JP2007197422A - Method for producing nitrogen-containing compound - Google Patents

Method for producing nitrogen-containing compound Download PDF

Info

Publication number
JP2007197422A
JP2007197422A JP2006337204A JP2006337204A JP2007197422A JP 2007197422 A JP2007197422 A JP 2007197422A JP 2006337204 A JP2006337204 A JP 2006337204A JP 2006337204 A JP2006337204 A JP 2006337204A JP 2007197422 A JP2007197422 A JP 2007197422A
Authority
JP
Japan
Prior art keywords
catalyst
producing
aliphatic amine
ruthenium
aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006337204A
Other languages
Japanese (ja)
Other versions
JP5038700B2 (en
Inventor
Tetsuro Fukushima
哲朗 福島
Masaharu Jono
正晴 丈野
Michio Terasaka
道夫 寺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006337204A priority Critical patent/JP5038700B2/en
Publication of JP2007197422A publication Critical patent/JP2007197422A/en
Application granted granted Critical
Publication of JP5038700B2 publication Critical patent/JP5038700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aliphatic primary amine from an aliphatic alcohol in high selectivity and activity. <P>SOLUTION: An aliphatic amine is produced by bringing a straight-chain, branched-chain or cyclic 6-22C saturated or unsaturated aliphatic alcohol into contact with ammonia and hydrogen in the presence of a catalyst obtained by supporting (A) a ruthenium component and (B) at least one kind of metal component selected from a group composed of nickel, cobalt and tungsten and formed by the hydrolysis of (A') a ruthenium compound and (B') at least one kind of metal compound selected from a group composed of nickel, cobalt and tungsten on a carrier. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、含窒素化合物、特に脂肪族アミンの製造方法に関し、さらに詳しくは、ルテニウム系触媒を用いることにより、脂肪族アミンを高活性で高選択に製造する方法に関する。   The present invention relates to a method for producing a nitrogen-containing compound, particularly an aliphatic amine, and more particularly to a method for producing an aliphatic amine with high activity and high selectivity by using a ruthenium-based catalyst.

脂肪族1級アミンは、家庭用、工業用分野において重要な化合物であり、界面活性剤、繊維処理剤等の製造原料などとして用いられている。
脂肪族1級アミンの製造方法としては、様々な方法があるが、その中の1つとして、触媒の存在下に、脂肪族1級アルコールを、アンモニア及び水素と接触させる方法が知られている。この接触反応においては、触媒として、ニッケル、銅系触媒や貴金属系触媒が用いられる。
貴金属系触媒の中で、特にルテニウム系触媒を用いて、アルコール等からアミンを製造する方法としては、例えば、アルミナ、シリカ、アルミノケイ酸塩などの多孔性酸化物上に、ルテニウムを0.001〜25重量%程度と、コバルト及び/又はニッケルを0.1〜6重量%程度担持させると共に、銅を0〜10重量%程度、及び各種金属からなる促進剤を0〜5重量%程度担持させてなる触媒を用いる方法(特許文献1参照)、あるいはアルミナ、シリカ、アルミノケイ酸塩などの多孔性酸化物上に、ルテニウムを0.001〜25重量%程度と、コバルト及び/又はニッケルを6〜50重量%程度担持させると共に、銅を0〜10重量%程度、及び各種金属からなる促進剤を0〜5重量%程度担持させてなる触媒を用いる方法(特許文献2参照)が開示されている。
これらの技術においては、触媒の調製には含浸法が採用され、乾燥後に400℃で4時間焼成し、更に300℃で20時間の水素還元が行われており、また、触媒の反応性、選択性は不十分であった。
Aliphatic primary amines are important compounds in the household and industrial fields, and are used as raw materials for producing surfactants, fiber treatment agents and the like.
There are various methods for producing an aliphatic primary amine, and one of them is a method in which an aliphatic primary alcohol is brought into contact with ammonia and hydrogen in the presence of a catalyst. . In this contact reaction, a nickel, copper-based catalyst or a noble metal-based catalyst is used as a catalyst.
Among the noble metal catalysts, in particular, a ruthenium catalyst is used to produce an amine from an alcohol or the like. About 25% by weight, cobalt and / or nickel is supported on the order of 0.1 to 6% by weight, copper is supported on the order of 0 to 10% by weight, and promoters made of various metals are supported on the order of 0 to 5% by weight. Or about 0.001 to 25% by weight of ruthenium and 6 to 50 cobalt and / or nickel on a porous oxide such as alumina, silica, and aluminosilicate. A method using a catalyst in which about 0 to 10% by weight of copper and about 0 to 5% by weight of a promoter made of various metals are supported while being supported by about% by weight (patent text 2 reference) is disclosed.
In these techniques, an impregnation method is employed for catalyst preparation, and after drying, calcination is performed at 400 ° C. for 4 hours, and hydrogen reduction is further performed at 300 ° C. for 20 hours. Sex was insufficient.

特開平10−174874号公報Japanese Patent Laid-Open No. 10-174874 特開平10−174875号公報Japanese Patent Laid-Open No. 10-174875

本発明は、脂肪族アルコールから、脂肪族1級アミンを高活性で高選択に製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing an aliphatic primary amine with high activity and high selectivity from an aliphatic alcohol.

本発明は、触媒の存在下、直鎖状又は分岐若しくは環を有する炭素数6〜22の飽和又は不飽和の脂肪族アルコールを、アンモニア及び水素と接触させて、脂肪族アミンを製造する方法であって、前記触媒として、(A)’ルテニウム化合物及び(B)’ニッケル、コバルト及びタングステンからなる群から選ばれる少なくとも1種の金属化合物の加水分解により生成された(A)ルテニウム成分及び(B)ニッケル、コバルト及びタングステンからなる群から選ばれる少なくとも1種の金属成分が担体に担持された触媒を用いる、脂肪族アミンの製造方法を提供する。   The present invention is a method for producing an aliphatic amine by bringing a saturated or unsaturated aliphatic alcohol having 6 to 22 carbon atoms having a straight chain, a branched chain or a ring into contact with ammonia and hydrogen in the presence of a catalyst. As the catalyst, (A) a ruthenium compound and (B) a (R) ruthenium component produced by hydrolysis of at least one metal compound selected from the group consisting of nickel, cobalt and tungsten; (2) Provided is a method for producing an aliphatic amine using a catalyst in which at least one metal component selected from the group consisting of nickel, cobalt and tungsten is supported on a carrier.

本発明の製造方法によれば、脂肪族アルコールから、脂肪族1級アミンを高活性で高選択に製造することができる。   According to the production method of the present invention, an aliphatic primary amine can be produced from an aliphatic alcohol with high activity and high selectivity.

本発明の脂肪族アミンの製造方法においては、原料として、直鎖状又は分岐若しくは環を有する炭素数6〜22の飽和又は不飽和の脂肪族アルコールが用いられる。   In the method for producing an aliphatic amine of the present invention, a saturated or unsaturated aliphatic alcohol having 6 to 22 carbon atoms having a straight chain, a branched chain or a ring is used as a raw material.

このような脂肪族アルコールの具体例としては、ヘキシルアルコール、イソヘキシルアルコール、オクチルアルコール、イソオクチルアルコール、2−エチルヘキシルアルコール、ノニルアルコール、イソノニルアルコール、3,5,5−トリメチルヘキシルアルコール、デシルアルコール、3,7−ジメチルオクチルアルコール、2−プロピルへプチルアルコール、ラウリルアルコールなどのドデシルアルコール類、ミリスチルアルコールなどのテトラデシルアルコール類、ヘキサデシルアルコール類、オレイルアルコール、ステアリルアルコールなどのオクタデシルアルコール類、ベヘニルアルコール、イコシルアルコール類、ゲラニオール、シクロペンチルメタノール、シクロペンテニルメタノール、シクロヘキシルメタノール、シクロヘキセニルメタノールなどを挙げることができる。
本発明において、前記脂肪族アルコールは、炭素数6〜22の直鎖状脂肪族アルコールが好ましい。
Specific examples of such aliphatic alcohols include hexyl alcohol, isohexyl alcohol, octyl alcohol, isooctyl alcohol, 2-ethylhexyl alcohol, nonyl alcohol, isononyl alcohol, 3,5,5-trimethylhexyl alcohol, decyl alcohol. 3,7-dimethyloctyl alcohol, 2-propylheptyl alcohol, dodecyl alcohols such as lauryl alcohol, tetradecyl alcohols such as myristyl alcohol, hexadecyl alcohols, octadecyl alcohols such as oleyl alcohol and stearyl alcohol, behenyl alcohol , Icosyl alcohol, geraniol, cyclopentylmethanol, cyclopentenylmethanol, cyclohexylmethanol, Such as hexenyl methanol can be mentioned.
In the present invention, the aliphatic alcohol is preferably a linear aliphatic alcohol having 6 to 22 carbon atoms.

本発明においては、触媒として、担体にルテニウム成分等を担持したものが用いられる。上記担体としては、高分子化合物、金属リン酸塩、多孔性酸化物等が挙げられる。これらの担体の具体例としては、ポリスチレン、ナイロン、キレート樹脂等の高分子化合物、リン酸カルシウム、アルミニウムリン酸カルシウム等の金属リン酸塩、アルミナ、ジルコニア、チタニア、シリカ、活性炭、アルミノケイ酸塩、珪藻土、ハイドロタルサイト型化合物(例えば、マグネシウム−アルミニウム系複水酸化物)、アルカリ土類金属酸化物、ニオビア等の多孔性酸化物が挙げられる。これらの中で、多孔性酸化物が好ましく、高活性、高選択性触媒が得られる観点から、アルミナ、ジルコニア、チタニア及びアルミノケイ酸塩がより好ましく、ジルコニア、アルミナが特に好ましい。   In the present invention, a catalyst having a ruthenium component or the like supported on a carrier is used. Examples of the carrier include polymer compounds, metal phosphates, and porous oxides. Specific examples of these carriers include polymer compounds such as polystyrene, nylon and chelate resins, metal phosphates such as calcium phosphate and aluminum calcium phosphate, alumina, zirconia, titania, silica, activated carbon, aluminosilicate, diatomaceous earth, hydrotalc. Examples thereof include porous oxides such as site type compounds (for example, magnesium-aluminum double hydroxide), alkaline earth metal oxides, and niobia. Among these, porous oxides are preferable, and alumina, zirconia, titania and aluminosilicate are more preferable, and zirconia and alumina are particularly preferable from the viewpoint of obtaining a highly active and highly selective catalyst.

本発明においては、前記担体は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本発明で用いる触媒は、前記担体に(A)ルテニウム成分及び(B)第二金属成分を、(A)’ルテニウム化合物及び(B)’ニッケル、コバルト及びタングステンからなる群から選ばれる少なくとも1種の金属化合物の加水分解により担持させる。(B)第二金属成分としては、触媒活性や選択性の向上の観点から、ニッケル、コバルト及びタングステンの中から選ばれる金属成分が担持される。これらの第二金属成分は、1種を単独で担持させてもよく、2種以上を組み合わせて担持させてもよい。
In the present invention, the carrier may be used alone or in combination of two or more.
The catalyst used in the present invention contains (A) a ruthenium component and (B) a second metal component on the carrier, and (A) 'ruthenium compound and (B)' at least one selected from the group consisting of nickel, cobalt and tungsten. The metal compound is supported by hydrolysis. (B) As a 2nd metal component, the metal component chosen from nickel, cobalt, and tungsten is carry | supported from a viewpoint of an improvement of catalyst activity or selectivity. These second metal components may be supported alone or in combination of two or more.

次に当該触媒の調製方法の一例について説明する。
まず、イオン交換水などの媒体に、前記の多孔性酸化物などの担体を加えて懸濁させたのち、この懸濁液に、(A)’ルテニウム化合物及び(B)’第二金属成分源である金属化合物をイオン交換水などの媒体に溶解させた溶液を加え、攪拌しながら必要に応じて加熱し、20〜95℃程度、好ましくは40〜80℃の温度に調節する。
前記(A)’ルテニウム化合物としては、例えばルテニウムの塩化物、硝酸塩、蟻酸塩、アンモニウム塩等が挙げられ、(B)’第二金属成分源である金属化合物としては、例えば塩化物、硝酸塩、炭酸塩、硫酸塩、アンモニウム塩等が挙げられる。
Next, an example of a method for preparing the catalyst will be described.
First, a carrier such as the porous oxide is added and suspended in a medium such as ion-exchanged water, and then (A) 'ruthenium compound and (B)' second metal component source is added to this suspension. A solution in which a metal compound is dissolved in a medium such as ion-exchanged water is added, heated as necessary while stirring, and adjusted to a temperature of about 20 to 95 ° C, preferably 40 to 80 ° C.
Examples of the (A) ′ ruthenium compound include ruthenium chloride, nitrate, formate, and ammonium salt, and (B) ′ a metal compound as the second metal component source includes, for example, chloride, nitrate, Examples thereof include carbonates, sulfates and ammonium salts.

次いで、(A)’ルテニウム化合物及び(B)’第二金属成分源である金属化合物を含む懸濁液にアルカリを加えてpHを4〜12、好ましくは6〜11程度に調整して加水分解させ、熟成することによって、ルテニウム成分及び第二金属成分を多孔性酸化物などの担体に担持させる。前記アルカリについてはその種類は特に制限はないが、アンモニア水、ナトリウム、カリウムなどのアルカリ金属の炭酸塩、水酸化物等が使用できる。pHを調整して熟成する時間については、(A)’ルテニウム化合物及び(B)’第二金属成分源である金属化合物が加水分解する時間を確保出来れば良く、特に制限されない。   Next, (A) 'ruthenium compound and (B)' hydrolyze by adding alkali to the suspension containing the metal compound as the second metal component source and adjusting the pH to about 4 to 12, preferably about 6 to 11. The ruthenium component and the second metal component are supported on a support such as a porous oxide by aging. The type of the alkali is not particularly limited, but alkali metal carbonates such as ammonia water, sodium and potassium, hydroxides, and the like can be used. The time for ripening by adjusting the pH is not particularly limited as long as the time for hydrolysis of the metal compound (A) ′ ruthenium compound and (B) ′ second metal component source can be secured.

次に、例えばホルムアルデヒド、ヒドラジン、水素化ホウ素ナトリウム等の還元剤を加え、必要に応じて加熱し、20〜95℃程度、好ましくは60〜95℃の温度で還元処理した後、ろ過などにより固液分離し、得られた固形物を、充分に水洗後、好ましくは140℃以下の温度で常圧又は減圧下で乾燥処理する。前記還元剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
この還元剤は、担持されたルテニウム成分及び第二金属成分を効果的に還元するために金属全量に対して、通常1〜50倍モル程度、好ましくは15〜40倍モルの割合で用いられる。
Next, for example, a reducing agent such as formaldehyde, hydrazine, sodium borohydride and the like is added, heated as necessary, reduced at a temperature of about 20 to 95 ° C., preferably 60 to 95 ° C., and then solidified by filtration or the like. The solid obtained after liquid separation is sufficiently washed with water, and then dried at a temperature of 140 ° C. or lower under normal pressure or reduced pressure. The said reducing agent may be used individually by 1 type, and may be used in combination of 2 or more type.
In order to effectively reduce the supported ruthenium component and the second metal component, this reducing agent is usually used at a ratio of about 1 to 50 times mol, preferably 15 to 40 times mol for the total amount of metal.

上記還元処理の時間は、還元反応が所望する程度に進行する時間が確保出来れば良く、特に制限されない。
なお、前記還元処理の操作は、必ずしも必要ではなく、ルテニウム成分を加水分解で担持させた後、固液分離し、得られた固形物を充分に水洗して乾燥処理しても良い。
The time for the reduction treatment is not particularly limited as long as the time for the reduction reaction to proceed to a desired level can be secured.
The operation of the reduction treatment is not always necessary, and after the ruthenium component is supported by hydrolysis, it may be subjected to solid-liquid separation, and the obtained solid matter may be sufficiently washed with water and dried.

本発明においては、担体へのルテニウム成分及び第二金属成分の担持を、前記のように加水分解にて行うことから、通常含浸法等において行われる高温での焼成処理、不活性ガス雰囲気下での高温還元処理等の操作を必ずしも必要とせず、触媒の調製が簡易である。
このようにして得られたルテニウム系触媒は、十分な触媒活性や選択性及び経済性などの観点から、ルテニウム成分を、担体を含めた触媒全量に基づき、ルテニウム金属として好ましくは0.1〜25質量%程度、更に好ましくは1〜15質量%の割合で含有する。また、第二金属成分を、担体を含めた触媒全量に基づき、金属として好ましくは0.1〜25質量%程度、更に好ましくは0.2〜15質量%の割合で含有する。
In the present invention, since the loading of the ruthenium component and the second metal component on the support is performed by hydrolysis as described above, the firing process at a high temperature usually performed in an impregnation method or the like, under an inert gas atmosphere Thus, an operation such as a high-temperature reduction treatment is not necessarily required, and the preparation of the catalyst is simple.
The ruthenium-based catalyst thus obtained is preferably 0.1 to 25 as a ruthenium metal based on the total amount of the catalyst including the carrier, from the viewpoint of sufficient catalytic activity, selectivity and economy. About 1% by mass, more preferably 1 to 15% by mass. Further, the second metal component is contained as a metal in a proportion of preferably about 0.1 to 25% by mass, more preferably 0.2 to 15% by mass, based on the total amount of the catalyst including the carrier.

触媒中におけるルテニウム金属量は触媒を硫酸水素アンモニウムで融解処理後、ICP発光分析で測定する。また、第二金属成分の金属量は、担体中に珪素を含まない場合は触媒を湿式分解(硫酸−過酸化水素)処理し、珪素を含む場合は触媒をアルカリ溶融処理して、ICP発光分析で測定する。   The amount of ruthenium metal in the catalyst is measured by ICP emission analysis after melting the catalyst with ammonium hydrogen sulfate. The amount of metal of the second metal component can be determined by ICP emission analysis by treating the catalyst with wet decomposition (sulfuric acid-hydrogen peroxide) when silicon is not contained in the support, and by alkali-melting the catalyst when silicon is contained. Measure with

本発明の脂肪族アミンの製造方法においては、前記のようにして調製されたルテニウム系触媒の存在下、原料の前記脂肪族アルコールを、アンモニア及び水素と接触させることにより、脂肪族アミン、好ましくは脂肪族1級アミンを製造する。
この接触反応は、バッチタイプでは密閉式或いは流通式で行ってもよく、又は固定床流通式で行ってもよい。触媒の使用量は、反応方式にもよるが、バッチタイプの場合、良好な反応性及び選択性を得る観点から、原料の脂肪族アルコールに対して、0.1〜20質量%が好ましく、0.5〜10質量%がより好ましい。また、良好な転化率や選択性及び触媒劣化の抑制などの観点から、反応温度は120〜280℃程度、好ましくは180〜250℃であり、反応圧力は、通常常圧〜40MPaG程度、好ましくは0.5〜30MPaGである。
In the method for producing an aliphatic amine of the present invention, an aliphatic amine, preferably an aliphatic amine, preferably by contacting the raw aliphatic alcohol with ammonia and hydrogen in the presence of the ruthenium-based catalyst prepared as described above. An aliphatic primary amine is produced.
This contact reaction may be performed in a closed type or a flow type in a batch type, or may be performed in a fixed bed flow type. The amount of the catalyst used depends on the reaction method, but in the case of a batch type, from the viewpoint of obtaining good reactivity and selectivity, the content is preferably 0.1 to 20% by mass with respect to the starting aliphatic alcohol. More preferably, it is 5-10 mass%. Further, from the viewpoint of good conversion rate, selectivity and suppression of catalyst deterioration, the reaction temperature is about 120 to 280 ° C., preferably 180 to 250 ° C., and the reaction pressure is usually about normal pressure to about 40 MPaG, preferably 0.5 to 30 MPaG.

また、転化率及び1級アミンの選択性などの観点から、原料成分としてのアンモニア/脂肪族アルコールのモル比は、通常0.5〜10程度、好ましくは2〜7である。アンモニアは、水素と別々に添加することもできるが、これらの混合ガスとして導入することもできる。
水素/脂肪族アルコールのモル比については、バッチタイプの密閉式の場合は、初期の仕込み時のモル比で0.01〜3.0、特に0.02〜2.0が好ましい。また、バッチタイプの流通式や固定床流通式の場合は、初期に流通させる水素は脂肪族アルコールに対してモル比で0.01〜1.0、特に0.02〜0.8が好ましい。但し、いずれの反応形式においても、反応進行中は必ずしも当該範囲内に限定されない。
Further, from the viewpoints of conversion rate and selectivity of primary amine, the molar ratio of ammonia / aliphatic alcohol as a raw material component is usually about 0.5 to 10, preferably 2 to 7. Ammonia can be added separately from hydrogen, but can also be introduced as a mixed gas thereof.
About the molar ratio of hydrogen / aliphatic alcohol, in the case of a batch-type closed type, the molar ratio at the initial charging is preferably 0.01 to 3.0, particularly preferably 0.02 to 2.0. Moreover, in the case of a batch type flow type or a fixed bed flow type, the hydrogen to be circulated in the initial stage is preferably 0.01 to 1.0, particularly 0.02 to 0.8 in terms of molar ratio with respect to the aliphatic alcohol. However, in any reaction format, the reaction is not necessarily limited to the range within the progress.

調製例1
セパラブルフラスコにジルコニア粉末[第一稀元素化学工業(株)製「RC−100」]10.0gをイオン交換水170gに懸濁し、そこに分子量252.68の塩化ルテニウム水和物0.59g、硫酸ニッケル6水和物0.18gをイオン交換水40gに溶解させた溶液を加えて攪拌しながら60℃まで加熱した。その懸濁液(60℃)を10時間攪拌した後、沈殿剤として炭酸ナトリウム水溶液を滴下して懸濁液のpHを11にして加水分解させ、2時間熟成した。その懸濁液に37質量%ホルマリン溶液4.8gを加えて90℃まで加熱し、1時間還元した後、得られた粉末を濾過、水洗し、60℃、13kPaで乾燥してジルコニアに担持した2質量%ルテニウム−0.4質量%ニッケル触媒Aを約10g得た
Preparation Example 1
In a separable flask, 10.0 g of zirconia powder [“RC-100” manufactured by Daiichi Rare Element Chemical Co., Ltd.] is suspended in 170 g of ion-exchanged water, and 0.59 g of ruthenium chloride hydrate having a molecular weight of 252.68 is suspended therein. A solution prepared by dissolving 0.18 g of nickel sulfate hexahydrate in 40 g of ion-exchanged water was added and heated to 60 ° C. with stirring. After the suspension (60 ° C.) was stirred for 10 hours, an aqueous sodium carbonate solution was added dropwise as a precipitating agent to adjust the pH of the suspension to 11, and the mixture was aged for 2 hours. After adding 4.8 g of a 37% by mass formalin solution to the suspension and heating to 90 ° C. and reducing for 1 hour, the obtained powder was filtered, washed with water, dried at 60 ° C. and 13 kPa, and supported on zirconia. About 10 g of 2 mass% ruthenium-0.4 mass% nickel catalyst A was obtained.

調製例2
塩化ルテニウム水和物を0.59g、塩化コバルト6水和物を0.16g使用し、沈殿剤としてアンモニア水を用いた以外は調製例1と同様にして、ジルコニアに担持した2質量%ルテニウム−0.4質量%コバルト触媒Bを約10g得た。
Preparation Example 2
2 mass% ruthenium supported on zirconia in the same manner as in Preparation Example 1 except that 0.59 g of ruthenium chloride hydrate and 0.16 g of cobalt chloride hexahydrate were used and ammonia water was used as a precipitant. About 10 g of 0.4 mass% cobalt catalyst B was obtained.

調製例3
セパラブルフラスコにジルコニア粉末[第一稀元素化学工業(株)製「RC−100」]10.0gをイオン交換水170gに懸濁し、そこに分子量252.68の塩化ルテニウム水和物0.59gをイオン交換水40gに溶解させた溶液を加えて攪拌しながら60℃まで加熱した。その懸濁液(60℃)を10時間攪拌した後、メタタングステン酸アンモニウム0.64gをイオン交換水20gに溶解させた溶液とアンモニア水を滴下して懸濁液のpHを11にして加水分解させ、2時間熟成した。その懸濁液に37質量%ホルマリン溶液4.8gを加えて90℃まで加熱し、1時間還元した後、得られた粉末を濾過、水洗し、60℃、13kPaで乾燥してジルコニアに担持した2質量%ルテニウム−0.4質量%タングステン触媒Cを約10g得た。
Preparation Example 3
In a separable flask, 10.0 g of zirconia powder [“RC-100” manufactured by Daiichi Rare Element Chemical Co., Ltd.] is suspended in 170 g of ion-exchanged water, and 0.59 g of ruthenium chloride hydrate having a molecular weight of 252.68 is suspended therein. Was added to a solution of 40 g of ion-exchanged water and heated to 60 ° C. with stirring. The suspension (60 ° C.) was stirred for 10 hours, and then a solution obtained by dissolving 0.64 g of ammonium metatungstate in 20 g of ion-exchanged water and aqueous ammonia were added dropwise to hydrolyze the suspension to pH 11. And aged for 2 hours. After adding 4.8 g of a 37% by mass formalin solution to the suspension and heating to 90 ° C. and reducing for 1 hour, the obtained powder was filtered, washed with water, dried at 60 ° C. and 13 kPa, and supported on zirconia. About 10 g of 2 mass% ruthenium-0.4 mass% tungsten catalyst C was obtained.

調製例4
セパラブルフラスコにジルコニア粉末[第一稀元素化学工業(株)製「RC−100」]10.0gをイオン交換水170gに懸濁し、そこに分子量252.68の塩化ルテニウム水和物0.29g、硫酸ニッケル6水和物0.72gをイオン交換水40gに溶解させた溶液を加えて攪拌しながら60℃まで加熱した。その懸濁液(60℃)を10時間攪拌した後、沈殿剤としてアンモニア水を滴下して懸濁液のpHを11にして加水分解させ、2時間熟成した。その懸濁液に37質量%ホルマリン溶液3.2gを加えて90℃まで加熱し、1時間還元した後、得られた粉末を濾過、水洗し、120℃、常圧で乾燥してジルコニアに担持した1質量%ルテニウム−1.6質量%ニッケル触媒Dを約10g得た。
Preparation Example 4
In a separable flask, 10.0 g of zirconia powder [“RC-100” manufactured by Daiichi Elemental Chemical Co., Ltd.] is suspended in 170 g of ion-exchanged water, and 0.29 g of ruthenium chloride hydrate having a molecular weight of 252.68 is suspended therein. Then, a solution prepared by dissolving 0.72 g of nickel sulfate hexahydrate in 40 g of ion-exchanged water was added and heated to 60 ° C. with stirring. After the suspension (60 ° C.) was stirred for 10 hours, aqueous ammonia was added dropwise as a precipitating agent to bring the pH of the suspension to 11, and the mixture was aged for 2 hours. After adding 3.2 g of 37% by weight formalin solution to the suspension and heating to 90 ° C. and reducing for 1 hour, the obtained powder was filtered, washed with water, dried at 120 ° C. and normal pressure, and supported on zirconia. About 10 g of the obtained 1 mass% ruthenium-1.6 mass% nickel catalyst D was obtained.

調製例5
アルミナ粉末[住友化学(株)製「A−11」]10.0gを用いた以外は調製例1と同様にして、アルミナに担持した2質量%ルテニウム−0.4質量%ニッケル触媒Eを約10g得た。
Preparation Example 5
Except for using 10.0 g of alumina powder [“A-11” manufactured by Sumitomo Chemical Co., Ltd.], about 2 wt% ruthenium-0.4 wt% nickel catalyst E supported on alumina was obtained in the same manner as in Preparation Example 1. 10 g was obtained.

調製例6
セパラブルフラスコにジルコニア粉末[第一稀元素化学工業(株)製「RC−100」]10.0gをイオン交換水170gに懸濁し、そこに分子量252.68の塩化ルテニウム水和物0.29g、硫酸ニッケル6水和物0.72gをイオン交換水40gに溶解させた溶液を加えて攪拌しながら60℃まで加熱した。その懸濁液(60℃)を10時間攪拌した後、沈殿剤として10%水酸化ナトリウム水溶液を滴下して懸濁液のpHを11にして加水分解させ、60℃で2時間熟成した。その後冷却し、得られた粉末を濾過、水洗した。ろ液の電導度が30μS/cm以下になるまで水洗を行って、120℃、常圧で乾燥してジルコニアに担持した1質量%ルテニウム−1.6質量%ニッケル触媒Fを約10g得た。
Preparation Example 6
In a separable flask, 10.0 g of zirconia powder [“RC-100” manufactured by Daiichi Elemental Chemical Co., Ltd.] is suspended in 170 g of ion-exchanged water, and 0.29 g of ruthenium chloride hydrate having a molecular weight of 252.68 is suspended therein. Then, a solution prepared by dissolving 0.72 g of nickel sulfate hexahydrate in 40 g of ion-exchanged water was added and heated to 60 ° C. with stirring. After the suspension (60 ° C.) was stirred for 10 hours, 10% aqueous sodium hydroxide solution was added dropwise as a precipitant to cause the suspension to have a pH of 11, and the mixture was aged at 60 ° C. for 2 hours. Thereafter, the mixture was cooled, and the resulting powder was filtered and washed with water. The filtrate was washed with water until the electric conductivity became 30 μS / cm or less, and dried at 120 ° C. under normal pressure to obtain about 10 g of 1 mass% ruthenium-1.6 mass% nickel catalyst F supported on zirconia.

比較調製例1
磁製皿に三塩化ルテニウム0.26gをイオン交換水7.5gに溶解させ、そこにジルコニア粉末[第一稀元素化学工業(株)製「RC−100」]6gを浸漬し、室温で2時間静置した。次に、その懸濁液を65℃まで加熱して混合しながら脱水した後、120℃、常圧で一昼夜乾燥した。該乾燥粉末は、毎時3Nm3の空気流通下で毎分5℃の昇温速度で400℃まで加熱し、同温度で4時間焼成を行った。次いで、当該ルテニウム担持ジルコニア粉末を、イオン交換水7.4gに硝酸ニッケル6水和物0.12gを溶解させた溶液に浸漬し、室温で2時間静置した。その懸濁液を65℃まで加熱して混合しながら脱水した後、120℃、常圧で一昼夜乾燥した。該乾燥粉末は、毎時3Nm3の空気流通下で毎分5℃の昇温速度で400℃まで加熱し、同温度で4時間焼成を行ってジルコニアに担持した2質量%ルテニウム−0.4質量%ニッケル触媒Gを約6g得た。
尚、上記調製例及び比較調製例において、各触媒のルテニウム及び(B)成分の含有量はIPC発光分析で定量した。
Comparative Preparation Example 1
In a porcelain dish, 0.26 g of ruthenium trichloride is dissolved in 7.5 g of ion-exchanged water, and 6 g of zirconia powder [“RC-100” manufactured by Daiichi Rare Element Chemical Co., Ltd.] is immersed in the dish. Let stand for hours. Next, the suspension was heated to 65 ° C. and dehydrated while mixing, and then dried at 120 ° C. and normal pressure for a whole day and night. The dry powder was heated to 400 ° C. at a heating rate of 5 ° C./min under an air flow of 3 Nm 3 per hour, and baked at the same temperature for 4 hours. Next, the ruthenium-supported zirconia powder was immersed in a solution in which 0.12 g of nickel nitrate hexahydrate was dissolved in 7.4 g of ion-exchanged water and allowed to stand at room temperature for 2 hours. The suspension was heated to 65 ° C. and dehydrated while mixing, and then dried at 120 ° C. and normal pressure for a whole day and night. The dry powder was heated to 400 ° C. at a heating rate of 5 ° C./min under an air flow of 3 Nm 3 per hour, calcined at the same temperature for 4 hours, and supported on zirconia, 2 mass% ruthenium-0.4 mass About 6 g of% nickel catalyst G was obtained.
In the above preparation examples and comparative preparation examples, the contents of ruthenium and component (B) in each catalyst were quantified by IPC emission analysis.

実施例1
内容積500mlの電磁誘導回転攪拌式オートクレーブに、ステアリルアルコール150g(0.55mol)及び調製例1で得た触媒A 3g(2.0質量%対原料アルコール)を仕込み、アンモニア47g(2.76mol)と、全圧が2.3MPaG(室温)になるように水素(0.17mol)を圧入した。次いで攪拌(1000r/min)を行って反応温度220℃まで昇温した。同温度での初期最高圧力は16MPaGであった。全圧力を16MPaGで一定になるように水素を連続追加して反応を行った。得られた反応生成物は触媒を濾別した後、ガスクロマトグラフィーで組成分析を行った。結果を第1表に示す。
Example 1
Into an electromagnetic induction rotary stirring autoclave having an internal volume of 500 ml, 150 g (0.55 mol) of stearyl alcohol and 3 g of catalyst A obtained in Preparation Example 1 (2.0% by mass with respect to the raw material alcohol) were charged, and 47 g (2.76 mol) of ammonia. Then, hydrogen (0.17 mol) was injected so that the total pressure became 2.3 MPaG (room temperature). Subsequently, stirring (1000 r / min) was performed and it heated up to reaction temperature 220 degreeC. The initial maximum pressure at the same temperature was 16 MPaG. Reaction was performed by continuously adding hydrogen so that the total pressure was constant at 16 MPaG. The obtained reaction product was subjected to composition analysis by gas chromatography after filtering the catalyst. The results are shown in Table 1.

実施例2及び3
実施例1において、触媒Aの代わりに、調製例2及び3で得た触媒B及びCをそれぞれ用いて、第1表に示す反応温度220℃での初期最高圧力で一定になるように水素を追加した以外は、実施例1と同様に反応を行い、得られた反応生成物について実施例1と同様に分析を行った。結果を第1表に示す。
Examples 2 and 3
In Example 1, instead of the catalyst A, using the catalysts B and C obtained in Preparation Examples 2 and 3, respectively, the hydrogen was adjusted so as to be constant at the initial maximum pressure at the reaction temperature of 220 ° C. shown in Table 1. Except for the addition, the reaction was performed in the same manner as in Example 1, and the obtained reaction product was analyzed in the same manner as in Example 1. The results are shown in Table 1.

実施例4
実施例1において、触媒Aの代わりに、調製例4で得た触媒D 6g(4.0質量%対原料アルコール)を仕込み、第1表に示す反応温度220℃での初期最高圧力で一定になるように水素を追加した以外は、実施例1と同様に反応を行い、得られた反応生成物について実施例1と同様に分析を行った。結果を第1表に示す。
Example 4
In Example 1, instead of Catalyst A, 6 g of Catalyst D obtained in Preparation Example 4 (4.0% by mass with respect to raw material alcohol) was charged, and the initial maximum pressure at a reaction temperature of 220 ° C. shown in Table 1 was kept constant. The reaction was conducted in the same manner as in Example 1 except that hydrogen was added, and the obtained reaction product was analyzed in the same manner as in Example 1. The results are shown in Table 1.

実施例5
実施例1において、触媒Aの代わりに、調製例6で得た触媒F 3g(2.0質量%対原料アルコール)を仕込み、第1表に示す反応温度220℃での初期最高圧力で一定になるように水素を追加した以外は、実施例1と同様に反応を行い、得られた反応生成物について実施例1と同様に分析を行った。結果を第1表に示す。
Example 5
In Example 1, instead of the catalyst A, 3 g of the catalyst F obtained in Preparation Example 6 (2.0% by mass with respect to the raw material alcohol) was charged, and the initial maximum pressure at a reaction temperature of 220 ° C. shown in Table 1 was kept constant. The reaction was conducted in the same manner as in Example 1 except that hydrogen was added, and the obtained reaction product was analyzed in the same manner as in Example 1. The results are shown in Table 1.

Figure 2007197422
Figure 2007197422

比較例1
実施例1において、触媒Aの代わりに、比較調製例1で得た触媒Gを用いた以外は実施例1と同様の反応操作を行い、反応を6時間行った。反応温度220℃での初期最高圧力は16MPaGであった。得られた反応生成物は実施例1と同様の分析を行った。アルコール転化率は12.7%であった。
Comparative Example 1
In Example 1, instead of the catalyst A, the same reaction operation as in Example 1 was performed except that the catalyst G obtained in Comparative Preparation Example 1 was used, and the reaction was performed for 6 hours. The initial maximum pressure at a reaction temperature of 220 ° C. was 16 MPaG. The obtained reaction product was analyzed in the same manner as in Example 1. The alcohol conversion was 12.7%.

実施例6
実施例1において、ステアリルアルコールの代わりに、ラウリルアルコールを150g(0.81mol)仕込み、アンモニア69g(4.06mol)を用いた以外は実施例1と同様の反応操作を行い、反応を9時間行った。反応温度220℃での初期最高圧力は21MPaGであった。得られた反応生成物は実施例1と同様の分析を行った。アルコール転化率は97.9%、ラウリルアミン選択率は90.4%であり、ジラウリルアミン生成量は8.9%、その他副生成物は0.6%であった。
Example 6
In Example 1, instead of stearyl alcohol, 150 g (0.81 mol) of lauryl alcohol was charged and 69 g (4.06 mol) of ammonia was used. The same reaction operation as in Example 1 was performed, and the reaction was performed for 9 hours. It was. The initial maximum pressure at a reaction temperature of 220 ° C. was 21 MPaG. The obtained reaction product was analyzed in the same manner as in Example 1. The alcohol conversion was 97.9%, laurylamine selectivity was 90.4%, dilaurylamine production was 8.9%, and other by-products were 0.6%.

実施例7
内容積500mlの電磁誘導回転攪拌式オートクレーブに、ステアリルアルコール150g(0.55mol)、調製例1で得た触媒A 3g(2.0質量%対原料アルコール)を仕込み、水素雰囲気下(0MPaG)で攪拌(1000r/min)を行って220℃まで昇温した。同温度でアンモニア19.1g(1.1mol)/h、水素2.6L(0.12mol)/hの速度で反応圧力が2.0MPaGで一定になるように維持しながら流通して反応を3時間行った。触媒を濾別後、ガスクロマトグラフィーで組成分析を行ったところ、アルコール転化率は96.0%、ステアリルアミン選択率は78.1%であり、ジステアリルアミン生成量は13.4%、その他副生成物は7.6%であった。
Example 7
Into an electromagnetic induction rotary stirring autoclave with an internal volume of 500 ml, 150 g (0.55 mol) of stearyl alcohol and 3 g of catalyst A obtained in Preparation Example 1 (2.0% by mass with respect to raw material alcohol) were charged, and in a hydrogen atmosphere (0 MPaG) The mixture was stirred (1000 r / min) and heated up to 220 ° C. While maintaining the reaction pressure at 2.0 MPaG at a constant rate of 19.1 g (1.1 mol) / h of ammonia and 2.6 L (0.12 mol) / h of hydrogen at the same temperature, the reaction was conducted 3 Went for hours. The catalyst was filtered off and analyzed by gas chromatography. The alcohol conversion was 96.0%, stearylamine selectivity was 78.1%, the amount of distearylamine produced was 13.4%, others By-product was 7.6%.

実施例8
実施例7において、触媒Aの代わりに、調製例5で得た触媒Eを用いて、アンモニア13.1g(0.77mol)/h、及び水素4.3L(0.19mol)/hの速度で流通させた以外は、実施例1と同様の反応操作をして反応を6時間行った。得られた反応生成物は実施例1と同様に分析を行った。アルコール転化率は65.5%、ステアリルアミン選択率は85.5%であり、ジステアリルアミン生成量は7.3%、その他副生成物は2.2%であった。
Example 8
In Example 7, instead of Catalyst A, Catalyst E obtained in Preparation Example 5 was used at a rate of 13.1 g (0.77 mol) / h of ammonia and 4.3 L (0.19 mol) / h of hydrogen. The reaction was carried out for 6 hours using the same reaction procedure as in Example 1 except that it was circulated. The obtained reaction product was analyzed in the same manner as in Example 1. The alcohol conversion was 65.5%, stearylamine selectivity was 85.5%, distearylamine production was 7.3%, and other by-products were 2.2%.

本発明の脂肪族アミンの製造方法は、脂肪族アルコールから、脂肪族1級アミンを高活性で高選択に製造することができる方法であり、得られる脂肪族1級アミンは、家庭用、工業用分野において重要な化合物であり、例えば、界面活性剤、繊維処理剤等の製造原料などとして好適に用いられる。   The method for producing an aliphatic amine of the present invention is a method capable of producing an aliphatic primary amine with high activity and high selectivity from an aliphatic alcohol. It is an important compound in the field of use, and is suitably used as a raw material for production of, for example, surfactants and fiber treatment agents.

Claims (9)

触媒の存在下、直鎖状又は分岐若しくは環を有する炭素数6〜22の飽和又は不飽和の脂肪族アルコールを、アンモニア及び水素と接触させて、脂肪族アミンを製造する方法であって、前記触媒として、(A)’ルテニウム化合物及び(B)’ニッケル、コバルト及びタングステンからなる群から選ばれる少なくとも1種の金属化合物の加水分解により生成された(A)ルテニウム成分及び(B)ニッケル、コバルト及びタングステンからなる群から選ばれる少なくとも1種の金属成分が担体に担持された触媒を用いる、脂肪族アミンの製造方法。   A method for producing an aliphatic amine by bringing a saturated or unsaturated aliphatic alcohol having 6 to 22 carbon atoms having a straight chain, a branched chain or a ring into contact with ammonia and hydrogen in the presence of a catalyst, As a catalyst, (A) a ruthenium compound and (B) a (R) ruthenium component produced by hydrolysis of at least one metal compound selected from the group consisting of nickel, cobalt and tungsten, and (B) nickel and cobalt. And a method for producing an aliphatic amine using a catalyst in which at least one metal component selected from the group consisting of tungsten and a carrier is supported on a carrier. 触媒中おける(A)ルテニウム成分の含有量が、ルテニウム金属として、触媒全量に基づき0.1〜25質量%である請求項1記載の脂肪族アミンの製造方法。   The method for producing an aliphatic amine according to claim 1, wherein the content of the (A) ruthenium component in the catalyst is 0.1 to 25% by mass based on the total amount of the catalyst as ruthenium metal. 触媒中における(B)金属成分の含有量が、金属として、触媒全量に基づき0.1〜25質量%である請求項1又は2に記載の脂肪族アミンの製造方法。   The method for producing an aliphatic amine according to claim 1 or 2, wherein the content of the metal component (B) in the catalyst is 0.1 to 25% by mass based on the total amount of the catalyst as a metal. 担体が、高分子化合物、金属リン酸塩及び多孔性酸化物からなる群から選ばれる少なくとも1種である請求項1〜3のいずれかに記載の脂肪族アミンの製造方法。   The method for producing an aliphatic amine according to any one of claims 1 to 3, wherein the carrier is at least one selected from the group consisting of a polymer compound, a metal phosphate, and a porous oxide. 多孔性酸化物が、アルミナ、ジルコニア、チタニア及びアルミノケイ酸塩からなる群から選ばれる少なくとも1種である請求項4記載の脂肪族アミンの製造方法。   The method for producing an aliphatic amine according to claim 4, wherein the porous oxide is at least one selected from the group consisting of alumina, zirconia, titania and aluminosilicate. 140℃以下の温度で乾燥処理した触媒を使用する請求1〜5のいずれかに記載の脂肪族アミンの製造方法。   The manufacturing method of the aliphatic amine in any one of Claims 1-5 which uses the catalyst dried at the temperature of 140 degrees C or less. 調製した触媒を、ホルムアルデヒド、ヒドラジン及び水素化ホウ素ナトリウムの中から選ばれる少なくとも1種の還元剤の存在下で還元処理する請求項1〜6のいずれかに記載の脂肪族アミンの製造方法。   The method for producing an aliphatic amine according to any one of claims 1 to 6, wherein the prepared catalyst is subjected to a reduction treatment in the presence of at least one reducing agent selected from among formaldehyde, hydrazine and sodium borohydride. 脂肪族アルコールとアンモニア及び水素との接触反応を、120〜280℃の温度で行う請求項1〜7のいずれかに記載の脂肪族アミンの製造方法。   The method for producing an aliphatic amine according to any one of claims 1 to 7, wherein the contact reaction between the aliphatic alcohol and ammonia and hydrogen is performed at a temperature of 120 to 280 ° C. 脂肪族アルコールとアンモニア及び水素との接触反応を、アンモニア/脂肪族アルコールモル比で0.5〜10の条件で行う請求項1〜8のいずれかに記載の脂肪族アミンの製造方法。   The method for producing an aliphatic amine according to any one of claims 1 to 8, wherein the contact reaction of the aliphatic alcohol with ammonia and hydrogen is carried out under a condition of an ammonia / aliphatic alcohol molar ratio of 0.5 to 10.
JP2006337204A 2005-12-28 2006-12-14 Method for producing fat nitrogen-containing compound Expired - Fee Related JP5038700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337204A JP5038700B2 (en) 2005-12-28 2006-12-14 Method for producing fat nitrogen-containing compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005379655 2005-12-28
JP2005379655 2005-12-28
JP2006337204A JP5038700B2 (en) 2005-12-28 2006-12-14 Method for producing fat nitrogen-containing compound

Publications (2)

Publication Number Publication Date
JP2007197422A true JP2007197422A (en) 2007-08-09
JP5038700B2 JP5038700B2 (en) 2012-10-03

Family

ID=38452375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337204A Expired - Fee Related JP5038700B2 (en) 2005-12-28 2006-12-14 Method for producing fat nitrogen-containing compound

Country Status (1)

Country Link
JP (1) JP5038700B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072428A1 (en) * 2006-12-15 2008-06-19 Kao Corporation Process for production of nitrogenated compound
JP2014505029A (en) * 2010-12-08 2014-02-27 エボニック デグサ ゲーエムベーハー Highly selective direct amination of primary alcohols with ammonia to obtain primary amines with homogeneous catalyst at high volume ratio of liquid phase to gas phase and / or high pressure
WO2014133031A1 (en) * 2013-03-01 2014-09-04 国立大学法人京都大学 Preparation method for solid catalyst and preparation method for silyl-substituted unsaturated compound using solid catalyst
JP2017533247A (en) * 2014-11-10 2017-11-09 ローディア オペレーションズ Method for forming amines by direct amination reaction
CN110746377A (en) * 2019-11-07 2020-02-04 中国科学院兰州化学物理研究所 Method for synthesizing 1-substituted pyrrolidine/piperidine derivative by supported metal catalysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174875A (en) * 1996-10-31 1998-06-30 Basf Ag Amination catalyst for alkylene oxide, alcohol, aldehyde and ketone and its production
JP2004203875A (en) * 2002-12-20 2004-07-22 Basf Ag Production method for amine and use of catalyst in producing the amine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174875A (en) * 1996-10-31 1998-06-30 Basf Ag Amination catalyst for alkylene oxide, alcohol, aldehyde and ketone and its production
JP2004203875A (en) * 2002-12-20 2004-07-22 Basf Ag Production method for amine and use of catalyst in producing the amine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072428A1 (en) * 2006-12-15 2008-06-19 Kao Corporation Process for production of nitrogenated compound
JP2008150312A (en) * 2006-12-15 2008-07-03 Kao Corp Method for producing nitrogen-containing compound
US7947853B2 (en) 2006-12-15 2011-05-24 Kao Corporation Process for production of nitrogenated compound
JP2014505029A (en) * 2010-12-08 2014-02-27 エボニック デグサ ゲーエムベーハー Highly selective direct amination of primary alcohols with ammonia to obtain primary amines with homogeneous catalyst at high volume ratio of liquid phase to gas phase and / or high pressure
WO2014133031A1 (en) * 2013-03-01 2014-09-04 国立大学法人京都大学 Preparation method for solid catalyst and preparation method for silyl-substituted unsaturated compound using solid catalyst
JP2017533247A (en) * 2014-11-10 2017-11-09 ローディア オペレーションズ Method for forming amines by direct amination reaction
CN110746377A (en) * 2019-11-07 2020-02-04 中国科学院兰州化学物理研究所 Method for synthesizing 1-substituted pyrrolidine/piperidine derivative by supported metal catalysis
CN110746377B (en) * 2019-11-07 2023-03-31 中国科学院兰州化学物理研究所 Method for synthesizing 1-substituted pyrrolidine/piperidine derivative by supported metal catalysis

Also Published As

Publication number Publication date
JP5038700B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP4972314B2 (en) Method for producing nitrogen-containing compound
JP5038700B2 (en) Method for producing fat nitrogen-containing compound
JP2010532245A5 (en)
JP4641497B2 (en) Aliphatic alcohol amination catalyst and method for producing amine using the catalyst
JP4892329B2 (en) Method for producing nitrogen-containing compound
ES2606914T3 (en) Procedure to produce nitrogen-containing compounds
JP2007176890A (en) Method for producing nitrogen-containing compound
JP4972315B2 (en) Method for producing nitrogen-containing compound
JP4989888B2 (en) Method for producing nitrogen-containing compound
JP2009090283A (en) Catalyst
KR20230093017A (en) Method for producing methionine
JP7106797B2 (en) Improved method for depositing Pd nanoparticles
JP2017124366A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst
JP2017001010A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using the catalyst
JP3970489B2 (en) Process for producing N, N-dimethyl-N-alkylamine
JP3092230B2 (en) Method for producing ethyleneamine
JP2001151734A (en) Method for producing tertiary amine
JP3066429B2 (en) Method for producing ethyleneamine
CN106336345B (en) The method for preparing 1,3- propylene glycol
JP2003275591A (en) Carbon monoxide conversion catalyst
RU2554949C1 (en) Copper-zinc catalyst for low-temperature conversion of carbon monoxide with steam
MX2008008490A (en) Process for producing nitrogen-containing compounds.
JP3074848B2 (en) Method for producing ethyleneamine
JP2004255282A (en) Steam-reforming catalyst for methanol and method for producing hydrogen by steam-reforming methanol by using the catalyst
JP2003146607A (en) Method for manufacturing hydrogen-containing gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5038700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees