげられ、アンモニアはアン
モニアガスもしくは適尚なガスで希釈したもの管用いる
。また移動層の温度は通常は室温〜180℃に保持され
る。
Examples of carbonaceous adsorbents used in and-- include commonly used activated carbon and semi-formed coke, and ammonia is used in a tube diluted with ammonia gas or an appropriate gas. Further, the temperature of the moving layer is usually maintained at room temperature to 180°C.

第3図は本発明の一実施態様を示すものであってアンモ
ニアもしくはアンモニアの希釈ガス3t−1炭素質吸着
剤2によシ形成された移動層4の内部に設置されたアン
モニア分散装置7t−通して移動層内”“偏、)に直接
注入し、同時に廃ガス1は移動層と直交流に接触するよ
う通過させる。
FIG. 3 shows one embodiment of the present invention, in which ammonia or diluent gas of ammonia 3t-1 and an ammonia dispersion device 7t- installed inside a moving bed 4 formed by a carbonaceous adsorbent 2 are shown. The waste gas 1 is injected directly into the moving bed through the pump, and at the same time the waste gas 1 is passed in cross-flow contact with the moving bed.

このように本発明の方法によると、移動する炭素質吸着
剤層に直接アンモニアが注入されるので、硫酸アンモニ
ウムや酸性硫酸アンモニウムは移動している炭素質吸着
剤の上でのみ生成して移動層外へ連続的に排出される。
According to the method of the present invention, ammonia is directly injected into the moving carbonaceous adsorbent layer, so ammonium sulfate and acidic ammonium sulfate are generated only on the moving carbonaceous adsorbent and flow out of the moving layer. Continuously discharged.

したがって、従来法のように、煙道内、移動層入口部分
の多孔&またはルーパーでの硫酸アンモニウム、酸性硫
酸アンモニウムの生成付着、成長による閉塞が皆無であ
り、その結果廃ガスの圧力損失が著るしく小さくなると
共に廃ガスの偏流が防止され、長時間に亘って均一流を
確保することができる。
Therefore, unlike the conventional method, there is no clogging caused by the formation and growth of ammonium sulfate and acidic ammonium sulfate in the porous holes and loopers at the entrance of the moving bed in the flue, and as a result, the pressure loss of the waste gas is significantly reduced. At the same time, uneven flow of waste gas is prevented, and a uniform flow can be ensured over a long period of time.

第4図は別の実施態様紮示すものであって、単一移動層
内にアンモニアガス分散装置を複数個7,7′設置して
アンモニアを分割注入している。この場合は移動層全複
数個設置するのと同様の効果を発揮するので、単純な装
置によりアンモニアの消費量を少なくして脱硝率を向上
することができる。すなわう、乾式同時脱硫脱硝装置の
装置コストならびに運転コス)l−低減する効果が多大
である。
FIG. 4 shows another embodiment in which a plurality of ammonia gas dispersion devices 7, 7' are installed in a single moving bed to inject ammonia in portions. In this case, the same effect as when a plurality of moving beds are installed is achieved, so that the amount of ammonia consumed can be reduced and the denitrification rate can be improved with a simple device. In other words, the effect of reducing the equipment cost and operating cost of the dry-type simultaneous desulfurization and denitrification equipment is significant.

なお本発明によるアンモニアの直接注入方式は単一の移
動層の場合だけに限定されないことはいうまでもない。
It goes without saying that the direct ammonia injection method according to the present invention is not limited to a single moving layer.

以下実施例と比較例によシ本発明?さらに詳細に説明す
る。
Is this invention based on the following examples and comparative examples? This will be explained in more detail.

実施例1 Bo2績度860PPm s NOx濃度170 pp
mの重油燃焼廃ガスを移動量40々勺の粒状活性炭の移
動層へ温度155℃、流量10.001n’/Hで通し
7toアンモニアは移動層通過後の廃ガスで稀釈して移
動層内の廃ガス入ロ側ルーバー直後に設置したガス分散
装置を通し移動層内の直接注入した。アンモニア注入量
ハα45夏−37Hとした。移動層に於ける廃ガスの圧
力損失の経時変化は第6図に示す過多はとんど変化はな
い〇又100時間後の移動層出ロ廃ガス中の802濃度
は80 ppm %NozNOx濃度Oppnc テ@
 ッ友。
Example 1 Bo2 performance 860PPms NOx concentration 170pp
7 m of heavy oil combustion waste gas is passed through a moving bed of granular activated carbon with a moving amount of 40 m at a temperature of 155°C and a flow rate of 10.001 n'/H, and 7 m of ammonia is diluted with the waste gas after passing through the moving bed. The waste gas was injected directly into the moving bed through a gas dispersion device installed immediately after the louver on the inlet side. The amount of ammonia injected was α45-37H. The pressure loss of the waste gas in the moving bed changes over time as shown in Figure 6. There is almost no change in the pressure loss. Also, the 802 concentration in the waste gas exiting the moving bed after 100 hours is 80 ppm %NozNOx concentration Oppnc Te @
Friend.

比較例1 実施例1と同じ装置、廃ガス条件、粒状活性炭の移動量
及びアンモニア注入量とし、さらに同じ稀釈方法、稀釈
割合であるがアンモニアを移動層へ流入する前の廃ガス
ダクトに注入した。
Comparative Example 1 The same equipment, waste gas conditions, movement amount of granular activated carbon, and ammonia injection amount as in Example 1 were used, and the same dilution method and dilution ratio were used, but ammonia was injected into the waste gas duct before flowing into the moving bed.

移動層に於ける廃ガスの圧力損失の経時変化は第5図の
通りであった。圧力損失は徐々に増加し、168時間後
には255■Aqに達した。
The change in pressure loss of waste gas in the moving bed over time is shown in Figure 5. The pressure drop gradually increased and reached 255 Aq after 168 hours.

又100時間後の移動層重ロ廃ガス中のSO。Also, SO in the moving bed heavy waste gas after 100 hours.

濃度は’ I Ppm 、 NO,濃度は100 pp
mであった0 実施例2 80濡濃度? OOppm5NOx濃度!l OOpp
mの重油燃焼廃ガスを移動量80 t/Hの粒状活性炭
の移動層へ温度155℃、流量10001n”/Hで通
した。アンモニアは移動層通過後の廃ガスで稀釈して、
移動層入口部分へ(L 1 @ 1m/H。
The concentration is 'I Ppm, NO, the concentration is 100 ppm
m was 0 Example 2 80 wet density? OOppm5NOx concentration! l OOpp
m of heavy oil combustion waste gas was passed through a moving bed of granular activated carbon with a moving amount of 80 t/H at a temperature of 155°C and a flow rate of 10,001 n"/H. Ammonia was diluted with the waste gas after passing through the moving bed.
To the moving bed inlet part (L 1 @ 1m/H.

中間部へ(127Km”/Hで分割注入した。移動層通
過後の廃ガス中の803濃度祉0〜2 ppmであ夛、
)iox濃度は65 ppmと4った〇、;、・1゜ 比較例2        ′・ 実施例2と同じ装置、排ガス条件及び粒状活4生炭の移
動量でアンモニアは同じく稀釈して移動層入口部分にの
み注入した。移動層通過後の廃ガス中の80.濃Fiは
O〜2 ppmであり、NOx濃度は156 ppmと
なった。
The 803 concentration in the waste gas after passing through the moving bed was 0 to 2 ppm.
) The iox concentration was 65 ppm, 4〇,;,・1゜Comparative Example 2'・ Using the same equipment, exhaust gas conditions, and moving amount of granular activated carbon as in Example 2, ammonia was diluted in the same way and entered the moving bed. Injected only in part. 80% in the waste gas after passing through the moving bed. The concentrated Fi was O~2 ppm, and the NOx concentration was 156 ppm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図社従来法によるアンモニア注入方式
を示す概略図、vK5図および第4図は本発明によるア
ンモニア注入方式を示す概略図、第5図および第6図は
それぞれ従来方式による場合と本発明による場合の、移
動層を通過する廃ガスの圧力損失の経時変化を示すグラ
フである。 代理人  内 1)  明 代理人 萩原亮− 第1図 l   ; ↓
Figures 1 and 2 are schematic diagrams showing the ammonia injection method according to the company's conventional method, vK5 and Figure 4 are schematic diagrams showing the ammonia injection method according to the present invention, and Figures 5 and 6 are respectively the case using the conventional method. It is a graph showing the change in pressure loss of waste gas passing through the moving bed over time in the case of the present invention. Agents 1) Akira's agent Ryo Hagiwara - Figure 1 l; ↓

Claims (2)

【特許請求の範囲】[Claims] (1)  硫黄酸化物および窒素酸化物を含有する廃ガ
スを炭素質吸着剤により形成される移動層に通過させ、
別途添加されたアンモニアの還元作用により硫黄酸化物
と同時に窒素酸化物を除去する乾式脱硫脱硝方法におい
て、アンモニアを炭素質吸着剤の充填層に直接注入する
ことヲ特徴とする上記方法。
(1) passing waste gas containing sulfur oxides and nitrogen oxides through a moving bed formed by a carbonaceous adsorbent;
In the dry desulfurization and denitration method for removing nitrogen oxides at the same time as sulfur oxides through the reducing action of separately added ammonia, the above method is characterized in that ammonia is directly injected into a packed bed of carbonaceous adsorbent.
(2)炭素質吸着剤からなる単一移動層内部に設けられ
た複数の分散装置からアンモニアガスもしくはアンモニ
ア含有ガス・を特徴とする特許請求の範囲(すに記載の
方法。
(2) A method according to claim 1, characterized in that ammonia gas or ammonia-containing gas is supplied from a plurality of dispersion devices provided inside a single moving bed made of a carbonaceous adsorbent.
JP56141702A 1981-09-10 1981-09-10 Dry type desulfurization and denitration method Granted JPS5843223A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56141702A JPS5843223A (en) 1981-09-10 1981-09-10 Dry type desulfurization and denitration method
AU87870/82A AU558983B2 (en) 1981-09-10 1982-08-31 Gas purification
DE3232544A DE3232544C2 (en) 1981-09-10 1982-09-01 Process for removing sulfur and nitrogen oxides from an exhaust gas
CA000411111A CA1193829A (en) 1981-09-10 1982-09-09 Method of removing sulfur and nitrogen oxides by dry process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56141702A JPS5843223A (en) 1981-09-10 1981-09-10 Dry type desulfurization and denitration method

Publications (2)

Publication Number Publication Date
JPS5843223A true JPS5843223A (en) 1983-03-12
JPH0366006B2 JPH0366006B2 (en) 1991-10-15

Family

ID=15298207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56141702A Granted JPS5843223A (en) 1981-09-10 1981-09-10 Dry type desulfurization and denitration method

Country Status (4)

Country Link
JP (1) JPS5843223A (en)
AU (1) AU558983B2 (en)
CA (1) CA1193829A (en)
DE (1) DE3232544C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712423B2 (en) * 1987-05-07 1995-02-15 グロチヨフスキー,ホルスト Movable bed reactor and its operating method
CN106268194A (en) * 2016-10-12 2017-01-04 南京大学 A kind of for the gas scrubbing tower containing sublimate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523326A1 (en) * 1985-06-29 1987-01-08 Steag Ag METHOD FOR SEPARATING NO (DOWN ARROW) X (DOWN ARROW) FROM GASES, ESPECIALLY SMOKE GASES
US5766555A (en) * 1987-05-07 1998-06-16 Grochowski; Horst Feed inlet floor for mobile bed reactors
DE4035468C1 (en) * 1990-11-08 1992-10-01 Bergwerksverband Gmbh, 4300 Essen, De
DE19711840A1 (en) * 1997-03-21 1998-10-01 Petersen Hugo Verfahrenstech Process for removing pollutants in low concentration, especially chlorinated hydrocarbons and possibly heavy metals, from exhaust gases
AT520926B1 (en) * 2018-08-17 2019-09-15 Integral Eng Und Umwelttechnik Gmbh Adsorber for purifying exhaust gases and method therefor
AT522436B1 (en) 2019-04-26 2020-11-15 Integral Eng Und Umwelttechnik Gmbh Container and method for loading an adsorbent and / or absorbent with ammonia

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958074A (en) * 1972-10-09 1974-06-05
JPS4960026A (en) * 1972-10-13 1974-06-11
JPS562828A (en) * 1979-06-21 1981-01-13 Sumitomo Heavy Ind Ltd Simultaneous removal of sulfur oxide and nitrogen oxide contained in waste gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1594674A1 (en) * 1966-05-12 1971-04-22 Bergwerksverband Gmbh Process for removing sulfur oxides from gases containing them
JPS5219557B2 (en) * 1972-10-24 1977-05-28
DE2433076A1 (en) * 1973-07-12 1975-02-06 Takeda Chemical Industries Ltd METHOD OF REMOVING NITROGEN OXYDES FROM EXHAUST GASES
DE2911712C2 (en) * 1979-03-24 1991-10-31 Bergwerksverband Gmbh, 4300 Essen Process for removing sulfur oxides and nitrogen oxides from exhaust gases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958074A (en) * 1972-10-09 1974-06-05
JPS4960026A (en) * 1972-10-13 1974-06-11
JPS562828A (en) * 1979-06-21 1981-01-13 Sumitomo Heavy Ind Ltd Simultaneous removal of sulfur oxide and nitrogen oxide contained in waste gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712423B2 (en) * 1987-05-07 1995-02-15 グロチヨフスキー,ホルスト Movable bed reactor and its operating method
CN106268194A (en) * 2016-10-12 2017-01-04 南京大学 A kind of for the gas scrubbing tower containing sublimate

Also Published As

Publication number Publication date
CA1193829A (en) 1985-09-24
JPH0366006B2 (en) 1991-10-15
AU8787082A (en) 1983-03-17
DE3232544C2 (en) 1994-03-31
DE3232544A1 (en) 1983-06-30
AU558983B2 (en) 1987-02-19

Similar Documents

Publication Publication Date Title
JPS5843222A (en) Method for removing sulfur oxide and nitrogen oxide from waste gas
US10413865B2 (en) Ammonia-based desulfurization process and apparatus
US5176088A (en) Furnace ammonia and limestone injection with dry scrubbing for improved simultaneous SOX and NOX removal
CN100425325C (en) Dusted composite SCR smoke denitration and its denitrating catalytic reactor
JPS5843224A (en) Dry type flue gas desulfurization and denitration method
KR20010043138A (en) Process and apparatus for reducing the nitrogen oxide content in exhaust gases by the controlled addition of nh3
CN109806764A (en) A kind of industrial smoke storage reduction denitrating system and method
JP2018153808A (en) Carbon capture
CN107551756A (en) Prevent the flue gas desulfurization and denitration method and device of corrosion
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
JPS5843223A (en) Dry type desulfurization and denitration method
CN206240259U (en) A kind of flue gas desulfurization and denitrification device
CN206240258U (en) Prevent the flue gas desulfurization and denitrification device of corrosion
CN207913483U (en) A kind of coke oven flue gas low temperature SCR denitration and catalyst protect regenerative system online
KR20080059958A (en) Simultaneous flue gas desulfurization and denitrification with ozone and active coke
FI88363B (en) ROEKGASANLAEGGNING
CN110064290A (en) Activated coke dry method minimum discharge device and method
US10773204B2 (en) Systems and processes for removal and reduction of NOx and CO gases from flue/exhaust gas streams
JPH05317646A (en) Waste gas treating method
CN215276586U (en) Dry desulfurization and denitrification device
JP5632195B2 (en) Exhaust purification device
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPH05285344A (en) Treatment of gas containing nitrogen oxide
JPH08309151A (en) Regeneration method for catalytic ceramic filter
JPS6113060Y2 (en)