JPS5950665B2 - Production method of unsaturated amide - Google Patents

Production method of unsaturated amide

Info

Publication number
JPS5950665B2
JPS5950665B2 JP55156794A JP15679480A JPS5950665B2 JP S5950665 B2 JPS5950665 B2 JP S5950665B2 JP 55156794 A JP55156794 A JP 55156794A JP 15679480 A JP15679480 A JP 15679480A JP S5950665 B2 JPS5950665 B2 JP S5950665B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
oxide
present
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55156794A
Other languages
Japanese (ja)
Other versions
JPS5780348A (en
Inventor
正明 竹中
努 高橋
達也 桃林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP55156794A priority Critical patent/JPS5950665B2/en
Priority to US06/317,335 priority patent/US4365091A/en
Priority to CA000389403A priority patent/CA1167868A/en
Priority to DE8181305258T priority patent/DE3163668D1/en
Priority to EP81305258A priority patent/EP0051984B1/en
Publication of JPS5780348A publication Critical patent/JPS5780348A/en
Publication of JPS5950665B2 publication Critical patent/JPS5950665B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は不飽和ニトリルを水和して対応するア詳しくは
チタン、亜鉛およびニッケルを含有する複合酸化物、チ
タン、亜鉛およびランタンを含有する複合酸化物及びチ
タン、カドミウムおよびランタンを含有する複合酸化物
からなる群より選ばれたいずれか一種の複合酸化物を触
媒として、不飽和ニトリルと水を反応させて対応する不
飽和アミドを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention deals with the hydration of unsaturated nitriles to produce corresponding products, specifically, composite oxides containing titanium, zinc and nickel, composite oxides containing titanium, zinc and lanthanum, and titanium, cadmium. The present invention relates to a method for producing a corresponding unsaturated amide by reacting an unsaturated nitrile with water using any one kind of complex oxide selected from the group consisting of complex oxides containing lanthanum and lanthanum as a catalyst.

ニトリルの接触水和反応触媒として種々の複合酸化物が
提案されている。
Various composite oxides have been proposed as catalysts for the catalytic hydration reaction of nitriles.

例えば公開特許公報昭48−23716号では鉄および
亜鉛を含有する複合酸化物触媒、公開特許公報昭48−
39426号ではニッケルおよびクロムを含有する複合
酸化物触媒が提案されている。
For example, in Japanese Patent Publication No. 48-23716, a composite oxide catalyst containing iron and zinc,
No. 39426 proposes a composite oxide catalyst containing nickel and chromium.

これら公知の複合酸化物は活性が低くニトリルの反応率
をあげるためには100℃以上の高温、あるいは数時間
以上の反応時間を必要とするため副反応を惹起し、アミ
ドの収率を低下させるという欠点を有する。本発明者ら
は以上のような問題点を解決し、工業的に有利な製造法
を提供すべく鋭意研究を進めた結果、チタンの酸化物と
特定の金属酸化物とを組み合わせた複合酸化物がすぐれ
た活性、選択性を有する触媒であることを発見した。
These known composite oxides have low activity and require a high temperature of 100°C or more or a reaction time of several hours to increase the reaction rate of nitrile, causing side reactions and reducing the yield of amide. It has the following drawback. The present inventors have conducted intensive research to solve the above problems and provide an industrially advantageous manufacturing method, and as a result, a composite oxide that combines titanium oxide and a specific metal oxide has been developed. was discovered to be a catalyst with excellent activity and selectivity.

すなわち、チタン、亜鉛およびニッケルを含有する複合
酸化物、チタン、亜鉛およびランタンを含有する複合酸
化物及びチタン、カドミウムおよびランタンを含有する
複合酸化物は不飽和ニトリルの水和反応に高い活性およ
び選択性を有することを見出し、本発明を完成した。
That is, composite oxides containing titanium, zinc and nickel, composite oxides containing titanium, zinc and lanthanum, and composite oxides containing titanium, cadmium and lanthanum have high activity and selectivity in the hydration reaction of unsaturated nitriles. The present invention was completed based on this discovery.

ここでいう「複合酸化物」なる語は二元酸化物、三元酸
化物、四元酸化物およびより高度の多元酸化物ならびに
固溶体および非化学量論的酸化物を包含する。
The term "complex oxide" as used herein includes binary oxides, ternary oxides, quaternary oxides and higher multi-component oxides, as well as solid solutions and non-stoichiometric oxides.

これは単一酸化物、たとえば二酸化チタンと酸化亜鉛な
どの物理的混合物をも包含する。また「酸化物」なる語
は少なくとも部分的に水和された状態のものを包含する
ものと定義する。本発明で使用する複合酸化物触媒はこ
の種触媒調製に採用され得る合目的的な任意の態様で調
製することができる。
This also includes physical mixtures of single oxides, such as titanium dioxide and zinc oxide. The term "oxide" is also defined to include those in an at least partially hydrated state. The composite oxide catalyst used in the present invention can be prepared in any convenient manner that can be adopted for preparing this type of catalyst.

調製法としては沈澱法が好んで採用され得る。すなわち
二種以上の前記特定金属の塩類、たとえば硫酸塩、硝酸
塩、酸素酸塩、ハロゲン酸塩、有機酸塩等の溶液、特に
水溶液にアルカリ性物質としてアンモニア水、水酸化ア
ルカリ、炭酸アルカリ、有機アミン類等の溶液、特に水
溶液を加えて、相当する金属の水酸化物または含水酸化
物の沈澱を生成させ、得られた沈澱を適当な濃度で焼成
する方法が繁用される。各金属の合体を段階的に行なう
こともできる。たとえば、ある酸化物を先ずつくりこれ
の存在下に他の金属の塩の水溶液にアルカリを加えて水
酸化物または含水酸化物を沈澱させることもできる。水
酸化物または含水酸化物沈澱を経由しない方法としては
、前記のような塩の単独または二種以上の機械的混合物
を酸化物が生成するのに十分な高温度.に加熱して熱分
解させて相当する酸化物を得る方法も採用される。すで
に得られた各酸化物を混合してボールミル等で十分粉砕
することからなるメカノケミカルな方法によつてもよい
。この場合は水を加えて湿潤状態でボールミル処理する
と一層.効果的である。このようにして得られた複合酸
化物触媒は、高温で焼成して触媒構造の安定化を計るこ
とが好ましい。
As a preparation method, a precipitation method can be preferably employed. That is, solutions of two or more salts of the above-mentioned specific metals, such as sulfates, nitrates, oxyacids, halogenates, organic acid salts, etc., especially aqueous solutions, include aqueous ammonia, alkali hydroxides, alkali carbonates, organic amines as alkaline substances. A commonly used method is to add a solution, especially an aqueous solution, to form a precipitate of the corresponding metal hydroxide or hydrated oxide, and to sinter the resulting precipitate to an appropriate concentration. It is also possible to combine each metal in stages. For example, it is possible to first prepare an oxide and then add an alkali to an aqueous solution of a salt of another metal in its presence to precipitate a hydroxide or hydrous oxide. Methods that do not involve hydroxide or hydrous oxide precipitation include precipitation at a temperature sufficiently high for the oxide to form a mechanical mixture of one or more salts as described above. A method of obtaining the corresponding oxide by heating to thermal decomposition is also adopted. A mechanochemical method may be used, which consists of mixing the various oxides already obtained and sufficiently pulverizing the mixture using a ball mill or the like. In this case, it will be even better if you add water and perform ball milling in a wet state. Effective. The composite oxide catalyst thus obtained is preferably calcined at a high temperature to stabilize the catalyst structure.

その場合の焼成温度は、使用した金属の種類あるいはそ
の組み合わせによつて適当に選べばよい。
The firing temperature in this case may be appropriately selected depending on the type of metal used or the combination thereof.

上記触媒の焼成温度としては400℃から600℃の範
囲が特に好ましい。
The firing temperature of the catalyst is particularly preferably in the range of 400°C to 600°C.

加熱雰囲気は一般に還元性を避けるのがよい。このよう
な複合酸化物触媒は、この種触媒に慣用されているよう
に、担体に担持させて使用することができる。
The heating atmosphere should generally avoid reducing properties. Such a composite oxide catalyst can be used by being supported on a carrier, as is commonly used for this type of catalyst.

従つて、適当な担体たとえばシリカ、アルミナ、シリカ
/アルミナ、ケイソウ土、アランダム、コランダム、活
性炭、天然産ケイ酸塩類等を前記した触媒調製過程の任
意の段階において金属化合物に担持させることができる
。本発明方法によるニトリルの水和反応は、上述の触媒
を用いて通常室温ないし300℃の温度で行われるが、
反応速度の増大および副反応の抑制の面から40℃ない
し150℃で行うことが特に好ましい。ニトリルの水和
反応においてはニトリルに対して少なくとも化学量論の
水が反応系に存在することが必要である。この水は遊離
の水の外に、複合酸化物触媒が少なくとも部分的に水和
されている場合の水和水その他であつてもよい。反応は
気相、液相いずれで行うこともできるが、通常は液相で
行われる。また、加圧下において前記反応を行うことも
可能である。反応中の重合を抑制するため、適当な重合
防止剤たとえばハイドロキノン、フエノチアジン、P−
Tert−ブチルカテコール等を必要に応じて添加する
ことができる。
Therefore, suitable supports such as silica, alumina, silica/alumina, diatomaceous earth, alundum, corundum, activated carbon, naturally occurring silicates, etc. can be supported on the metal compound at any stage of the catalyst preparation process described above. . The hydration reaction of nitrile according to the method of the present invention is usually carried out at a temperature of room temperature to 300°C using the above-mentioned catalyst.
From the viewpoint of increasing the reaction rate and suppressing side reactions, it is particularly preferable to carry out the reaction at a temperature of 40°C to 150°C. In the hydration reaction of nitrile, it is necessary that at least a stoichiometric amount of water to the nitrile be present in the reaction system. This water may be not only free water but also hydration water when the composite oxide catalyst is at least partially hydrated. Although the reaction can be carried out in either a gas phase or a liquid phase, it is usually carried out in a liquid phase. It is also possible to carry out the reaction under pressure. In order to inhibit polymerization during the reaction, suitable polymerization inhibitors such as hydroquinone, phenothiazine, P-
Tert-butylcatechol and the like can be added as necessary.

また反応供給液中に酸素を溶存させることにより重合を
抑制することも可能である。本発明方法を実施するに当
つては、水と共に反応温度での使用に耐える安定な溶媒
を用いることもできる。
It is also possible to suppress polymerization by dissolving oxygen in the reaction feed solution. In carrying out the method of the present invention, a stable solvent that can withstand use at the reaction temperature can also be used together with water.

本発明に用いられる溶剤としてアルコール、ケトン、ア
ミド、スルホキシドなどがあり、具体例としてメタノー
ル、エタノール、イソプロパノール、アセトン、ジメチ
ルホルムアミド、ジメチルスルホキシド、ホルムアミド
、アセトアミド等が挙げられる。本発明に適用される不
飽和ニトリルの代表的な例として、アクリルニトリル、
メタクリロニトリル、クロトニツクニトリル、β−フエ
ニルアクリロニトリル、2−シアノ−2−ブテン、1−
シアノ−1−オクテン、10−ウンデセノニトリル、マ
レイン酸ニトリルあるいは、フマル酸ニトリルなどが挙
げられる。
Solvents used in the present invention include alcohols, ketones, amides, sulfoxides, and specific examples include methanol, ethanol, isopropanol, acetone, dimethylformamide, dimethylsulfoxide, formamide, acetamide, and the like. Typical examples of unsaturated nitriles applicable to the present invention include acrylonitrile,
Methacrylonitrile, crotonitrile, β-phenylacrylonitrile, 2-cyano-2-butene, 1-
Examples include cyano-1-octene, 10-undecenonitrile, maleate nitrile, and fumarate nitrile.

本発明の触媒はアミド化反応の活性、選択性が高く、反
応供給液中に溶存酸素が含まれていても触媒の活性、選
択性に悪影響を及ぼすことがないなどの特徴があり、技
術的にかつ経済的にみて不飽和アミドのすぐれた製造法
を提供するものである。
The catalyst of the present invention has high activity and selectivity in the amidation reaction, and even if dissolved oxygen is contained in the reaction feed solution, the catalyst activity and selectivity are not adversely affected. The present invention provides an excellent method for producing unsaturated amides, which is both economical and economical.

次に本発明を実施例にて説明するが、これら実施例は本
発明を限定するものではない。
Next, the present invention will be explained using Examples, but these Examples do not limit the present invention.

’実施例 1 四塩化チタンTiCl。'Example 1 Titanium tetrachloride TiCl.

38Og、硝酸亜鉛Zn(NO,)2 ・ 6H201
4.9g、硝酸ニツケルNi(NO3)2 ・ 6H2
05.8gを31の水に溶解する。
38Og, zinc nitrate Zn(NO,)2 ・6H201
4.9g, Ni nitrate (NO3)2 6H2
Dissolve 05.8 g in 31 water.

激しく攪拌しながら、これに28%アンモニア水Sml
が7になるまで加える。生成した沈澱は吸引ろ過しつつ
、多量の水で洗浄する。110℃で乾燥し、500℃で
6hr空気中で焼成する。
While stirring vigorously, add 28% ammonia water (Sml) to this.
Add until it reaches 7. The formed precipitate is filtered by suction and washed with a large amount of water. Dry at 110°C and bake in air at 500°C for 6 hours.

上記方法で調製した触媒5gを粉砕し、アクリカ[ャgリ
ルの6.8(重量)%水溶液23gと共にリービツヒ冷
却器付の内容100m1のフラスコに入れ、大気圧下で
攪拌しながら5hr加熱還流した(反応温度はおよそ7
0℃)。
5 g of the catalyst prepared by the above method was crushed and placed in a 100 ml flask equipped with a Liebig condenser together with 23 g of a 6.8% (by weight) aqueous solution of acrylic resin, and heated under reflux for 5 hours with stirring under atmospheric pressure. (The reaction temperature is approximately 7
0℃).

反応後、反応混合液をろ過して触媒を除去し、ガスクロ
マトグラフイ一により分析したところ、1ろ液中にアク
リルアミド0.65g(収率31.1モル%)が含まれ
ることを確認した。
After the reaction, the reaction mixture was filtered to remove the catalyst and analyzed by gas chromatography, and it was confirmed that 0.65 g of acrylamide (yield: 31.1 mol%) was contained in each filtrate.

他に副生物は検出されなかつた。比較例1〜12および
実施例2〜4 触媒の成分を変えた他は実施例1と同様の調製1法で、
触媒組成が第1表に記載の触媒を調製し、実施例1と同
様の反応条件で接触反応を行なつた。
No other by-products were detected. Comparative Examples 1 to 12 and Examples 2 to 4 Preparation 1 was carried out in the same manner as in Example 1 except that the catalyst components were changed.
A catalyst having the catalyst composition shown in Table 1 was prepared, and a catalytic reaction was carried out under the same reaction conditions as in Example 1.

その結果は第1表のとおりであつた。いずれも副生物は
検出されないか、またはごく微量であつた。
2比較例 13〜1
8触媒の成分を2成分とした他は実施例1と同様の調製
法で触媒組成が第2表に記載の触媒を調製し、実施例1
と同様の反応条件で接触反応を行なつた。
The results were as shown in Table 1. In all cases, by-products were not detected or were present in very small amounts.
2 Comparative Example 13-1
8 A catalyst having the catalyst composition listed in Table 2 was prepared by the same method as in Example 1 except that the catalyst components were changed to two components, and Example 1
The catalytic reaction was carried out under the same reaction conditions.

その結果は第2表のとおりであつた。The results were as shown in Table 2.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン、亜鉛およびニッケルを含有する複合酸化物
、チタン、亜鉛およびランタンを含有する複合酸化物及
びチタン、カドミウムおよびランタンを含有する複合酸
化物からなる群より選ばれたいずれか一種の複合酸化物
を触媒として、不飽和ニトリルと水を反応させることを
特徴とする不飽和アミドの製造法。
1 Any type of composite oxide selected from the group consisting of a composite oxide containing titanium, zinc and nickel, a composite oxide containing titanium, zinc and lanthanum, and a composite oxide containing titanium, cadmium and lanthanum. A method for producing an unsaturated amide, which comprises reacting an unsaturated nitrile with water using as a catalyst.
JP55156794A 1980-11-06 1980-11-06 Production method of unsaturated amide Expired JPS5950665B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP55156794A JPS5950665B2 (en) 1980-11-06 1980-11-06 Production method of unsaturated amide
US06/317,335 US4365091A (en) 1980-11-06 1981-11-02 Method for the production of acrylamide
CA000389403A CA1167868A (en) 1980-11-06 1981-11-04 Method for the production of acrylamide
DE8181305258T DE3163668D1 (en) 1980-11-06 1981-11-05 A method for the production of acrylamide
EP81305258A EP0051984B1 (en) 1980-11-06 1981-11-05 A method for the production of acrylamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55156794A JPS5950665B2 (en) 1980-11-06 1980-11-06 Production method of unsaturated amide

Publications (2)

Publication Number Publication Date
JPS5780348A JPS5780348A (en) 1982-05-19
JPS5950665B2 true JPS5950665B2 (en) 1984-12-10

Family

ID=15635445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55156794A Expired JPS5950665B2 (en) 1980-11-06 1980-11-06 Production method of unsaturated amide

Country Status (1)

Country Link
JP (1) JPS5950665B2 (en)

Also Published As

Publication number Publication date
JPS5780348A (en) 1982-05-19

Similar Documents

Publication Publication Date Title
US7468342B2 (en) Catalysts and process for producing aromatic amines
EP0227461B1 (en) Process for preparing cyclic amines
JP2930122B2 (en) Catalyst and method for hydrogenating unsaturated aliphatic compounds
JP2871874B2 (en) Method for producing 1,4-alkylenediamine
JP2003192647A (en) Method for producing primary amine
JPH0920742A (en) Production of nitrile
US5068468A (en) Hydrogenation of acetylenic alcohols
JP3222639B2 (en) Method for producing α-hydroxyisobutyrate
JPS5817462B2 (en) Pyridine carboxylic acid
JP2007197422A (en) Method for producing nitrogen-containing compound
JP2793485B2 (en) Process for producing alkanolamine, catalyst used therefor, and process for preparing catalyst
JPS58166936A (en) Catalyst for producing carboxylic ester and use thereof
JPS5950665B2 (en) Production method of unsaturated amide
JPS6165840A (en) Production of diglycolic acid salt
JP4972315B2 (en) Method for producing nitrogen-containing compound
JPH0585216B2 (en)
US5508465A (en) Preparation of aliphatic alpha, omega-aminonitriles in the gas phase
JPH02268137A (en) Preparation of carboxylic acid ester and formamide
US4343722A (en) Process for producing catalyst
JP3525937B2 (en) Method for producing α-hydroxyisobutyric acid amide
EP0510493B1 (en) Process for producing N-alkyl-N-methylamine or N-alkenyl-N-methylamine
JPS6357534A (en) Production of amide compound
JPS5950664B2 (en) Production method of unsaturated amide
US3379652A (en) Arsenophosphomolybdic acid catalyst compositions and process for their preparation
JP3313993B2 (en) Method for producing carboxylic acid ester