JPS5950664B2 - Production method of unsaturated amide - Google Patents

Production method of unsaturated amide

Info

Publication number
JPS5950664B2
JPS5950664B2 JP55061328A JP6132880A JPS5950664B2 JP S5950664 B2 JPS5950664 B2 JP S5950664B2 JP 55061328 A JP55061328 A JP 55061328A JP 6132880 A JP6132880 A JP 6132880A JP S5950664 B2 JPS5950664 B2 JP S5950664B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
water
oxide
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55061328A
Other languages
Japanese (ja)
Other versions
JPS56156243A (en
Inventor
正明 竹中
達也 桃林
努 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP55061328A priority Critical patent/JPS5950664B2/en
Publication of JPS56156243A publication Critical patent/JPS56156243A/en
Publication of JPS5950664B2 publication Critical patent/JPS5950664B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はニトリルを水和して対応するアミドを製造する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for hydrating nitriles to produce the corresponding amides.

さらに詳しくはチタンおよびジルコニウムからなる群か
ら選ばれた少なくとも一種の金属の酸化物と、亜鉛酸化
物とを組み合わせた複合酸化物触媒の存在下、不飽和ニ
トリルと水とを反応させて対応する不飽和アミドを製造
する方法に関するものである。金属銅を触媒とするニト
リルと水との接触水和反応は公知である。金属銅触媒の
欠点は寿命が短かいことであり、水和活性が次第に低下
することが避けられない。また、活性が非常に不安定で
あつて、触媒の貯蔵や取扱いに大変な労力が要求される
。一方、ニトリルの接触水和反応触媒として種々の酸化
物が提案されている。
More specifically, an unsaturated nitrile is reacted with water in the presence of a composite oxide catalyst that is a combination of an oxide of at least one metal selected from the group consisting of titanium and zirconium and zinc oxide. The present invention relates to a method for producing a saturated amide. A catalytic hydration reaction between a nitrile and water using metallic copper as a catalyst is known. The disadvantage of metallic copper catalysts is their short lifetime, and a gradual decline in hydration activity is inevitable. Furthermore, the activity is very unstable, and a great deal of effort is required to store and handle the catalyst. On the other hand, various oxides have been proposed as catalysts for the catalytic hydration reaction of nitriles.

例えば、米国特許第3366639号明細書では二酸化
マンガン(Mn00)の使用が提案されている。二酸化
マンガンは活性および選択性は比較的高いが寿命が短か
いという欠点を有する。また、特開昭48−23716
号では鉄および亜鉛を含有する複合酸化物触媒、特開昭
48−39426号ではニッケルおよびクロムを含有す
る複合酸化物触媒が提案されている。これら公知の複合
酸化物は貯蔵や取扱いが容易であるが、活性が低く、ニ
トリルの反応率をあげるためには100℃以上の高温、
あるいは数時間以上の反応時間を必要とするため副反応
を惹起し、アミドの収率を低下させるという欠点を有す
る。本発明者らは以上のような問題点を解決し、工業的
に有利な製造方法を提供すべ<鋭意研究を進めた結果、
チタンまたはジルコニウムの酸化物と特定の金属酸化物
を組み合わせた複合酸化物が貯蔵や取扱いが容易であり
、かつすぐれた活性、選択性を有し、寿命が長い触媒で
あることを発見した。
For example, US Pat. No. 3,366,639 proposes the use of manganese dioxide (Mn00). Manganese dioxide has relatively high activity and selectivity, but has the disadvantage of short lifetime. Also, JP-A-48-23716
No. 48-39426 proposes a composite oxide catalyst containing iron and zinc, and JP-A-48-39426 proposes a composite oxide catalyst containing nickel and chromium. Although these known composite oxides are easy to store and handle, they have low activity, and in order to increase the reaction rate of nitrile, high temperatures of 100°C or higher are required.
Alternatively, since a reaction time of several hours or more is required, side reactions are induced and the yield of amide is reduced. The inventors of the present invention solved the above-mentioned problems and provided an industrially advantageous manufacturing method.As a result of intensive research,
We have discovered that a composite oxide that combines titanium or zirconium oxide with a specific metal oxide is a catalyst that is easy to store and handle, has excellent activity and selectivity, and has a long life.

すなわち、チタンおよびジルコニウムからなる群から選
ばれた少なくとも一種の金属の酸化物と亜鉛酸化物とを
組み合わせた複合酸化物は不飽J和ニトリルの水和反応
に高い活性および選択性を有することを見出し、本発明
に到達した。本発明でいう「複合酸化物」とは二元酸化
物、三元酸化物、四元酸化物およびより高度の多元酸化
物ならびに固溶体および非化学量論的酸化物をθ包含す
る。
In other words, it has been shown that a composite oxide, which is a combination of an oxide of at least one metal selected from the group consisting of titanium and zirconium, and zinc oxide has high activity and selectivity in the hydration reaction of unsaturated J-nitrile. Heading, we arrived at the present invention. The "complex oxide" as used in the present invention includes binary oxides, ternary oxides, quaternary oxides, higher multi-component oxides, solid solutions, and non-stoichiometric oxides.

これは単一酸化物、たとえば二酸化チタンと酸化亜鉛な
どの物理的混合物をも包含する。また「酸化物」とは少
なくとも部分的に水和された状態のものを包含するもの
と定義する。本発明で使用する複合酸化物触媒は、この
種触5媒調製に採用され得る合目的的な任意の態様で調
製することができる。調製法としては沈澱法が好んで採
用され得る。すなわち、二種以上の前記特定金属の塩類
、たとえば、硫酸塩、硝酸塩、酸素酸塩、ハロゲン酸塩
、有機酸塩等の溶液、特に水溶液にアルカリ性物質とし
てアンモニア水、水酸化アルカリ、炭酸アルカリ、有機
アミン類等の溶液特に水溶液を加えて、相当する金属の
水酸化物または含水酸化物の沈澱を生成させ、得られた
沈澱を適当な温度で焼成する方法が繁用される。各金属
の合体を段階的に行なうこともできる。たとえば、ある
酸化物を先ずつくり、これの存在下に他の金属の塩の水
溶液にアルカリを加えて水酸化物または含水酸化物を沈
澱させることもできる。水酸化物または含水酸化物沈澱
を経由しない方法としては、前記のような塩の単独また
は二種以上の機械的混合物を酸化物が生成するのに十分
な高温度に加熱して熱分解させて相当する酸化物を得る
方法も採用される。すでに得られた各酸化物を混合して
ボールミル等で十分粉砕することからなるメカノケミカ
ルな方法によつてもよい。この場合は、水を加えて湿潤
状態でボールミル処理すると一層効果的である。このよ
うにして得られた複合酸化物触媒は、高温で焼成して触
媒構造の安定化を計ることが好ましい。
This also includes physical mixtures of single oxides, such as titanium dioxide and zinc oxide. Further, the term "oxide" is defined to include those in an at least partially hydrated state. The composite oxide catalyst used in the present invention can be prepared in any convenient manner that can be adopted for preparing this type of catalyst. As a preparation method, a precipitation method can be preferably employed. That is, a solution of two or more salts of the above-mentioned specific metals, such as sulfates, nitrates, oxyacids, halogenates, organic acid salts, etc., especially an aqueous solution, includes aqueous ammonia, alkali hydroxide, alkali carbonate, etc. as an alkaline substance. A frequently used method is to add a solution, particularly an aqueous solution, of an organic amine or the like to form a precipitate of a corresponding metal hydroxide or hydrated oxide, and to sinter the resulting precipitate at an appropriate temperature. It is also possible to combine each metal in stages. For example, it is possible to first prepare an oxide and then add an alkali to an aqueous solution of a salt of another metal in its presence to precipitate a hydroxide or hydrous oxide. As a method that does not involve precipitation of hydroxides or hydrous oxides, the above-mentioned salts alone or in a mechanical mixture of two or more salts are heated to a temperature high enough to form oxides and thermally decomposed. Methods for obtaining the corresponding oxides are also employed. A mechanochemical method may also be used, which consists of mixing the various oxides already obtained and sufficiently pulverizing the mixture using a ball mill or the like. In this case, it is more effective to perform ball milling in a wet state by adding water. The composite oxide catalyst thus obtained is preferably calcined at a high temperature to stabilize the catalyst structure.

その場合の焼成温度は、使用した金属の種類あるいはそ
の組み合わせによつて適当に選べばよい。上記触媒の焼
成温度としては400℃から600℃の範囲が特に好ま
しい。
The firing temperature in this case may be appropriately selected depending on the type of metal used or the combination thereof. The firing temperature of the catalyst is particularly preferably in the range of 400°C to 600°C.

加熱雰囲気は、一般に還元性を避けるのがよい。このよ
うな複合酸化物触媒は、この種触媒に慣用されているよ
うに、担体に担持させて使用することができる。
The heating atmosphere should generally avoid reducing properties. Such a composite oxide catalyst can be used by being supported on a carrier, as is commonly used for this type of catalyst.

従つて、適当な担体たとえばシリカ、アルミナ、シリカ
/アルミナ、ケイソウ土、アランダム、コランダム、活
性炭、天然産ケイ酸塩類等を前記した触媒調製過程の任
意の段階において金属化合物に担持させることができる
。本発明方法によるニトリルの水和反応は、上述の触媒
を用いて通常室温ないし300℃の温度で行われるが、
反応速度の増大および副反応の抑制の面から40℃ない
し150℃で行うことが特に好ましい。ニトリルの水和
反応においては、ニトリルに対して少なくとも化学量諭
の水が反応系に存在することが必要である。
Therefore, suitable supports such as silica, alumina, silica/alumina, diatomaceous earth, alundum, corundum, activated carbon, naturally occurring silicates, etc. can be supported on the metal compound at any stage of the catalyst preparation process described above. . The hydration reaction of nitrile according to the method of the present invention is usually carried out at a temperature of room temperature to 300°C using the above-mentioned catalyst.
From the viewpoint of increasing the reaction rate and suppressing side reactions, it is particularly preferable to carry out the reaction at a temperature of 40°C to 150°C. In the hydration reaction of nitrile, it is necessary that at least a stoichiometric amount of water relative to the nitrile be present in the reaction system.

この水は、遊離の水の外に、複合酸化物触媒が少なくと
も部分的に水和されている場合の水和水その他であつて
もよい。反応は気相、液相いずれで行うこともできるが
、通常は液相で行われる。
This water may be not only free water but also hydration water when the composite oxide catalyst is at least partially hydrated. Although the reaction can be carried out in either a gas phase or a liquid phase, it is usually carried out in a liquid phase.

また、加圧下において前記反応を行うことも可能である
。反応中の重合を抑制するため、適当な重合防止剤たと
えばハイドロキノン、フエノチアジン、P−Tert−
ブチルカテコール等を必要に応じて添加することができ
る。
It is also possible to carry out the reaction under pressure. In order to inhibit polymerization during the reaction, suitable polymerization inhibitors such as hydroquinone, phenothiazine, P-Tert-
Butylcatechol etc. can be added as necessary.

また反応供給液中に酸素を溶存させることにより重合を
抑制することも可能である。本発明方法を実施するに当
つては、水と共に反応温度での使用に耐える安定な溶媒
を用いることもできる。
It is also possible to suppress polymerization by dissolving oxygen in the reaction feed solution. In carrying out the method of the present invention, a stable solvent that can withstand use at the reaction temperature can also be used together with water.

本発明に用いられる溶剤としてアルコール、ケトン、ア
ミド、スルホキシドなどがあり、具体例としてメタノー
ル、エタノール、イソプロパノール、アセトン、ジメチ
ルホルムアミド、ジメチルスルホキシド、ホルムアミド
、アセトアミド等が挙げられる。本発明に適用される不
飽和ニトリルの代表的な例として、アクリロニトリル、
メタクリロニトリル、クロトニツクニトリル、β−フエ
ニルアクリロニトリル、2−シアノ−2−ブテン、1−
シアノ−1−オクテン、10−ウンデセノニトリル、マ
レイン酸ニトリルあるいは、フマル酸ニトリルなどが挙
げられる。
Solvents used in the present invention include alcohols, ketones, amides, sulfoxides, and specific examples include methanol, ethanol, isopropanol, acetone, dimethylformamide, dimethylsulfoxide, formamide, acetamide, and the like. Typical examples of unsaturated nitriles applicable to the present invention include acrylonitrile,
Methacrylonitrile, crotonitrile, β-phenylacrylonitrile, 2-cyano-2-butene, 1-
Examples include cyano-1-octene, 10-undecenonitrile, maleate nitrile, and fumarate nitrile.

本発明の触媒はアミド化反応の活性、選択性が高く寿命
が長い。
The catalyst of the present invention has high amidation reaction activity and selectivity, and has a long life.

また貯蔵や取扱いが容易であり、反応供給液中に溶存酸
素が含まれていても触媒の活性、選択性に悪影響を及ぼ
すことがないな’どの特徴があり、技術的にかつ経済的
にみて不飽和アミドのすぐれた製造法を提供するもので
ある。次に本発明を実施例にて説明するが、これら実施
例は本発明を限定するものではない。
In addition, it is easy to store and handle, and even if dissolved oxygen is contained in the reaction feed, it does not adversely affect the activity or selectivity of the catalyst. The present invention provides an excellent method for producing unsaturated amides. Next, the present invention will be explained using Examples, but these Examples do not limit the present invention.

実施例 1 四塩化チタンTiCl。Example 1 Titanium tetrachloride TiCl.

38Ogと硝酸亜鉛(Zn(NO,),・ 6H,0)
15gとを31の水に溶解し、激しく攪拌しながらこれ
に28%アンモニア水をPHが7になるまで加えた。
38Og and zinc nitrate (Zn(NO,), 6H,0)
15 g was dissolved in 31 water, and 28% ammonia water was added thereto with vigorous stirring until the pH reached 7.

生成した沈澱を吸引ろ過し、1旧の水で2回洗浄した。The formed precipitate was suction filtered and washed twice with 1 ml of water.

得られた沈澱を110℃で乾燥し、500℃で6時間焼
成した。上記の方法で調製した触媒5gを粉砕しアクリ
ロニトリルの6.8(重量)%水溶液23gと共にリ一
ビツヒ冷却器付の内容100m1のフラスコに入れ、大
気圧下で攪拌しながら約70℃の反応温度で5時間還流
した。
The obtained precipitate was dried at 110°C and calcined at 500°C for 6 hours. 5 g of the catalyst prepared by the above method was crushed and placed in a 100 ml flask equipped with a Libitz condenser together with 23 g of a 6.8% (by weight) aqueous solution of acrylonitrile, and the reaction temperature was maintained at about 70°C with stirring under atmospheric pressure. The mixture was refluxed for 5 hours.

反応後、反応混合液をろ過して触媒を除去し、ガスクロ
マトグラフイ一により分析したところ、ろ液中にアクリ
ルアミド0.35g(収率16.7%)が含まれること
を確認した。
After the reaction, the reaction mixture was filtered to remove the catalyst and analyzed by gas chromatography, and it was confirmed that the filtrate contained 0.35 g of acrylamide (yield: 16.7%).

他に副生物は検出されなかつた。No other by-products were detected.

実施例 2 オキシ塩化ジルコニウム(ZrOCl2・8H20)6
4.4gと硝酸亜鉛(Zn(NO3)2 ・6H20)
1.9gとを500m1の水に溶解し、激しく攪拌しな
がらこれに28%アンモニア水をPHが7になるまで加
えた。
Example 2 Zirconium oxychloride (ZrOCl2.8H20)6
4.4g and zinc nitrate (Zn(NO3)2 ・6H20)
1.9 g was dissolved in 500 ml of water, and 28% ammonia water was added thereto with vigorous stirring until the pH reached 7.

生成した沈澱を吸引ろ過し、1000ccの水で2回洗
浄した。
The generated precipitate was suction filtered and washed twice with 1000 cc of water.

得られた沈澱を110℃で乾燥し、500℃で6時間焼
成した後粉砕した。上記方法で調製した触媒5gを用い
た他は実施例1と同様の方法でアタリロニトリルの水和
反応を行なつた。
The obtained precipitate was dried at 110°C, calcined at 500°C for 6 hours, and then ground. The hydration reaction of atarylonitrile was carried out in the same manner as in Example 1, except that 5 g of the catalyst prepared in the above method was used.

反応液のガスクロマト分析の結果、二アクリルアミド0
.12g(収率5.7%)が含まれることを確認した。
他に副生物は検出されなかつた。
As a result of gas chromatography analysis of the reaction solution, diacrylamide was found to be 0.
.. It was confirmed that 12g (yield 5.7%) was contained.
No other by-products were detected.

実施例 3 実施例1で調製した触媒を粉砕し、ふるいにかけて10
〜32メツシユの触媒粒子を得た。
Example 3 The catalyst prepared in Example 1 was ground and sieved to give 10
~32 meshes of catalyst particles were obtained.

上記方法で調製した触媒125gをジヤケツト付ガラス
製反応管(内径1.8cm)に充填した。反応管を78
℃に保ち、5.7(重量)%のアクリロニトリル水溶液
をプランジヤーポンプを用いて40m1/Hrの流量で
触媒層に供給した。流出液の組成をガスクロマトグラフ
イ一により分析したところ、反応開始後、5時間ではア
クリルアミドの濃度は4.7(重量)%であつた。アク
リルアミドの収率は供給アクリロニトリルに対して61
.5(モル)%となる。副生物として微量のエチレンシ
アンヒドリンとアクリル酸が検出された。上記反応条件
でさらに反応を継続したところ、100時間後もアクリ
ルアミドの収率に変化がなく触媒活性が安定で寿命が長
いことがわかる。
125 g of the catalyst prepared by the above method was filled into a jacketed glass reaction tube (inner diameter 1.8 cm). 78 reaction tubes
C., and a 5.7% (by weight) acrylonitrile aqueous solution was supplied to the catalyst layer at a flow rate of 40 ml/Hr using a plunger pump. When the composition of the effluent was analyzed by gas chromatography, the concentration of acrylamide was 4.7% (by weight) 5 hours after the start of the reaction. The yield of acrylamide is 61% based on the acrylonitrile fed.
.. It becomes 5 (mol)%. Trace amounts of ethylene cyanohydrin and acrylic acid were detected as byproducts. When the reaction was further continued under the above reaction conditions, there was no change in the yield of acrylamide even after 100 hours, indicating that the catalyst activity was stable and the life was long.

Claims (1)

【特許請求の範囲】[Claims] 1 チタンおよびジルコニウムからなる群から選ばれた
、少なくとも一種の金属の酸化物と亜鉛酸化物とを組み
合わせた複合酸化物触媒の存在下、不飽和ニトリルと水
を反応させることを特徴とする不飽和アミドの製造法。
1. Unsaturated nitrile and water are reacted in the presence of a composite oxide catalyst that is a combination of at least one metal oxide selected from the group consisting of titanium and zirconium and zinc oxide. A method for producing amides.
JP55061328A 1980-05-08 1980-05-08 Production method of unsaturated amide Expired JPS5950664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55061328A JPS5950664B2 (en) 1980-05-08 1980-05-08 Production method of unsaturated amide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55061328A JPS5950664B2 (en) 1980-05-08 1980-05-08 Production method of unsaturated amide

Publications (2)

Publication Number Publication Date
JPS56156243A JPS56156243A (en) 1981-12-02
JPS5950664B2 true JPS5950664B2 (en) 1984-12-10

Family

ID=13167954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55061328A Expired JPS5950664B2 (en) 1980-05-08 1980-05-08 Production method of unsaturated amide

Country Status (1)

Country Link
JP (1) JPS5950664B2 (en)

Also Published As

Publication number Publication date
JPS56156243A (en) 1981-12-02

Similar Documents

Publication Publication Date Title
US3696152A (en) Hydration of nitriles to amides using heterogeneous cupreous catalysts
EP0183225B1 (en) Catalyst for vapor-phase hydrogen transfer reaction
JP2010510276A (en) Process for the preparation of carboxylic acid amides by hydrolysis of carboxylic nitriles in the presence of catalysts containing manganese dioxide
EP0418512B1 (en) Process for production of alpha-hydroxycarboxylic acid amide
JP3222639B2 (en) Method for producing α-hydroxyisobutyrate
EP0412310A1 (en) Process for producing Manganese dioxide catalyst for the hydration reaction of cyanohydrins
US4365091A (en) Method for the production of acrylamide
JPS58166936A (en) Catalyst for producing carboxylic ester and use thereof
JP4164603B2 (en) Method for producing ε-caprolactam
US3994973A (en) Catalysts for the hydration of nitriles to amides
JPS5950664B2 (en) Production method of unsaturated amide
JP3091219B2 (en) Method for producing acid-resistant catalyst for direct hydrogenation to produce alcohol from carboxylic acid
JPH03857B2 (en)
US5508465A (en) Preparation of aliphatic alpha, omega-aminonitriles in the gas phase
JPH0585216B2 (en)
JPS62106049A (en) Production of carboxylic acid ester
JPS5918384B2 (en) Method for producing unsaturated amide
JP3525937B2 (en) Method for producing α-hydroxyisobutyric acid amide
JP3313993B2 (en) Method for producing carboxylic acid ester
JPH02268137A (en) Preparation of carboxylic acid ester and formamide
US3379652A (en) Arsenophosphomolybdic acid catalyst compositions and process for their preparation
JPS5950665B2 (en) Production method of unsaturated amide
WO2011108717A1 (en) Amide compound production catalyst, and process for production of amide compound
JPH08245211A (en) Production of carbon monoxide
KR100346498B1 (en) Manufacturing method of lactic acid ester