JP4972314B2 - Method for producing nitrogen-containing compound - Google Patents

Method for producing nitrogen-containing compound Download PDF

Info

Publication number
JP4972314B2
JP4972314B2 JP2005379652A JP2005379652A JP4972314B2 JP 4972314 B2 JP4972314 B2 JP 4972314B2 JP 2005379652 A JP2005379652 A JP 2005379652A JP 2005379652 A JP2005379652 A JP 2005379652A JP 4972314 B2 JP4972314 B2 JP 4972314B2
Authority
JP
Japan
Prior art keywords
catalyst
aliphatic
ruthenium
alcohol
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005379652A
Other languages
Japanese (ja)
Other versions
JP2007176891A (en
Inventor
哲朗 福島
正晴 丈野
道夫 寺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005379652A priority Critical patent/JP4972314B2/en
Application filed by Kao Corp filed Critical Kao Corp
Priority to US12/159,526 priority patent/US8247611B2/en
Priority to EP06835190.7A priority patent/EP1968931B1/en
Priority to CN2006800494490A priority patent/CN101346343B/en
Priority to ES06835190.7T priority patent/ES2606914T3/en
Priority to BRPI0620821A priority patent/BRPI0620821B1/en
Priority to MX2008008490A priority patent/MX2008008490A/en
Priority to PCT/JP2006/326164 priority patent/WO2007077903A2/en
Publication of JP2007176891A publication Critical patent/JP2007176891A/en
Application granted granted Critical
Publication of JP4972314B2 publication Critical patent/JP4972314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、含窒素化合物、特に脂肪族アミンの製造方法に関し、さらに詳しくは、ルテニウム触媒を用いることにより、脂肪族アミンを高活性で高選択に製造する方法に関する。   The present invention relates to a method for producing a nitrogen-containing compound, particularly an aliphatic amine, and more particularly to a method for producing an aliphatic amine with high activity and high selectivity by using a ruthenium catalyst.

脂肪族1級アミンは、家庭用、工業用分野において重要な化合物であり、界面活性剤、繊維処理剤等の製造原料などとして用いられている。
脂肪族1級アミンの製造方法としては、様々な方法があるが、その中の1つとして、触媒の存在下に、脂肪族1級アルコールを、アンモニア及び水素と接触させる方法が知られている。この接触反応においては、触媒として、ニッケル、銅系触媒や貴金属系触媒が用いられる。
貴金属系触媒の中で、特にルテニウム系触媒を用いる方法としては、例えばアルミナ、シリカ、アルミノケイ酸塩などの多孔性酸化物上に、ルテニウムを0.001〜25重量%程度担持させると共に、ロジウム、パラジウム、白金、銅、銀又はこれらの混合物などの助触媒を0〜5重量%程度担持させてなる触媒を用いてアルコール等からアミンを製造する方法が開示されている(例えば、特許文献1参照)。
この技術においては、触媒の調製に含浸法が採用され、乾燥後に400℃で4時間焼成し、更に300℃で20時間の水素還元処理が行われており、また、触媒の反応性、選択性は不十分であった。
Aliphatic primary amines are important compounds in the household and industrial fields, and are used as raw materials for producing surfactants, fiber treatment agents and the like.
There are various methods for producing an aliphatic primary amine, and one of them is a method in which an aliphatic primary alcohol is brought into contact with ammonia and hydrogen in the presence of a catalyst. . In this contact reaction, a nickel, copper-based catalyst or a noble metal-based catalyst is used as a catalyst.
Among the noble metal catalysts, in particular, a method using a ruthenium catalyst includes, for example, supporting about 0.001 to 25% by weight of ruthenium on a porous oxide such as alumina, silica, aluminosilicate, rhodium, A method for producing an amine from alcohol or the like using a catalyst in which a cocatalyst such as palladium, platinum, copper, silver, or a mixture thereof is supported by about 0 to 5% by weight is disclosed (for example, see Patent Document 1). ).
In this technique, an impregnation method is employed for the preparation of the catalyst, and after drying, it is calcined at 400 ° C. for 4 hours, and further subjected to hydrogen reduction treatment at 300 ° C. for 20 hours, and the reactivity and selectivity of the catalyst. Was insufficient.

特開平8−243392号公報JP-A-8-243392

本発明は、脂肪族アルコールから、脂肪族1級アミンを高活性で高選択に製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing an aliphatic primary amine with high activity and high selectivity from an aliphatic alcohol.

本発明は、多孔性酸化物にルテニウム化合物の加水分解によって生成したルテニウム成分が担持された触媒の存在下、直鎖状又は分岐若しくは環を有する炭素数6〜22の飽和又は不飽和の脂肪族アルコールを、アンモニア及び水素と接触させる脂肪族アミンの製造方法を提供する。   The present invention relates to a saturated or unsaturated aliphatic group having 6 to 22 carbon atoms having a linear or branched or ring structure in the presence of a catalyst in which a ruthenium component produced by hydrolysis of a ruthenium compound is supported on a porous oxide. Provided is a method for producing an aliphatic amine in which an alcohol is brought into contact with ammonia and hydrogen.

本発明の製造方法によれば、脂肪族アルコールから、脂肪族1級アミンを高活性で高選択に製造することができる。   According to the production method of the present invention, an aliphatic primary amine can be produced from an aliphatic alcohol with high activity and high selectivity.

本発明の脂肪族アミンの製造方法においては、原料として、直鎖状又は分岐若しくは環を有する炭素数6〜22の飽和又は不飽和の脂肪族アルコールが用いられる。   In the method for producing an aliphatic amine of the present invention, a saturated or unsaturated aliphatic alcohol having 6 to 22 carbon atoms having a straight chain, a branched chain or a ring is used as a raw material.

このような脂肪族アルコールの具体例としては、ヘキシルアルコール、イソヘキシルアルコール、オクチルアルコール、イソオクチルアルコール、2−エチルヘキシルアルコール、ノニルアルコール、イソノニルアルコール、3,5,5−トリメチルヘキシルアルコール、デシルアルコール、3,7−ジメチルオクチルアルコール、2−プロピルへプチルアルコール、ラウリルアルコールなどのドデシルアルコール類、ミリスチルアルコールなどのテトラデシルアルコール類、ヘキサデシルアルコール類、オレイルアルコール、ステアリルアルコールなどのオクタデシルアルコール類、ベヘニルアルコール、イコシルアルコール類、ゲラニオール、シクロペンチルメタノール、シクロペンテニルメタノール、シクロヘキシルメタノール、シクロヘキセニルメタノールなどを挙げることができる。
本発明において、前記脂肪族アルコールとしては、炭素数6〜22の直鎖状脂肪族アルコールが好ましい。
Specific examples of such aliphatic alcohols include hexyl alcohol, isohexyl alcohol, octyl alcohol, isooctyl alcohol, 2-ethylhexyl alcohol, nonyl alcohol, isononyl alcohol, 3,5,5-trimethylhexyl alcohol, decyl alcohol. , 3,7-dimethyloctyl alcohol, 2-propylheptyl alcohol, dodecyl alcohols such as lauryl alcohol, tetradecyl alcohols such as myristyl alcohol, hexadecyl alcohols, octadecyl alcohols such as oleyl alcohol and stearyl alcohol, behenyl alcohol , Icosyl alcohol, geraniol, cyclopentylmethanol, cyclopentenylmethanol, cyclohexylmethanol, Such as hexenyl methanol can be mentioned.
In the present invention, the aliphatic alcohol is preferably a linear aliphatic alcohol having 6 to 22 carbon atoms.

本発明においては、触媒として、ルテニウム成分を担持した多孔性酸化物が用いられる。上記多孔性酸化物としては、アルミナ、ジルコニア、チタニア、シリカ、活性炭、アルミノケイ酸塩、珪藻土、ハイドロタルサイト型化合物(例えば、マグネシウム−アルミニウム系複水酸化物)、アルカリ土類金属酸化物等を用いることができるが、これらの中で高活性、高選択性の観点から、アルミナ、ジルコニア、チタニア及びアルミノケイ酸塩が好ましく、さらにアルミナ、ジルコニアが好ましい。特に、ジルコニアやチタニアを用いた場合、得られる触媒はより高活性を有し、一方アルミナやアルミノケイ酸塩を用いた場合、得られる触媒は、1級アミンに対しより高選択性を有している。
本発明においては、前記多孔性酸化物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the present invention, a porous oxide carrying a ruthenium component is used as a catalyst. Examples of the porous oxide include alumina, zirconia, titania, silica, activated carbon, aluminosilicate, diatomaceous earth, hydrotalcite type compound (for example, magnesium-aluminum double hydroxide), alkaline earth metal oxide, and the like. Of these, alumina, zirconia, titania and aluminosilicate are preferred, and alumina and zirconia are more preferred from the viewpoint of high activity and high selectivity. In particular, when zirconia or titania is used, the resulting catalyst has a higher activity, while when alumina or aluminosilicate is used, the resulting catalyst has a higher selectivity for primary amines. Yes.
In this invention, the said porous oxide may be used individually by 1 type, and may be used in combination of 2 or more type.

本発明で用いる触媒は、前記多孔性酸化物にルテニウム成分を加水分解により担持させる。次に当該触媒の調製方法の一例について説明する。
まず、イオン交換水などの媒体に、前記の多孔性酸化物を加えて懸濁させたのち、この懸濁液に、ルテニウム化合物をイオン交換水などの水性溶媒に溶解させた溶液を加え、攪拌しながら必要に応じて加熱し、20〜95℃程度、好ましくは40〜80℃の温度に調節する。
前記ルテニウム化合物としては、例えばルテニウムの塩化物、硝酸塩、蟻酸塩、アンモニウム塩等が挙げられる。
In the catalyst used in the present invention, the ruthenium component is supported on the porous oxide by hydrolysis. Next, an example of a method for preparing the catalyst will be described.
First, the porous oxide is added to and suspended in a medium such as ion-exchanged water, and then a solution obtained by dissolving a ruthenium compound in an aqueous solvent such as ion-exchanged water is added to the suspension and stirred. While heating as necessary, the temperature is adjusted to about 20 to 95 ° C, preferably 40 to 80 ° C.
Examples of the ruthenium compound include ruthenium chloride, nitrate, formate, and ammonium salt.

次いで、ルテニウム化合物を含む懸濁液にアルカリを加えてpHを4〜12、好ましくは6〜11程度に調整して加水分解させ、熟成することによって、ルテニウム成分を多孔性酸化物に担持させる。前記アルカリについては、その種類は特に制限はないが、アンモニア水、ナトリウム、カリウムなどのアルカリ金属の炭酸塩、水酸化物等が使用できる。pHを調整して熟成する時間については、ルテニウム化合物が加水分解する時間を確保出来れば、特に制限されない。   Next, an alkali is added to the suspension containing the ruthenium compound, the pH is adjusted to 4 to 12, preferably about 6 to 11, hydrolyzed, and aged to carry the ruthenium component on the porous oxide. The type of the alkali is not particularly limited, but alkali metal carbonates such as ammonia water, sodium and potassium, hydroxides and the like can be used. The time for adjusting and aging the pH is not particularly limited as long as the time for hydrolysis of the ruthenium compound can be secured.

次に、例えばホルムアルデヒド、ヒドラジン、水素化ホウ素ナトリウム等の還元剤を加え、必要に応じて加熱し、20〜95℃程度、好ましくは60〜95℃の温度で還元処理した後、ろ過などにより固液分離し、得られた固形物を、充分に水洗後、好ましくは140℃以下の温度で、常圧又は減圧下で乾燥処理する。前記還元剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
この還元剤は、担持されたルテニウム成分を効果的に還元するために、ルテニウムに対して、通常1〜50倍モル程度、好ましくは15〜40倍モルの割合で用いられる。
上記還元処理の時間は、還元反応が所望する程度に進行する時間が確保出来れば、特に、制限されない。
なお、前記還元処理の操作は、必ずしも必要ではなく、ルテニウム成分を加水分解で担持させた後、固液分離し、得られた固形物を充分に水洗して乾燥処理しても良い。
Next, for example, a reducing agent such as formaldehyde, hydrazine, sodium borohydride and the like is added, heated as necessary, reduced at a temperature of about 20 to 95 ° C., preferably 60 to 95 ° C., and then solidified by filtration or the like. The solid obtained by liquid separation is sufficiently washed with water, and then dried at a temperature of preferably 140 ° C. or lower under normal pressure or reduced pressure. The said reducing agent may be used individually by 1 type, and may be used in combination of 2 or more type.
In order to effectively reduce the supported ruthenium component, this reducing agent is usually used in a ratio of about 1 to 50 times mol, preferably 15 to 40 times mol for ruthenium.
The time for the reduction treatment is not particularly limited as long as the time for the reduction reaction to proceed to a desired level can be secured.
The operation of the reduction treatment is not always necessary, and after the ruthenium component is supported by hydrolysis, it may be subjected to solid-liquid separation, and the obtained solid matter may be sufficiently washed with water and dried.

本発明においては、多孔性酸化物へのルテニウム成分の担持を、前記のように加水分解にて行うことから、通常含浸法等において行われる高温での焼成処理、不活性ガス雰囲気下での高温還元処理等の操作を必ずしも必要とせず、触媒の調製が簡易である。
このようにして得られたルテニウム触媒は、十分な触媒活性や選択性及び経済性などの観点から、ルテニウム成分を、多孔性酸化物を含めた触媒全量に基づき、ルテニウム金属として好ましくは0.1〜25質量%程度、更に好ましくは1〜15質量%の割合で含有している。
触媒中のルテニウム含有量は、該触媒を硫酸水素アンモニウムで融解処理後、ICP発光分析で測定する。
In the present invention, since the ruthenium component is supported on the porous oxide by hydrolysis as described above, it is usually performed at a high temperature in an impregnation method or the like at a high temperature in an inert gas atmosphere. An operation such as a reduction treatment is not necessarily required, and the preparation of the catalyst is simple.
The ruthenium catalyst thus obtained preferably has a ruthenium component as a ruthenium metal based on the total amount of the catalyst including the porous oxide, from the viewpoint of sufficient catalytic activity, selectivity and economy. About 25% by mass, more preferably 1-15% by mass.
The ruthenium content in the catalyst is measured by ICP emission analysis after melting the catalyst with ammonium hydrogen sulfate.

本発明の脂肪族アミンの製造方法においては、前記のようにして調製されたルテニウム触媒の存在下、原料の前記脂肪族アルコールを、アンモニア及び水素と接触させることにより、脂肪族アミン、好ましくは脂肪族1級アミンを製造する。
この接触反応は、バッチタイプの密閉式或いは流通式で行ってもよく、又は固定床流通式で行ってもよい。触媒の使用量は、反応方式にもよるが、バッチタイプの場合、良好な反応性及び選択性を得る観点から、原料の脂肪族アルコールに対して、0.1〜20質量%
が好ましく、0.5〜10質量%がより好ましい。また、良好な転化率や選択性及び触媒劣化の抑制などの観点から、反応温度は120〜280℃、好ましくは180〜250℃であり、反応圧力は、常圧〜40MPaG、好ましくは0.5〜30MPaGである。
In the method for producing an aliphatic amine of the present invention, an aliphatic amine, preferably an aliphatic amine, is obtained by bringing the aliphatic alcohol as a raw material into contact with ammonia and hydrogen in the presence of the ruthenium catalyst prepared as described above. Group 1 primary amines are produced.
This contact reaction may be performed in a batch type closed type or flow type, or may be performed in a fixed bed flow type. The amount of the catalyst used depends on the reaction method, but in the case of a batch type, from the viewpoint of obtaining good reactivity and selectivity, 0.1 to 20% by mass relative to the starting aliphatic alcohol.
Is preferable, and 0.5-10 mass% is more preferable. Further, from the viewpoint of good conversion rate, selectivity and suppression of catalyst deterioration, the reaction temperature is 120 to 280 ° C., preferably 180 to 250 ° C., and the reaction pressure is normal pressure to 40 MPaG, preferably 0.5. ~ 30 MPaG.

また、原料成分としてのアンモニア/脂肪族アルコールのモル比は、転化率及び1級アミンの選択性などの観点から、通常0.5〜10程度、好ましくは2〜7である。アンモニアは、水素と別々に添加することもできるが、これらの混合ガスとして導入することもできる。
水素/脂肪族アルコールのモル比については、バッチタイプの密閉式の場合は、初期の仕込み時のモル比で0.01〜3.0、特に0.02〜2.0が好ましい。また、バッチタイプの流通式や固定床流通式の場合は、初期に流通させる水素は脂肪族アルコールに対してモル比で0.01〜1.0、特に0.02〜0.8が好ましい。但し、いずれの反応方式においても、反応進行中は必ずしも当該範囲内に限定されない。
The molar ratio of ammonia / aliphatic alcohol as a raw material component is usually about 0.5 to 10, preferably 2 to 7, from the viewpoints of conversion rate and selectivity of primary amine. Ammonia can be added separately from hydrogen, but can also be introduced as a mixed gas thereof.
About the molar ratio of hydrogen / aliphatic alcohol, in the case of a batch-type closed type, the molar ratio at the initial charging is preferably 0.01 to 3.0, particularly preferably 0.02 to 2.0. Moreover, in the case of a batch type flow type or a fixed bed flow type, the hydrogen to be circulated in the initial stage is preferably 0.01 to 1.0, particularly 0.02 to 0.8 in terms of molar ratio with respect to the aliphatic alcohol. However, in any reaction system, the reaction is not necessarily limited to the range within the progress.

調製例1
セパラブルフラスコにアルミナ粉末[住友化学(株)製「A−11」]10.0gをイオン交換水170gに懸濁し、そこに分子量252.68の塩化ルテニウム水和物0.59gをイオン交換水40gに溶解させた溶液を加えて攪拌しながら60℃まで加熱した。その懸濁液(60℃)を3時間攪拌した後、沈殿剤としてアンモニア水を滴下して懸濁液のpHを11にして加水分解させ、2時間熟成した。その懸濁液に37質量%ホルマリン溶液4.8gを加えて90℃まで加熱し、1時間還元した後、得られた粉末を濾過、水洗し、60℃、13kPaで乾燥して2質量%ルテニウム−アルミナ触媒Aを約10g得た。
Preparation Example 1
In a separable flask, 10.0 g of alumina powder [“A-11” manufactured by Sumitomo Chemical Co., Ltd.] is suspended in 170 g of ion-exchanged water, and 0.59 g of ruthenium chloride hydrate having a molecular weight of 252.68 is added to the ion-exchanged water. The solution dissolved in 40 g was added and heated to 60 ° C. with stirring. The suspension (60 ° C.) was stirred for 3 hours, and then aqueous ammonia was added dropwise as a precipitating agent to hydrolyze the suspension to pH 11 and aged for 2 hours. 4.8 g of a 37% by weight formalin solution was added to the suspension, heated to 90 ° C. and reduced for 1 hour. The obtained powder was filtered, washed with water, dried at 60 ° C. and 13 kPa, and dried to 2% by weight ruthenium. -About 10 g of alumina catalyst A was obtained.

調製例2
塩化ルテニウム水和物を1.47g用いた以外は調製例1と同様にして、5質量%ルテニウム−アルミナ触媒Bを約10g得た。
調製例3
アルミナ粉末の代わりに、ジルコニア粉末[第一稀元素化学工業(株)製「RC−100」]を用いた以外は調製例1と同様にして、2質量%ルテニウム−ジルコニア触媒Cを約10g得た。
Preparation Example 2
About 10 g of 5 mass% ruthenium-alumina catalyst B was obtained in the same manner as in Preparation Example 1, except that 1.47 g of ruthenium chloride hydrate was used.
Preparation Example 3
About 10 g of 2 mass% ruthenium-zirconia catalyst C was obtained in the same manner as in Preparation Example 1 except that zirconia powder [“RC-100” manufactured by Daiichi Rare Element Chemical Co., Ltd.] was used instead of alumina powder. It was.

調製例4
アルミナ粉末の代わりに、チタニア粉末[堺化学工業(株)製「SSP−25」]を用いた以外は調製例1と同様にして、2質量%ルテニウム−チタニア触媒Dを約10g得た。
Preparation Example 4
About 10 g of 2 mass% ruthenium-titania catalyst D was obtained like preparation example 1 except having used titania powder ["SSP-25" by Sakai Chemical Industry Co., Ltd.] instead of the alumina powder.

調製例5
アルミナ粉末の代わりに、合成ゼオライト粉末[Zeolyst製「CP814E」]を用いた以外は調製例2と同様にして5質量%ルテニウム−ゼオライト触媒Eを約10g得た。
Preparation Example 5
About 10 g of 5% by mass ruthenium-zeolite catalyst E was obtained in the same manner as in Preparation Example 2 except that synthetic zeolite powder [“CP814E” manufactured by Zeolist] was used instead of alumina powder.

調製比較例1
磁製皿に三塩化ルテニウム0.26gをイオン交換水5.8gに溶解させ、そこにアルミナ粉末[住友化学(株)製「A−11」]6gを浸漬し、室温で2時間静置した。次に、その懸濁液を65℃まで加熱して混合しながら脱水した後、120℃、常圧で一昼夜乾燥した。該乾燥粉末は、毎時3Nm3の空気流通下で毎分5℃の昇温速度で400℃まで加熱し、同温度で4時間焼成を行い、2質量%ルテニウム−アルミナ触媒Fを約6g得た。
尚、上記調製例及び比較調製例において、各触媒中のルテニウムの含有量はIPC発光分析で定量した
Preparation Comparative Example 1
In a magnetic dish, 0.26 g of ruthenium trichloride was dissolved in 5.8 g of ion-exchanged water, 6 g of alumina powder [“A-11” manufactured by Sumitomo Chemical Co., Ltd.] was immersed therein, and allowed to stand at room temperature for 2 hours. . Next, the suspension was heated to 65 ° C. and dehydrated while mixing, and then dried at 120 ° C. and normal pressure for a whole day and night. The dry powder was heated to 400 ° C. at a heating rate of 5 ° C. per minute under an air flow of 3 Nm 3 per hour, and calcined at the same temperature for 4 hours to obtain about 6 g of 2 mass% ruthenium-alumina catalyst F. .
In the above preparation examples and comparative preparation examples, the ruthenium content in each catalyst was quantified by IPC emission analysis.

実施例1
内容積500mlの電磁誘導回転攪拌式オートクレーブに、ステアリルアルコール150g(0.55mol)及び調製例1で得た触媒A3g(2.0質量%対原料アルコール)を仕込み、アンモニア47g(2.76mol)と、全圧が2.8MPaG(室温)になるように水素(0.17mol)を圧入した。次いで攪拌(1000r/min)を行って反応温度220℃まで昇温した。同温度での初期最高圧力は16MPaGであった。全圧力を16MPaGで一定になるように水素を連続追加して反応を行った。得られた反応生成物は触媒を濾別した後、ガスクロマトグラフィーで組成分析を行った。結果を第1表に示す。
Example 1
Into an electromagnetic induction rotary stirring autoclave with an internal volume of 500 ml, 150 g (0.55 mol) of stearyl alcohol and 3 g of catalyst A obtained in Preparation Example 1 (2.0% by mass with respect to the raw material alcohol) were charged, and 47 g (2.76 mol) of ammonia was added. Then, hydrogen (0.17 mol) was injected so that the total pressure was 2.8 MPaG (room temperature). Subsequently, stirring (1000 r / min) was performed and it heated up to reaction temperature 220 degreeC. The initial maximum pressure at the same temperature was 16 MPaG. Reaction was performed by continuously adding hydrogen so that the total pressure was constant at 16 MPaG. The obtained reaction product was subjected to composition analysis by gas chromatography after filtering the catalyst. The results are shown in Table 1.

実施例2〜5
実施例1において、触媒Aの代わりに、調製例2、3、4及び5でそれぞれ得た触媒B、C、D及びEを用いて、第1表に示す反応温度220℃での初期最高圧力で一定になるように水素を追加した以外は、実施例1と同様に反応を行い、得られた反応生成物について実施例1と同様に分析を行った。結果を第1表に示す。
Examples 2-5
In Example 1, instead of the catalyst A, the catalysts B, C, D and E obtained in Preparation Examples 2, 3, 4 and 5 respectively were used, and the initial maximum pressure at a reaction temperature of 220 ° C. shown in Table 1 was used. The reaction was carried out in the same manner as in Example 1 except that hydrogen was added so as to be constant, and the obtained reaction product was analyzed in the same manner as in Example 1. The results are shown in Table 1.

Figure 0004972314
Figure 0004972314

比較例1
実施例1において、触媒A)の代わりに、比較調製例1で得られた触媒Fを用いる以外は実施例1と同様の反応操作を行った。即ち、温度220℃で初期の最高圧力が16MPaG、6時間の反応を行った。得られた反応生成物を実施例1と同様の分析を行い、アルコール転化率は54.9%であった。
Comparative Example 1
In Example 1, instead of the catalyst A), the same reaction operation as in Example 1 was performed except that the catalyst F obtained in Comparative Preparation Example 1 was used. That is, the reaction was performed at a temperature of 220 ° C. and an initial maximum pressure of 16 MPaG for 6 hours. The obtained reaction product was analyzed in the same manner as in Example 1, and the alcohol conversion was 54.9%.

実施例6
実施例3において、ステアリルアルコールの代わりに、ラウリルアルコールを150g(0.81mol)仕込み、アンモニア69g(4.06mol)を用いた以外は実施例3と同様の反応操作を行い、反応を11時間行った。反応温度220℃のとき、初期最高圧力は21MPaGであった。得られた反応生成物は実施例1と同様の分析を行った。アルコール転化率は96.3%、ラウリルアミン選択率は74.9%であり、ジラウリルアミン生成量は12.3%、その他副生成物は10.9%であった。
Example 6
In Example 3, instead of stearyl alcohol, 150 g (0.81 mol) of lauryl alcohol was charged, and except that 69 g (4.06 mol) of ammonia was used, the same reaction operation as in Example 3 was performed, and the reaction was performed for 11 hours. It was. When the reaction temperature was 220 ° C., the initial maximum pressure was 21 MPaG. The obtained reaction product was analyzed in the same manner as in Example 1. The alcohol conversion was 96.3%, laurylamine selectivity was 74.9%, dilaurylamine production was 12.3%, and other by-products were 10.9%.

本発明の脂肪族アミンの製造方法は、脂肪族アルコールから、脂肪族1級アミンを高活性で高選択に製造することができる方法であり、得られる脂肪族1級アミンは、家庭用、工業用分野において重要な化合物であり、例えば、界面活性剤、繊維処理剤等の製造原料などとして好適に用いられる。   The method for producing an aliphatic amine of the present invention is a method capable of producing an aliphatic primary amine with high activity and high selectivity from an aliphatic alcohol. It is an important compound in the field of use, and is suitably used, for example, as a raw material for producing surfactants, fiber treatment agents and the like.

Claims (7)

多孔性酸化物にルテニウム化合物の加水分解によって生成したルテニウム成分が担持された触媒の存在下、直鎖状又は分岐若しくは環を有する炭素数6〜22の飽和又は不飽和の脂肪族アルコールを、アンモニア及び水素と接触させる脂肪族第一級アミンの製造方法であって、前記触媒が、多孔性酸化物の懸濁液にルテニウム化合物の水溶液を加えた後、アルカリを添加して加水分解させることで、ルテニウム成分を多孔性酸化物に担持させたものである、脂肪族第一級アミンの製造方法In the presence of a catalyst in which a ruthenium component generated by hydrolysis of a ruthenium compound is supported on a porous oxide, a saturated or unsaturated aliphatic alcohol having 6 to 22 carbon atoms having a straight chain, branched chain or ring is converted to ammonia. and a method of manufacturing the aliphatic primary amine is contacted with hydrogen and the catalyst, after adding an aqueous solution of ruthenium compound to a suspension of the porous oxide, by hydrolysis by adding an alkali A method for producing an aliphatic primary amine, wherein a ruthenium component is supported on a porous oxide . 触媒中におけるルテニウム成分の含有量が、ルテニウム金属として、触媒全量に基づき0.1〜25質量%である請求項1記載の脂肪族第一級アミンの製造方法。 The content of the ruthenium component in the catalyst is ruthenium metal, a manufacturing method of the aliphatic primary amine of claim 1, wherein 0.1 to 25 weight percent based on the total catalyst. 多孔性酸化物が、アルミナ、ジルコニア、チタニア及びアルミノケイ酸塩
からなる群から選ばれる少なくとも1種である請求項1又は2に記載の脂肪族第一級アミンの製造方法。
Porous oxide is alumina, zirconia, a manufacturing method of the aliphatic primary amine according to claim 1 or 2 is at least one selected from the group consisting of titania and aluminosilicates.
140℃以下の温度で乾燥処理した触媒を使用する請求項1〜3のいずれかに記載の脂肪族第一級アミンの製造方法。 Aliphatic method for producing a primary amine according to any one of claims 1 to 3 using the dried catalyst at 140 ° C. or lower. 調製した触媒を、ホルムアルデヒド、ヒドラジン及び水素化ホウ素ナトリウムの中から選ばれる少なくとも1種の還元剤の存在下で還元処理する請求項1〜4のいずれかに記載の脂肪族第一級アミンの製造方法。 The prepared catalyst, the production of aliphatic primary amines according to claim 1, reduction treatment in the presence of at least one reducing agent selected from formaldehyde, among hydrazine and sodium borohydride Method. 脂肪族アルコールとアンモニア及び水素との接触反応を、120〜280℃の温度で行う請求項1〜5のいずれかに記載の脂肪族第一級アミンの製造方法。 The catalytic reaction of an aliphatic alcohol with ammonia and hydrogen production method of aliphatic primary amines according to claim 1 carried out at a temperature of 120 to 280 ° C.. 脂肪族アルコールとアンモニア及び水素との接触反応を、アンモニア/脂肪族アルコールモル比で0.5〜10の条件で行う請求項1〜6のいずれかに記載の脂肪族第一級アミンの製造方法。 The catalytic reaction of an aliphatic alcohol with ammonia and hydrogen production method of aliphatic primary amines according to claim 1 carried out at 0.5 to 10 conditions with ammonia / aliphatic alcohol molar ratio .
JP2005379652A 2005-12-28 2005-12-28 Method for producing nitrogen-containing compound Active JP4972314B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005379652A JP4972314B2 (en) 2005-12-28 2005-12-28 Method for producing nitrogen-containing compound
EP06835190.7A EP1968931B1 (en) 2005-12-28 2006-12-21 Process for producing nitrogen-containing compounds
CN2006800494490A CN101346343B (en) 2005-12-28 2006-12-21 Process for producing nitrogen-containing compounds
ES06835190.7T ES2606914T3 (en) 2005-12-28 2006-12-21 Procedure to produce nitrogen-containing compounds
US12/159,526 US8247611B2 (en) 2005-12-28 2006-12-21 Process for producing nitrogen-containing compounds
BRPI0620821A BRPI0620821B1 (en) 2005-12-28 2006-12-21 process for producing an aliphatic amine as well as catalyst used in said process and its use
MX2008008490A MX2008008490A (en) 2005-12-28 2006-12-21 Process for producing nitrogen-containing compounds.
PCT/JP2006/326164 WO2007077903A2 (en) 2005-12-28 2006-12-21 Process for producing nitrogen-containing compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005379652A JP4972314B2 (en) 2005-12-28 2005-12-28 Method for producing nitrogen-containing compound

Publications (2)

Publication Number Publication Date
JP2007176891A JP2007176891A (en) 2007-07-12
JP4972314B2 true JP4972314B2 (en) 2012-07-11

Family

ID=38302410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005379652A Active JP4972314B2 (en) 2005-12-28 2005-12-28 Method for producing nitrogen-containing compound

Country Status (2)

Country Link
JP (1) JP4972314B2 (en)
CN (1) CN101346343B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972315B2 (en) * 2005-12-28 2012-07-11 花王株式会社 Method for producing nitrogen-containing compound
JP4892329B2 (en) 2006-12-15 2012-03-07 花王株式会社 Method for producing nitrogen-containing compound
JP5469607B2 (en) * 2008-09-19 2014-04-16 昭和電工株式会社 Catalyst used for hydrogen transfer reaction of alcohol, process for producing the same, and process for producing carbonyl group-containing compound
JP5599570B2 (en) * 2009-02-10 2014-10-01 国立大学法人 香川大学 Method for producing aryl derivative using heterogeneous catalyst
US8927772B2 (en) 2010-12-27 2015-01-06 Kao Corporation Tertiary amine preparation process
WO2017152413A1 (en) * 2016-03-11 2017-09-14 Rhodia Operations Production of amines utilizing zeolite catalysts
CN111116377B (en) * 2019-12-16 2021-03-30 中国科学院大连化学物理研究所 Method for preparing hexamethylene diamine
CN116419914A (en) 2020-09-25 2023-07-11 花王株式会社 Process for producing tertiary amine composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH485646A (en) * 1965-12-23 1970-02-15 Du Pont Process for the catalytic hydrogenation of nitrogen-containing compounds
JPH061758A (en) * 1992-06-17 1994-01-11 Idemitsu Petrochem Co Ltd Production of amino compound
DE19507007A1 (en) * 1995-02-28 1996-08-29 Basf Ag Catalysts for the amination of alcohols, ketones and aldehydes
JP4582992B2 (en) * 2002-07-09 2010-11-17 旭化成ケミカルズ株式会社 Method for producing alicyclic amine compound
WO2005082834A1 (en) * 2004-02-17 2005-09-09 Exxonmobil Research And Engineering Company Catalytic preparation of severely sterically hindered amino-ether alcohols using a metal loaded catalyst

Also Published As

Publication number Publication date
CN101346343A (en) 2009-01-14
CN101346343B (en) 2012-05-30
JP2007176891A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4972314B2 (en) Method for producing nitrogen-containing compound
RU2573637C2 (en) Method for synthesis of higher ethanolamines
CN108043414A (en) Hydrogenation of acetophenone prepares the catalyst of alpha-phenyl ethyl alcohol, preparation method and application
CN101347737B (en) Selective hydrogenation catalyst of aromatic aldehydes for refinement of terephthalic acid
EP2249965A1 (en) Process for the preparation of an aqueous colloidal precious metal suspension
JP5038700B2 (en) Method for producing fat nitrogen-containing compound
JP4892329B2 (en) Method for producing nitrogen-containing compound
EP1737569B1 (en) Chromium-free catalysts of metallic cu and at least one second metal
JPH0275343A (en) Ruthenium supported catalyst
JP4641497B2 (en) Aliphatic alcohol amination catalyst and method for producing amine using the catalyst
US8247611B2 (en) Process for producing nitrogen-containing compounds
JP4972315B2 (en) Method for producing nitrogen-containing compound
JP2001269579A (en) Fixed bed raney copper catalyst and method for manufacturing the same
CN113058608A (en) Catalyst for preparing isopropylbenzene by hydrogenolysis of alpha-dimethyl benzyl alcohol and preparation method thereof
JP5659860B2 (en) Palladium-containing catalyst for hydrogenating nitrile compound and method for hydrogenating nitrile compound using the catalyst
CN101284231B (en) Supported noble metal catalyst
EP1207146B1 (en) Process for the conversion of 1,4 butynediol to 1, 4 butenediol
JP3970489B2 (en) Process for producing N, N-dimethyl-N-alkylamine
JP2001151734A (en) Method for producing tertiary amine
JP2001302596A (en) Method for producing tertiary amine
CN1475472A (en) Preparation method of 1,3-poly propylene glycol
JP2706595B2 (en) Method for producing N-alkyl or alkenyl-N-methylamine
CN116273055A (en) Nickel-based bimetallic catalyst and preparation method and application thereof
JPS62198649A (en) Production of carboxylic acid salt
CN102219671A (en) Method for selective hydrogenation of aromatic aldehydes for refining terephthalic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250