JP4972315B2 - Method for producing nitrogen-containing compound - Google Patents
Method for producing nitrogen-containing compound Download PDFInfo
- Publication number
- JP4972315B2 JP4972315B2 JP2005379660A JP2005379660A JP4972315B2 JP 4972315 B2 JP4972315 B2 JP 4972315B2 JP 2005379660 A JP2005379660 A JP 2005379660A JP 2005379660 A JP2005379660 A JP 2005379660A JP 4972315 B2 JP4972315 B2 JP 4972315B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- primary amine
- producing
- ruthenium
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、含窒素化合物、特に脂肪族アミンの製造方法に関し、さらに詳しくは、ルテニウム系触媒を用いることにより脂肪族アミンを高活性で高選択に製造する方法に関する。 The present invention relates to a method for producing a nitrogen-containing compound, particularly an aliphatic amine, and more particularly to a method for producing an aliphatic amine with high activity and high selectivity by using a ruthenium-based catalyst.
脂肪族1級アミンは、家庭用、工業用分野において重要な化合物であり、界面活性剤、繊維処理剤等の製造原料などとして用いられている。
脂肪族1級アミンの製造方法としては、様々な方法があるが、その中の1つとして、触媒の存在下に、脂肪族1級アルコールを、アンモニア及び水素と接触させる方法が知られている。この接触反応においては、触媒として、ニッケル、銅系触媒や貴金属系触媒が用いられる。
貴金属系触媒の中で、特にルテニウム触媒を用いて、アルコール等からアミンを製造する方法としては、例えば、アルミナ、シリカ、アルミノケイ酸塩などの多孔性酸化物上に、ルテニウムを0.001〜25重量%程度と、コバルト及び/又はニッケルを0.1〜6重量%程度担持させると共に、銅を0〜10重量%程度、及び各種金属からなる促進剤を0〜5重量%程度担持させてなる触媒を用いる方法(特許文献1参照)、あるいはアルミナ、シリカ、アルミノケイ酸塩などの多孔性酸化物上に、ルテニウムを0.001〜25重量%程度と、コバルト及び/又はニッケルを6〜50重量%程度担持させると共に、銅を0.1〜10重量%程度及び各種金属からなる促進剤を0〜5重量%程度担持させてなる触媒を用いる方法(特許文献2参照)が開示されている。
これらの技術においては、触媒の調製には含浸法が採用され、乾燥後に400℃で4時間焼成し、更に300℃で20時間の水素還元が行われており、また、触媒の反応性、選択性は不十分であった。
Aliphatic primary amines are important compounds in the household and industrial fields, and are used as raw materials for producing surfactants, fiber treatment agents and the like.
There are various methods for producing an aliphatic primary amine, and one of them is a method in which an aliphatic primary alcohol is brought into contact with ammonia and hydrogen in the presence of a catalyst. . In this contact reaction, a nickel, copper-based catalyst or a noble metal-based catalyst is used as a catalyst.
As a method for producing an amine from an alcohol or the like using a ruthenium catalyst among noble metal catalysts, ruthenium is preferably 0.001 to 25 on a porous oxide such as alumina, silica, and aluminosilicate. About 0.1% by weight, cobalt and / or nickel is supported on the order of 0.1 to 6% by weight, copper is supported on the order of 0 to 10% by weight, and promoters made of various metals are supported on the order of 0 to 5% by weight. A method using a catalyst (see Patent Document 1) or a porous oxide such as alumina, silica, and aluminosilicate, ruthenium is about 0.001 to 25% by weight, cobalt and / or nickel is 6 to 50% by weight. A method using a catalyst in which about 0.1 to 10% by weight of copper and about 0 to 5% by weight of an accelerator made of various metals are supported (patent text) 2 reference) is disclosed.
In these techniques, an impregnation method is employed for catalyst preparation, and after drying, calcination is performed at 400 ° C. for 4 hours, and hydrogen reduction is further performed at 300 ° C. for 20 hours. Sex was insufficient.
本発明は、脂肪族アルコールから、脂肪族1級アミンを高活性で高選択に製造する方法を提供することを目的とする。 An object of the present invention is to provide a method for producing an aliphatic primary amine with high activity and high selectivity from an aliphatic alcohol.
本発明は、触媒の存在下、直鎖状又は分岐若しくは環を有する炭素数6〜22の飽和又は不飽和の脂肪族アルコールを、アンモニア及び水素と接触させて、脂肪族アミンを製造する方法であって、前記触媒として、多孔性酸化物に、(A)ルテニウム成分、(B)ニッケル及びコバルトから選ばれる少なくとも1種の金属成分及び(C)ランタン、イットリウム、マグネシウム及びバリウムからなる群から選ばれる少なくとも1種の金属成分を担持した触媒を用いる、脂肪族アミンの製造方法を提供する。 The present invention is a process for producing an aliphatic amine by bringing a saturated or unsaturated aliphatic alcohol having 6 to 22 carbon atoms having a straight chain, a branched chain or a ring into contact with ammonia and hydrogen in the presence of a catalyst. The catalyst is selected from the group consisting of (A) a ruthenium component, (B) at least one metal component selected from nickel and cobalt, and (C) a lanthanum, yttrium, magnesium, and barium as a porous oxide. There is provided a method for producing an aliphatic amine using a catalyst supporting at least one metal component.
本発明の製造方法によれば、脂肪族アルコールから、脂肪族1級アミンを高活性で高選択に製造することができる。 According to the production method of the present invention, an aliphatic primary amine can be produced from an aliphatic alcohol with high activity and high selectivity.
本発明の脂肪族アミンの製造方法においては、原料として、直鎖状又は分岐若しくは環を有する炭素数6〜22の飽和又は不飽和の脂肪族アルコールが用いられる。 In the method for producing an aliphatic amine of the present invention, a saturated or unsaturated aliphatic alcohol having 6 to 22 carbon atoms having a straight chain, a branched chain or a ring is used as a raw material.
このような脂肪族アルコールの具体例としては、ヘキシルアルコール、イソヘキシルアルコール、オクチルアルコール、イソオクチルアルコール、2−エチルヘキシルアルコール、ノニルアルコール、イソノニルアルコール、3,5,5−トリメチルヘキシルアルコール、デシルアルコール、3,7−ジメチルオクチルアルコール、2−プロピルヘプチルアルコール、ラウリルアルコールなどのドデシルアルコール類、ミリスチルアルコールなどのテトラデシルアルコール類、ヘキサデシルアルコール類、オレイルアルコール、ステアリルアルコールなどのオクタデシルアルコール類、ベヘニルアルコール、イコシルアルコール類、ゲラニオール、シクロペンチルメタノール、シクロペンテニルメタノール、シクロヘキシルメタノール、シクロヘキセニルメタノールなどを挙げることができる。
本発明において、前記脂肪族アルコールとしては、炭素数6〜22の直鎖状脂肪族アルコールが好ましい。
Specific examples of such aliphatic alcohols include hexyl alcohol, isohexyl alcohol, octyl alcohol, isooctyl alcohol, 2-ethylhexyl alcohol, nonyl alcohol, isononyl alcohol, 3,5,5-trimethylhexyl alcohol, decyl alcohol. 3,7-dimethyloctyl alcohol, 2-propylheptyl alcohol, dodecyl alcohols such as lauryl alcohol, tetradecyl alcohols such as myristyl alcohol, hexadecyl alcohols, octadecyl alcohols such as oleyl alcohol and stearyl alcohol, behenyl alcohol, Icosyl alcohols, geraniol, cyclopentylmethanol, cyclopentenylmethanol, cyclohexylmethanol, Such as hexenyl methanol can be mentioned.
In the present invention, the aliphatic alcohol is preferably a linear aliphatic alcohol having 6 to 22 carbon atoms.
本発明においては、触媒として、ルテニウム成分等を担持した多孔性酸化物が用いられる。前記多孔性酸化物としては、アルミナ、ジルコニア、チタニア、シリカ、活性炭、アルミノケイ酸塩、珪藻土、ハイドロタルサイト型化合物(例えば、マグネシウム−アルミニウム系複水酸化物)、アルカリ土類金属酸化物等を用いることができるが、これらの中で、高活性、高選択性触媒が得られる観点から、アルミナ、ジルコニア、チタニア及びアルミノケイ酸塩が好ましく、さらにアルミナ、ジルコニアが好ましい。
本発明においては、前記多孔性酸化物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the present invention, a porous oxide carrying a ruthenium component or the like is used as a catalyst. Examples of the porous oxide include alumina, zirconia, titania, silica, activated carbon, aluminosilicate, diatomaceous earth, hydrotalcite type compound (for example, magnesium-aluminum double hydroxide), alkaline earth metal oxide, and the like. Of these, alumina, zirconia, titania and aluminosilicate are preferable, and alumina and zirconia are more preferable, from the viewpoint of obtaining a highly active and highly selective catalyst.
In this invention, the said porous oxide may be used individually by 1 type, and may be used in combination of 2 or more type.
本発明で用いる触媒は、前記多孔性酸化物に、(A)ルテニウム成分、(B)第二金属成分及び(C)第三金属成分を担持させる。前記の(B)第二金属成分としては、触媒活性や選択性向上の観点から、ニッケル及びコバルトの中から選ばれる少なくとも1種の金属成分、好ましくはニッケル成分が担持される。また(C)第三金属成分としては、高活性及び高選択性を兼ね備えた触媒を得る観点から、ランタン、イットリウム、マグネシウム及びバリウムの中から選ばれる少なくとも1種、好ましくは、ランタン及びマグネシウムから選ばれる少なくとも1種の金属成分が担持される。 In the catalyst used in the present invention, (A) a ruthenium component, (B) a second metal component, and (C) a third metal component are supported on the porous oxide. As the (B) second metal component, at least one metal component selected from nickel and cobalt, preferably a nickel component, is supported from the viewpoint of improving catalytic activity and selectivity. Further, (C) the third metal component is at least one selected from lanthanum, yttrium, magnesium and barium, preferably from lanthanum and magnesium, from the viewpoint of obtaining a catalyst having both high activity and high selectivity. At least one metal component is supported.
本発明においては、多孔性酸化物に各金属成分を担持させる方法に特に制限はなく、従来公知の方法、例えば含浸法、沈殿法、イオン交換法、混練法などの中から任意の方法を用いることができる。
次に当該触媒の調製方法の一例について説明する。
まず、イオン交換水などの媒体に、前記の多孔性酸化物を加えて懸濁させたのち、この懸濁液に、ルテニウム化合物、第二金属成分源である金属化合物(I)及び第三金属成分源である金属化合物(II)をイオン交換水などの媒体に溶解させた溶液を加え、攪拌しながら必要に応じて加熱し、20〜95℃程度、好ましくは40〜80℃の温度に調節する。
In the present invention, the method for supporting each metal component on the porous oxide is not particularly limited, and any conventionally known method such as an impregnation method, a precipitation method, an ion exchange method, a kneading method or the like is used. be able to.
Next, an example of a method for preparing the catalyst will be described.
First, the porous oxide is added to and suspended in a medium such as ion-exchanged water, and then the ruthenium compound, the metal compound (I) as the second metal component source, and the third metal are added to the suspension. Add a solution in which the metal compound (II) as a component source is dissolved in a medium such as ion-exchanged water, and heat as necessary while stirring to adjust the temperature to about 20 to 95 ° C, preferably 40 to 80 ° C. To do.
前記ルテニウム化合物としては、例えばルテニウムの塩化物、硝酸塩、蟻酸塩、アンモニウム塩等が挙げられ、第二金属成分源である金属化合物(I)及び第三金属成分源である金属化合物(II)としては、例えば塩化物、硝酸塩、炭酸塩、硫酸塩、アンモニウム塩等が挙げられる。 Examples of the ruthenium compound include ruthenium chloride, nitrate, formate, and ammonium salt. As the metal compound (I) that is the second metal component source and the metal compound (II) that is the third metal component source. Examples include chlorides, nitrates, carbonates, sulfates, ammonium salts and the like.
次いで、ルテニウム化合物、金属化合物(I)及び金属化合物(II)を含む懸濁液にアルカリを加えてpHを4〜12、好ましくは6〜11程度に調整して加水分解させ、熟成することで、ルテニウム成分、第二金属成分及び第三金属成分を多孔性酸化物に担持させる。前記アルカリについてはその種類は特に制限はないが、アンモニア水、ナトリウム、カリウムなどのアルカリ金属の炭酸塩、水酸化物等が使用できる。 Next, alkali is added to the suspension containing the ruthenium compound, the metal compound (I) and the metal compound (II) to adjust the pH to about 4 to 12, preferably about 6 to 11, and then hydrolyzed and aged. The ruthenium component, the second metal component, and the third metal component are supported on the porous oxide. The type of the alkali is not particularly limited, but alkali metal carbonates such as ammonia water, sodium and potassium, hydroxides, and the like can be used.
次に、例えばホルムアルデヒド、ヒドラジン、水素化ホウ素ナトリウム等の還元剤を加え、必要に応じて加熱し、20〜95℃程度、好ましくは60〜95℃の温度で還元処理した後、ろ過などにより固液分離し、得られた固形物を、充分に水洗後、好ましくは140℃以下の温度で常圧又は減圧下で乾燥処理する。前記還元剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Next, for example, a reducing agent such as formaldehyde, hydrazine, sodium borohydride and the like is added, heated as necessary, reduced at a temperature of about 20 to 95 ° C., preferably 60 to 95 ° C., and then solidified by filtration or the like. The solid obtained after liquid separation is sufficiently washed with water, and then dried at a temperature of 140 ° C. or lower under normal pressure or reduced pressure. The said reducing agent may be used individually by 1 type, and may be used in combination of 2 or more type.
この還元剤は担持されたルテニウム成分、第二金属成分及び第三金属成分を効果的に還元するために、金属全量に対して、通常1〜50倍モル程度、好ましくは15〜40倍モルの割合で用いられる。
なお、前記還元処理の操作は、必ずしも必要ではなく、ルテニウム成分をアルカリ加水分解で担持させた後、固液分離し、得られた固形物を充分に水洗して乾燥処理しても良い。
本発明においては、多孔性酸化物へのルテニウム成分、第二金属成分及び第三金属成分の担持を、前記のように加水分解で行うことから、通常含浸法等において行われる高温での焼成処理、不活性ガス雰囲気下での高温還元処理等の操作を必要とせず、触媒の調製が簡易となる。
In order to effectively reduce the supported ruthenium component, second metal component and third metal component, this reducing agent is usually about 1 to 50 times mol, preferably 15 to 40 times mol, based on the total amount of metal. Used in proportions.
The operation of the reduction treatment is not necessarily required, and after the ruthenium component is supported by alkaline hydrolysis, solid-liquid separation may be performed, and the obtained solid may be sufficiently washed with water and dried.
In the present invention, since the ruthenium component, the second metal component, and the third metal component are supported on the porous oxide by hydrolysis as described above, a firing process at a high temperature usually performed in an impregnation method or the like. In addition, an operation such as a high-temperature reduction treatment in an inert gas atmosphere is not required, and the preparation of the catalyst becomes simple.
このようにして得られたルテニウム系触媒は、十分な触媒活性、選択性及び経済性などの観点から、ルテニウム成分を、多孔性酸化物を含めた触媒全量に基づき、ルテニウム金属として好ましくは0.1〜25質量%程度、更に好ましくは1〜15質量%の割合で含有する。また、第二金属成分を、多孔性酸化物を含めた触媒全量に基づき、金属として好ましくは0.1〜25質量%程度、更に好ましくは0.2〜15質量%の割合で含有し、第三金属成分を、多孔性酸化物を含めた触媒全量に基づき、金属として好ましくは0.01〜10質量%程度、更に好ましくは0.05〜5質量%の割合で含有する。
触媒中のルテニウム含有量は該触媒を硫酸水素アンモニウムで融解処理後、ICP発光分析で測定する。また、第二金属成分及び第三金属成分の含有量は、多孔性酸化物中に珪素が含まない場合は該触媒を湿式分解(硫酸−過酸化水素)処理し、珪素が含む場合は該触媒をアルカリ溶融処理して、ICP発光分析で測定する。
The ruthenium-based catalyst thus obtained preferably has a ruthenium component as a ruthenium metal based on the total amount of the catalyst including the porous oxide, from the viewpoint of sufficient catalyst activity, selectivity and economy. About 1-25 mass%, More preferably, it contains in the ratio of 1-15 mass%. Further, the second metal component is preferably contained in a proportion of about 0.1 to 25% by mass, more preferably 0.2 to 15% by mass as the metal, based on the total amount of the catalyst including the porous oxide. The trimetallic component is preferably contained in a proportion of about 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, based on the total amount of the catalyst including the porous oxide.
The ruthenium content in the catalyst is measured by ICP emission analysis after melting the catalyst with ammonium hydrogen sulfate. The content of the second metal component and the third metal component is such that when the porous oxide does not contain silicon, the catalyst is treated by wet decomposition (sulfuric acid-hydrogen peroxide). Is subjected to an alkali melting treatment and measured by ICP emission spectrometry.
本発明の脂肪族アミンの製造方法においては、前記のようにして調製されたルテニウム系触媒の存在下、原料の前記脂肪族アルコールを、アンモニア及び水素と接触させることにより、脂肪族アミン、好ましくは脂肪族1級アミンを製造する。 In the method for producing an aliphatic amine of the present invention, an aliphatic amine, preferably an aliphatic amine, preferably by contacting the raw aliphatic alcohol with ammonia and hydrogen in the presence of the ruthenium-based catalyst prepared as described above. An aliphatic primary amine is produced.
この接触反応は、バッチタイプでは密閉式或いは流通式で行ってもよく、又は固定床流通式で行ってもよい。触媒の使用量は、反応方式にもよるが、一般的にバッチタイプの場合、良好な反応性及び選択性を得る観点から、原料の脂肪族アルコールに対して、0.1〜20質量%が好ましく、0.5〜10質量%がより好ましい。また、良好な転化率や選択性及び触媒劣化の抑制などの観点から、反応温度は120〜280℃程度、好ましくは180〜250℃であり、反応圧力は、通常常圧〜40MPaG程度、好ましくは0.5〜30MPaGである。 This contact reaction may be performed in a closed type or a flow type in a batch type, or may be performed in a fixed bed flow type. The amount of the catalyst used depends on the reaction method, but generally, in the case of a batch type, from the viewpoint of obtaining good reactivity and selectivity, 0.1 to 20% by mass with respect to the raw aliphatic alcohol is used. Preferably, 0.5-10 mass% is more preferable. Further, from the viewpoint of good conversion rate, selectivity and suppression of catalyst deterioration, the reaction temperature is about 120 to 280 ° C., preferably 180 to 250 ° C., and the reaction pressure is usually about normal pressure to 40 MPaG, preferably 0.5 to 30 MPaG.
また転化率及び1級アミンの選択性などの観点から、原料成分としてのアンモニア/脂肪族アルコールのモル比は、通常0.5〜10程度、好ましくは2〜7である。アンモニアは、水素と別々に添加することもできるが、これらの混合ガスとして導入することもできる。
水素/脂肪族アルコールのモル比については、バッチタイプの密閉式の場合は、初期の仕込み時のモル比で0.01〜3.0、特に0.02〜2.0が好ましい。また、バッチタイプの流通式や固定床流通式の場合は、初期に流通させる水素は脂肪族アルコールに対してモル比で0.01〜1.0、特に0.02〜0.8が好ましい。但し、いずれの反応方式においても、反応進行中は必ずしも当該範囲内に限定されない。
Further, from the viewpoint of conversion rate and selectivity of primary amine, the molar ratio of ammonia / aliphatic alcohol as a raw material component is usually about 0.5 to 10, preferably 2 to 7. Ammonia can be added separately from hydrogen, but can also be introduced as a mixed gas thereof.
About the molar ratio of hydrogen / aliphatic alcohol, in the case of a batch-type closed type, the molar ratio at the initial charging is preferably 0.01 to 3.0, particularly preferably 0.02 to 2.0. Moreover, in the case of a batch type flow type or a fixed bed flow type, the hydrogen to be circulated in the initial stage is preferably 0.01 to 1.0, particularly 0.02 to 0.8 in terms of molar ratio with respect to the aliphatic alcohol. However, in any reaction system, the reaction is not necessarily limited to the range within the progress.
調製例1
セパラブルフラスコにジルコニア粉末[第一稀元素化学工業(株)製「RC−100」]10.0gをイオン交換水170gに懸濁し、そこに分子量252.68の塩化ルテニウム水和物0.29g、硫酸ニッケル6水和物0.72g及び硝酸ランタン0.04gをイオン交換水40gに溶解させた溶液を加えて攪拌しながら60℃まで加熱した。その懸濁液(60℃)を10時間攪拌した後、沈殿剤としてアンモニア水を滴下して懸濁液のpHを11にして加水分解させ、2時間熟成した。その懸濁液に37質量%ホルマリン溶液3.2gを加えて90℃まで加熱し、1時間還元した後、得られた粉末を濾過、水洗し、60℃、13kPaで乾燥してジルコニアに担持した1質量%ルテニウム−1.6質量%ニッケル−0.1質量%ランタン触媒Aを約10g得た。
Preparation Example 1
In a separable flask, 10.0 g of zirconia powder [“RC-100” manufactured by Daiichi Elemental Chemical Co., Ltd.] is suspended in 170 g of ion-exchanged water, and 0.29 g of ruthenium chloride hydrate having a molecular weight of 252.68 is suspended therein. Then, a solution prepared by dissolving 0.72 g of nickel sulfate hexahydrate and 0.04 g of lanthanum nitrate in 40 g of ion-exchanged water was added and heated to 60 ° C. with stirring. After the suspension (60 ° C.) was stirred for 10 hours, aqueous ammonia was added dropwise as a precipitating agent to bring the pH of the suspension to 11, and the mixture was aged for 2 hours. After adding 3.2 g of a 37% by mass formalin solution to the suspension and heating to 90 ° C. and reducing for 1 hour, the obtained powder was filtered, washed with water, dried at 60 ° C. and 13 kPa, and supported on zirconia. About 10 g of 1% by mass ruthenium-1.6% by mass nickel-0.1% by mass lanthanum catalyst A was obtained.
調製例2
塩化ルテニウム水和物0.29g、硫酸ニッケル6水和物0.72g及び塩化マグネシウム0.04gを用いた以外は、調製例1と同様にして、ジルコニアに担持した1質量%ルテニウム−1.6質量%ニッケル−0.1質量%マグネシウム触媒Bを約10g得た。
Preparation Example 2
1% by mass ruthenium-1.6 supported on zirconia in the same manner as in Preparation Example 1, except that 0.29 g of ruthenium chloride hydrate, 0.72 g of nickel sulfate hexahydrate and 0.04 g of magnesium chloride were used. About 10 g of mass% nickel-0.1 mass% magnesium catalyst B was obtained.
調製例3
塩化ルテニウム水和物を0.29g、硫酸ニッケル6水和物を0.72g及び硝酸イットリウムを0.04g用いた以外は、調製例1と同様にして、ジルコニアに担持した1質量%ルテニウム−1.6質量%ニッケル−0.1質量%イットリウム触媒Cを約10g得た。
Preparation Example 3
1% by mass ruthenium-1 supported on zirconia in the same manner as in Preparation Example 1, except that 0.29 g of ruthenium chloride hydrate, 0.72 g of nickel sulfate hexahydrate and 0.04 g of yttrium nitrate were used. About 10 g of .6 mass% nickel-0.1 mass% yttrium catalyst C was obtained.
調製例4
塩化ルテニウム水和物0.29g、硫酸ニッケル6水和物0.72g及び硝酸バリウム0.02gを用いた以外は、調製例1と同様にして、ジルコニアに担持した1質量%ルテニウム−1.6質量%ニッケル−0.1質量%バリウム触媒Dを約10g得た。
尚、上記調製例において、各触媒のルテニウム、(B)成分及び(C)成分の含有量はIPC発光分析で定量した。
Preparation Example 4
1% by mass ruthenium-1.6 supported on zirconia in the same manner as in Preparation Example 1 except that 0.29 g of ruthenium chloride hydrate, 0.72 g of nickel sulfate hexahydrate and 0.02 g of barium nitrate were used. About 10 g of mass% nickel-0.1 mass% barium catalyst D was obtained.
In the above preparation examples, the contents of ruthenium, component (B) and component (C) of each catalyst were quantified by IPC emission analysis.
実施例1
内容積500mlの電磁誘導回転攪拌式オートクレーブに、ステアリルアルコール150g(0.55mol)、調製例1で得た触媒A3g(2.0質量%対原料アルコール)を仕込み、アンモニア47g(2.76mol)と、全圧が2.3MPaG(室温)になるように水素(0.17mol)を圧入した。次いで攪拌(1000r/min)を行って反応温度220℃まで昇温した。同温度での初期最高圧力は16MPaGであった。全圧力を16MPaGで一定になるように水素を連続追加して反応を行った。得られた反応生成物は触媒を濾別した後、ガスクロマトグラフィーで組成分析を行った。結果を第1表に示す。
Example 1
An electromagnetic induction rotary stirring autoclave with an internal volume of 500 ml was charged with 150 g (0.55 mol) of stearyl alcohol and 3 g of catalyst A obtained in Preparation Example 1 (2.0% by mass with respect to the raw material alcohol), and 47 g (2.76 mol) of ammonia and Then, hydrogen (0.17 mol) was injected so that the total pressure became 2.3 MPaG (room temperature). Subsequently, stirring (1000 r / min) was performed and it heated up to reaction temperature 220 degreeC. The initial maximum pressure at the same temperature was 16 MPaG. Reaction was performed by continuously adding hydrogen so that the total pressure was constant at 16 MPaG. The obtained reaction product was subjected to composition analysis by gas chromatography after filtering the catalyst. The results are shown in Table 1.
実施例2
実施例1において、触媒Aの代わりに、調製例2で得た触媒Bを用いて、第1表に示す反応温度220℃での初期最高圧力で一定になるように水素を追加した以外は、実施例1と同様に反応操作を行い、得られた反応生成物について実施例1と同様に分析を行った。結果を第1表に示す。
Example 2
In Example 1, instead of the catalyst A, the catalyst B obtained in Preparation Example 2 was used, except that hydrogen was added so as to be constant at the initial maximum pressure at the reaction temperature of 220 ° C. shown in Table 1. The reaction operation was performed in the same manner as in Example 1, and the obtained reaction product was analyzed in the same manner as in Example 1. The results are shown in Table 1.
実施例3及び4
実施例1において、触媒Aの代わりに、調製例3及び4でそれぞれ得た触媒C及びDをそれぞれ6g(4.0質量%対原料アルコール)仕込んで、第1表に示す反応温度220℃での初期最高圧力で一定になるように水素を追加した以外は、実施例1と同様に反応を行い、得られた反応生成物について実施例1と同様に分析を行った。結果を表1に示す。
Examples 3 and 4
In Example 1, instead of the catalyst A, 6 g (4.0% by mass to raw material alcohol) of the catalysts C and D obtained in Preparation Examples 3 and 4 were charged, respectively, and the reaction temperature shown in Table 1 was 220 ° C. The reaction was carried out in the same manner as in Example 1 except that hydrogen was added so as to be constant at the initial maximum pressure, and the obtained reaction product was analyzed in the same manner as in Example 1. The results are shown in Table 1.
実施例5
実施例1において、ステアリルアルコールの代わりに、ラウリルアルコールを150g(0.81mol)仕込み、アンモニア69g(4.06mol)を用いた以外は実施例1と同様の反応操作を行い、反応を9時間行った。反応温度220℃での初期最高圧力は21MPaGであった。得られた反応生成物は実施例1と同様の分析を行った。アルコール転化率は96.3%、ラウリルアミン選択率は90.9%であり、ジラウリルアミン生成量は8.2%、その他副生成物は0.6%であった。
Example 5
In Example 1, instead of stearyl alcohol, 150 g (0.81 mol) of lauryl alcohol was charged and 69 g (4.06 mol) of ammonia was used. The same reaction operation as in Example 1 was performed, and the reaction was performed for 9 hours. It was. The initial maximum pressure at a reaction temperature of 220 ° C. was 21 MPaG. The obtained reaction product was analyzed in the same manner as in Example 1. The alcohol conversion was 96.3%, the laurylamine selectivity was 90.9%, dilaurylamine production was 8.2%, and other by-products were 0.6%.
本発明の脂肪族アミンの製造方法は、脂肪族アルコールから、脂肪族1級アミンを高活性で高選択に製造することができる方法であり、得られる脂肪族1級アミンは、家庭用、工業用分野において重要な化合物であり、例えば、界面活性剤、繊維処理剤等の製造原料などとして好適に用いられる。 The method for producing an aliphatic amine of the present invention is a method capable of producing an aliphatic primary amine with high activity and high selectivity from an aliphatic alcohol. It is an important compound in the field of use, and is suitably used, for example, as a raw material for producing surfactants, fiber treatment agents and the like.
Claims (8)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005379660A JP4972315B2 (en) | 2005-12-28 | 2005-12-28 | Method for producing nitrogen-containing compound |
ES06835190.7T ES2606914T3 (en) | 2005-12-28 | 2006-12-21 | Procedure to produce nitrogen-containing compounds |
MX2008008490A MX2008008490A (en) | 2005-12-28 | 2006-12-21 | Process for producing nitrogen-containing compounds. |
US12/159,526 US8247611B2 (en) | 2005-12-28 | 2006-12-21 | Process for producing nitrogen-containing compounds |
PCT/JP2006/326164 WO2007077903A2 (en) | 2005-12-28 | 2006-12-21 | Process for producing nitrogen-containing compounds |
CN2006800494490A CN101346343B (en) | 2005-12-28 | 2006-12-21 | Process for producing nitrogen-containing compounds |
BRPI0620821A BRPI0620821B1 (en) | 2005-12-28 | 2006-12-21 | process for producing an aliphatic amine as well as catalyst used in said process and its use |
EP06835190.7A EP1968931B1 (en) | 2005-12-28 | 2006-12-21 | Process for producing nitrogen-containing compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005379660A JP4972315B2 (en) | 2005-12-28 | 2005-12-28 | Method for producing nitrogen-containing compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007176892A JP2007176892A (en) | 2007-07-12 |
JP4972315B2 true JP4972315B2 (en) | 2012-07-11 |
Family
ID=38302411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005379660A Active JP4972315B2 (en) | 2005-12-28 | 2005-12-28 | Method for producing nitrogen-containing compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4972315B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7196142B2 (en) | 2015-07-02 | 2022-12-26 | サン-ゴバン グラス フランス | Heated glazing having a thin glass outer sheet and a heating layer with flow separation lines |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8927772B2 (en) | 2010-12-27 | 2015-01-06 | Kao Corporation | Tertiary amine preparation process |
JPWO2022065142A1 (en) | 2020-09-25 | 2022-03-31 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02234A (en) * | 1987-10-16 | 1990-01-05 | Kao Corp | Production of n-substituted amine |
JPH01102045A (en) * | 1987-10-16 | 1989-04-19 | Kao Corp | Production of n-substituted amine |
JPH02233A (en) * | 1987-10-16 | 1990-01-05 | Kao Corp | Production of n-substituted amine |
JPH02232A (en) * | 1987-10-16 | 1990-01-05 | Kao Corp | Production of n-substituted amine |
DE69512381T2 (en) * | 1993-12-22 | 2000-04-06 | Union Carbide Chemicals & Plastics Technology Corp., Danbury | Reductive amination for the selective production of aminoethylethanolamine |
DE19507007A1 (en) * | 1995-02-28 | 1996-08-29 | Basf Ag | Catalysts for the amination of alcohols, ketones and aldehydes |
US5817593A (en) * | 1995-06-02 | 1998-10-06 | The Dow Chemical Company | Catalyst and process for producing amines |
SE513250C2 (en) * | 1997-11-11 | 2000-08-07 | Akzo Nobel Nv | Amination process for the production of polyamines |
JP4582992B2 (en) * | 2002-07-09 | 2010-11-17 | 旭化成ケミカルズ株式会社 | Method for producing alicyclic amine compound |
JP4604051B2 (en) * | 2004-02-17 | 2010-12-22 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Catalytic preparation of highly sterically hindered amino-ether alcohols using metal-loaded catalysts |
JP4972314B2 (en) * | 2005-12-28 | 2012-07-11 | 花王株式会社 | Method for producing nitrogen-containing compound |
JP4989889B2 (en) * | 2005-12-28 | 2012-08-01 | 花王株式会社 | Method for producing nitrogen-containing compound |
-
2005
- 2005-12-28 JP JP2005379660A patent/JP4972315B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7196142B2 (en) | 2015-07-02 | 2022-12-26 | サン-ゴバン グラス フランス | Heated glazing having a thin glass outer sheet and a heating layer with flow separation lines |
Also Published As
Publication number | Publication date |
---|---|
JP2007176892A (en) | 2007-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7019813B2 (en) | Catalyst for producing α-phenylethanol by hydrogenation of acetophenone, its production method and application | |
JP4972314B2 (en) | Method for producing nitrogen-containing compound | |
CN105727962B (en) | Catalyst and its preparation method and application for dimethyl adipate hexylene glycol | |
JP4892329B2 (en) | Method for producing nitrogen-containing compound | |
JP5038700B2 (en) | Method for producing fat nitrogen-containing compound | |
CN107999082A (en) | A kind of preparation method and applications of copper system hydrogenation of acetophenone catalyst | |
JP4989889B2 (en) | Method for producing nitrogen-containing compound | |
JP4641497B2 (en) | Aliphatic alcohol amination catalyst and method for producing amine using the catalyst | |
JP4972315B2 (en) | Method for producing nitrogen-containing compound | |
ES2606914T3 (en) | Procedure to produce nitrogen-containing compounds | |
CN101757922A (en) | Catalyst for preparing cyclohexanone by cyclohexanol dehydrogenation | |
US7507863B2 (en) | Process for producing nitrogen-containing compounds | |
JP3530937B2 (en) | Catalyst for methanol synthesis | |
JP7106797B2 (en) | Improved method for depositing Pd nanoparticles | |
JP3970489B2 (en) | Process for producing N, N-dimethyl-N-alkylamine | |
JP2017124366A (en) | Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst | |
JP2017001010A (en) | Catalyst for ammonia decomposition and manufacturing method of hydrogen using the catalyst | |
JP4115724B2 (en) | Method for producing aminocarboxylic acid (salt) | |
JP2001151734A (en) | Method for producing tertiary amine | |
JP4133432B2 (en) | Methanol steam reforming catalyst and method for producing hydrogen by steam reforming of methanol using the catalyst | |
JP4092538B2 (en) | Method for producing hydrogen-containing gas | |
JPS6140220B2 (en) | ||
CN111604059A (en) | Catalyst for synthesizing oxalate and preparation method and application thereof | |
JPH05377B2 (en) | ||
CN107115862A (en) | A kind of hydrogenation catalyst and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110614 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120403 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120409 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |