JP4164603B2 - Method for producing ε-caprolactam - Google Patents
Method for producing ε-caprolactam Download PDFInfo
- Publication number
- JP4164603B2 JP4164603B2 JP15311595A JP15311595A JP4164603B2 JP 4164603 B2 JP4164603 B2 JP 4164603B2 JP 15311595 A JP15311595 A JP 15311595A JP 15311595 A JP15311595 A JP 15311595A JP 4164603 B2 JP4164603 B2 JP 4164603B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- reaction
- caprolactam
- mol
- titanium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、固体触媒を用いて気相反応条件下に、ε−カプロラクトン及び/または6−ヒドロキシカプロン酸エステルとアンモニアとからε−カプロラクタムを製造する方法に関する。
ε−カプロラクタムは、ナイロン6などポリアミドの原料として工業的に大量に生産されている極めて重要な化学原料である。
【0002】
【従来の技術】
現在の工業的なε−カプロラクタムの製造方法としては、シクロヘキサノンオキシムのベックマン転位反応による方法が一般に広く採用されている。
しかしながら、このベックマン転位反応は、多量の強酸を用いる液相反応で、多量の硫安を副生するという問題点を有している。
一方、硫安を副生しないε−カプロラクタムの製造法として、種々の方法が提案されているが、これらの中でε−カプロラクトンを気相でアンモニアの存在下で触媒と接触させる方法も既に提案されている。
【0003】
例えば、特公昭56−10306号では、銅、ニッケル及び酸化チタンを含む触媒を使用することが提案されているが、空時収率(単位触媒量当たり、単位時間に得られるε−カプロラクタム量)が十分でなく工業的な方法として採用されるに至っていない。
また、特公昭48−39950号では、空時収率を向上させるために、銅−クロム系触媒の存在下でアミンを共存させる方法が提案されているが、このような第三物質を反応系に添加することは、ε−カプロラクタムの精製時の負担を増すことになり、工業的には好ましくない。
【0004】
空時収率は、反応器の容量及びコスト、さらには製造コストに影響を及ぼすので、できるだけ大きな値が要求される。
一般的に空時収率を上げるために、原料の処理量を増した場合には、触媒の活性、選択性の低下を早めることとなり、逆に経済性が失われる結果となりやすく、工業的には好ましくない。
従って、工業的に有利に実施するためには、選択性、空時収率、活性持続性の高い触媒の開発が望まれる。
【0005】
【問題を解決するための手段】
そこで、本発明者らは、前記のような問題点のないε−カプロラクトン及び/または6−ヒドロキシカプロン酸エステルから、気相接触反応によりε−カプロラクタムを製造し得る方法について鋭意研究した結果、酸化チタンを含む銅化合物、モリブデン化合物およびクロム化合物の水溶液とアルカリ水溶液とから析出した混合物を焼成することにより得られた触媒を用いることにより、ε−カプロラクタムを高収率で長時間にわたって製造することができることを見いだし本発明を完成するに至った。
【0006】
以下、本発明を詳細に説明する。
本発明で使用される触媒の具体的な調製法について述べると、まず所要量の銅化合物、モリブデン化合物及びクロム化合物の混合水溶液に所要量の酸化チタンを加え、5〜100℃の温度で、かき混ぜながらアルカリ水溶液を滴下し、pHが9〜13となるように調製して沈澱物を得る。この沈澱物を十分に水洗し、ろ過を行い、銅化合物、モリブデン化合物、クロム化合物および酸化チタンからなる混合物を得る。
次に、この混合物を100〜200℃で乾燥した後、適当な形に成形して、400〜900℃で3〜15時間、N2 または空気中で焼成することにより触媒が得られる。
このようにして調製された触媒は、反応管に充填後、原料ガスを供給する前に水素ガスにより還元して使用される。
【0007】
触媒調製に使用される酸化チタンは、市販のいずれのものも使用できる。銅およびクロム化合物としては、硝酸塩、硫酸塩、ギ酸塩などが使用できるが、硝酸塩が好ましい。モリブデン化合物としては、モリブデン酸アンモニウムが使用されるが、酸化モリブデンの粉末でもかまわない。また、pH調節剤として使用するアルカリとしては、カ性ソーダ、炭酸ソーダなどが使用できる。
本発明において使用される触媒の銅、モリブデン、クロム及びチタンの組成比を原子比で表すと、Cu:Mo:Cr:Ti=100:0.1〜50:0.01〜20:20〜500好ましくは、100:0.5〜20:0.05〜10:50〜300の範囲である。
【0008】
本発明で原料として使用するε−カプロラクトンとしては、シクロヘキサノンの過酸化物による酸化反応及びその他の反応により製造されるものなどが使用できる。
また、6−ヒドロキシカプロン酸エステルとしては、炭素数1〜4の低級飽和脂肪族アルコールのエステルがあげられるが、特にメチルエステルが好ましい。本発明を実施する場合に使用するアンモニア量は、ε−カプロラクトン類に対して1〜30倍モル、好ましくは3〜20倍モルの範囲が適当である。
また、水素の量は、ε−カプロラクトン類に対して1〜60倍モル、好ましくは5〜50倍モル、さらに水の量は、1〜60倍モル、好ましくは5〜50倍モルの範囲が適当である。
【0009】
反応温度は、200〜350℃、好ましくは250〜330℃の範囲が適当である。反応圧力は、1〜10kgf/cm2 (ゲージ圧)、好ましくは3〜7kgf/cm2 (ゲージ圧)の範囲が有利である。
また、ε−カプロラクトン類、アンモニア、水素及び水の混合ガスと触媒とを接触させる場合の空間速度は、100〜10,000hr-1、特に300〜7,000hr-1の範囲が好ましい。
【0010】
ε−カプロラクタムは、反応後のガスを冷却して凝縮した反応生成物より蒸留、抽出などの操作により分離することができる。非凝縮ガスの大部分は、アンモニア、水素からなり、これらは反応系にリサイクルして再使用される。
また、長時間の使用により活性の低下した触媒は、酸素含有ガス中で焼成することにより再生し繰り返し使用することができる。
【0011】
以下、実施例により、本発明を具体的に説明する。
なお、実施例においては反応成績を下記の式によって定義した。
【0012】
【実施例】
実施例1
硝酸第二銅3水塩200g,硝酸クロム9水塩0.33gおよびモリブデン酸アンモニウム2.92gを3lの純水に溶解し、室温でかきまぜつつ市販の酸化チタン粉末(石原産業W−10)を空気中800℃で5時間焼成処理したもの66.1gを加えた。さらにかきまぜを続けながら、15重量%カ性ソーダ水溶液をゆっくり滴下し、液のpHが12.0になったところで滴下を中止し、さらに1時間かきまぜを継続し沈澱物を得た。この沈澱物を水洗、ろ過し120℃で16時間乾燥した。乾燥後の沈澱を500μm以下の粉末に粉砕した後、沈澱粉末重量の3〜5重量%に相当するグラファイトを添加して、3×3mmのペレット状に打錠成形した。
得られた成形品を、空気中400℃で5時間焼成した。焼成後の触媒の組成は、Cu:Mo:Cr:Ti=100:2:0.1:150(原子比)であった。本触媒40mlをステンレス反応管に充填して、250℃にて3.5体積%水素(N2 中)ガスにて一夜還元した。
その後、反応系を窒素ガスで置換し、系内の圧力を5kgf/cm2 (ゲージ圧)に調整した。ε−カプロラクトン:アンモニア:水素:水=1:10:20:30(モル比)の混合ガスをSV=2,900hr-1の速度で、280℃に保持した触媒層に供給した後、そのまま反応を24時間継続した。一定時間の間、生成物を冷却、捕集し、捕集液をガスクロマトグラフにより分析した結果を比較例1〜3と共に表1に示した。
【0013】
比較例1
実施例1と同様にして、硝酸銅及び酸化チタンからCu:Ti=100:150(原子比)の触媒を調製した。実施例1と同様にして、300℃で反応を実施した結果を表1に示した。
【0014】
比較例2
実施例1と同様にして、Cu:Mo:Cr=100:2:0.1(原子比)の酸化チタンを含まない触媒を調製して、実施例1と同様にして280℃で反応を行い、その結果を表1に示した。
【0015】
比較例3
市販のアドキンス型触媒(日揮化学:N−201)40mlを反応管に充填し、実施例1と同様に300℃で反応を行い、その結果を表1に示した。
【0016】
実施例2
実施例1と同様に、Cu:Mo:Cr:Ti=100:5:0.1:150
(原子比)の触媒を調製した。SV=3,800hr-1とする以外は、実施例1と同様に300℃で反応を実施した。その結果を表2に示した。
【0017】
実施例3
実施例1と同様にして、Cu:Mo:Cr:Ti=100:2:0.1:150(原子比)の触媒を調製した。ε−カプロラクトンに代えて6−ヒドロキシカプロン酸メチルを原料として用いた以外は、実施例1と同様に280℃で反応を行った。その結果を実施例1の結果と対比して表3に示した。
【0018】
実施例4
実施例1で用いた酸化チタン粉末W−10の代わりに、MC−50(石原産業)を空気中600℃で5時間焼成したものを用いて、実施例1と同様にして3×3mmの打錠成形品を得た。
得られた成形品を、空気中700℃で7時間焼成した。焼成後の触媒組成は、Cu:Mo:Cr:Ti=100:2:0.2:100(原子比)であった。
その後、実施例1と同様にして触媒還元を行った後、実施例1と同様に300℃で反応を行った。反応は3日間継続し、その結果を表4に示した。
【0019】
実施例5
実施例4と同様に、空気中600℃で5時間焼成した酸化チタン粉末MC−50を用いて触媒調製を実施し、3×3mmの成形品を得た。この成形品をN2 中700℃で7時間焼成し、触媒組成Cu:Mo:Cr:Ti=100:3:0.2:100(原子比)の触媒を得た。本触媒を用いて実施例1と同様にして、300℃で反応を行った結果を表5に示した。
【0020】
実施例6
実施例4と同様にして、Cu:Mo:Cr:Ti=100:3:0.1:100(原子比)の触媒を調製した。本触媒を用いて、実施例1の場合と同様に300℃で反応を行った。反応を250時間継続した後、2%O2 ガス(N2 中)及び空気による焼成で触媒を再生し、さらに250時間の反応を繰り返すようにして、約1ヶ月間の連続運転を実施した。その結果を表6に示した。
【0021】
【表1】
[g /l .hr]
【0022】
【表2】
表2
反応温度[℃] 300 300 300 300
反応時間[hrs ] 4 24 48 72
ラクトン転化率[%] 100 99.8 99.6 99.0
ラクタム選択率[mol %] 70.6 76.6 82.4 82.1
ラクタム収率[mol %] 70.6 76.4 82.1 81.3
空時収率[g /l .hr] 222 240 258 255
【0023】
【表3】
【0024】
【表4】
表4
反応温度[℃] 300 300 300 300
反応時間[hrs ] 4 24 48 72
ラクトン転化率[%] 100 99.9 99.8 99.6
ラクタム選択率[mol %] 81.9 85.0 85.5 86.1
ラクタム収率[mol %] 81.9 84.9 85.3 85.8
空時収率[g /l .hr] 196 204 205 206
【0025】
【表5】
表5
反応温度[℃] 300 300 300 300
反応時間[hrs ] 4 24 48 72
ラクトン転化率[%] 99.9 99.5 99.2 98.7
ラクタム選択率[mol %] 83.2 87.5 88.5 86.1
ラクタム収率[mol %] 83.1 87.1 87.8 85.0
空時収率[g /l .hr] 199 209 211 204
【0026】
【表6】
表6
1回目
反応時間[hrs ] 4 48 123 170 220
ラクトン転化率[%] 100 99.9 99.8 99.6 99.1
ラクタム選択率[mol %] 80.7 85.5 84.6 83.4 83.6
ラクタム収率[mol %] 80.7 85.4 84.4 83.1 82.8
空時収率[g /l .hr] 194 205 202 199 199
2回目(触媒再生後)
反応時間[hrs ] 255 302 373 398 446
ラクトン転化率[%] 100 100 99.7 99.7 99.3
ラクタム選択率[mol %] 79.8 83.8 84.0 84.6 84.7
ラクタム収率[mol %] 79.8 83.8 83.7 84.3 84.1
空時収率[g /l .hr] 191 201 201 202 202
3回目(触媒再生後)
反応時間[hrs ] 525 597 645 703 746
ラクトン転化率[%] 99.9 99.8 99.6 99.5 99.1
ラクタム選択率[mol %] 79.5 83.0 83.7 84.0 83.5
ラクタム収率[mol %] 79.4 82.8 83.4 83.6 82.7
空時収率[g /l .hr] 190 199 200 200 198
【0027】
【発明の効果】
本発明で使用される触媒は、従来の触媒に比較して高い空時収率が得られ、かつ長時間にわたって触媒活性が持続されるので工業的な利用が可能である。従って、硫安の副生がないε−カプロラクタム製造方法として、本法の工業的な意義は大きい。[0001]
[Industrial application fields]
The present invention relates to a process for producing ε-caprolactam from ε-caprolactone and / or 6-hydroxycaproic acid ester and ammonia under gas phase reaction conditions using a solid catalyst.
ε-Caprolactam is a very important chemical raw material that is industrially produced in large quantities as a raw material for polyamides such as nylon 6.
[0002]
[Prior art]
As the current industrial production method of ε-caprolactam, a method by Beckmann rearrangement reaction of cyclohexanone oxime is generally widely adopted.
However, this Beckmann rearrangement reaction is a liquid phase reaction using a large amount of strong acid and has a problem that a large amount of ammonium sulfate is by-produced.
On the other hand, various methods have been proposed for producing ε-caprolactam that does not produce ammonium sulfate as a by-product. Among them, a method of contacting ε-caprolactone with a catalyst in the presence of ammonia in the gas phase has already been proposed. ing.
[0003]
For example, Japanese Patent Publication No. 56-10306 proposes the use of a catalyst containing copper, nickel and titanium oxide, but the space time yield (the amount of ε-caprolactam obtained per unit time per unit amount of catalyst). Is not sufficient and has not been adopted as an industrial method.
Japanese Patent Publication No. 48-39950 proposes a method in which an amine is allowed to coexist in the presence of a copper-chromium-based catalyst in order to improve the space-time yield. Addition to this increases the burden during purification of ε-caprolactam, which is not industrially preferable.
[0004]
The space-time yield affects the capacity and cost of the reactor, as well as the production cost, so it is required to be as large as possible.
In general, increasing the throughput of raw materials in order to increase the space-time yield will accelerate the decrease in catalyst activity and selectivity. Is not preferred.
Therefore, in order to implement industrially advantageous, it is desired to develop a catalyst having high selectivity, space time yield, and sustained activity.
[0005]
[Means for solving problems]
Therefore, the present inventors have conducted extensive research on a method capable of producing ε-caprolactam by vapor phase catalytic reaction from ε-caprolactone and / or 6-hydroxycaproic acid ester having no such problems as described above. It is possible to produce ε-caprolactam in a high yield over a long period of time by using a catalyst obtained by calcining a mixture precipitated from an aqueous solution of a copper compound containing molybdenum, a molybdenum compound and a chromium compound and an alkaline aqueous solution. The inventors have found what can be done and have completed the present invention.
[0006]
Hereinafter, the present invention will be described in detail.
The specific preparation method of the catalyst used in the present invention will be described. First, a required amount of titanium oxide is added to a mixed aqueous solution of a required amount of a copper compound, a molybdenum compound and a chromium compound, and the mixture is stirred at a temperature of 5 to 100 ° C. While adding an alkaline aqueous solution dropwise, the pH is adjusted to 9 to 13 to obtain a precipitate. This precipitate is sufficiently washed with water and filtered to obtain a mixture comprising a copper compound, a molybdenum compound, a chromium compound and titanium oxide.
Next, after drying this mixture at 100 to 200 ° C., it is shaped into an appropriate shape and calcined at 400 to 900 ° C. for 3 to 15 hours in N 2 or air to obtain a catalyst.
The catalyst thus prepared is used after being charged into the reaction tube and reduced with hydrogen gas before supplying the raw material gas.
[0007]
Any commercially available titanium oxide can be used for preparing the catalyst. As the copper and chromium compounds, nitrates, sulfates, formates and the like can be used, but nitrates are preferred. As the molybdenum compound, ammonium molybdate is used, but molybdenum oxide powder may be used. Moreover, caustic soda, sodium carbonate, etc. can be used as an alkali used as a pH regulator.
When the composition ratio of copper, molybdenum, chromium and titanium of the catalyst used in the present invention is expressed by atomic ratio, Cu: Mo: Cr: Ti = 100: 0.1-50: 0.01-20: 20-500 Preferably, it is the range of 100: 0.5-20: 0.05-10: 50-300.
[0008]
As ε-caprolactone used as a raw material in the present invention, those produced by an oxidation reaction with a peroxide of cyclohexanone and other reactions can be used.
Examples of 6-hydroxycaproic acid esters include esters of lower saturated aliphatic alcohols having 1 to 4 carbon atoms, with methyl esters being particularly preferred. The amount of ammonia used in the practice of the present invention is 1 to 30 times mol, preferably 3 to 20 times mol for the ε-caprolactone.
The amount of hydrogen is 1 to 60 times mol, preferably 5 to 50 times mol, and the amount of water is 1 to 60 times mol, preferably 5 to 50 times mol, relative to ε-caprolactones. Is appropriate.
[0009]
The reaction temperature is 200 to 350 ° C, preferably 250 to 330 ° C. The reaction pressure is advantageously in the range of 1 to 10 kgf / cm 2 (gauge pressure), preferably 3 to 7 kgf / cm 2 (gauge pressure).
Further, .epsilon.-caprolactones, ammonia, space velocity in the case of contacting the mixed gas and the catalyst of hydrogen and water, 100~10,000Hr -1, in particular in the range of 300~7,000Hr -1 are preferred.
[0010]
ε-Caprolactam can be separated from the reaction product condensed by cooling the gas after the reaction, by operations such as distillation and extraction. Most of the non-condensable gas consists of ammonia and hydrogen, which are recycled to the reaction system and reused.
In addition, a catalyst whose activity has been reduced by long-term use can be regenerated and repeatedly used by calcination in an oxygen-containing gas.
[0011]
Hereinafter, the present invention will be described specifically by way of examples.
In the examples, reaction results were defined by the following formula.
[0012]
【Example】
Example 1
Dissolve 200 g of cupric nitrate trihydrate, 0.33 g of chromium nitrate 9-hydrate and 2.92 g of ammonium molybdate in 3 liters of pure water and stir at room temperature to obtain commercially available titanium oxide powder (Ishihara Sangyo W-10). 66.1 g of the product fired at 800 ° C. for 5 hours in air was added. While further stirring, 15% by weight aqueous caustic soda solution was slowly added dropwise. When the pH of the solution reached 12.0, the addition was stopped and stirring was continued for 1 hour to obtain a precipitate. The precipitate was washed with water, filtered and dried at 120 ° C. for 16 hours. After the dried precipitate was pulverized to a powder of 500 μm or less, graphite corresponding to 3 to 5 wt% of the weight of the precipitated powder was added and tableted into 3 × 3 mm pellets.
The obtained molded product was fired at 400 ° C. in air for 5 hours. The composition of the catalyst after calcination was Cu: Mo: Cr: Ti = 100: 2: 0.1: 150 (atomic ratio). 40 ml of this catalyst was filled in a stainless steel reaction tube, and reduced overnight with 3.5% by volume hydrogen (in N 2 ) gas at 250 ° C.
Thereafter, the reaction system was replaced with nitrogen gas, and the pressure in the system was adjusted to 5 kgf / cm 2 (gauge pressure). A mixed gas of ε-caprolactone: ammonia: hydrogen: water = 1: 10: 20: 30 (molar ratio) was supplied to the catalyst layer maintained at 280 ° C. at a rate of SV = 2,900 hr −1 and then reacted as it was. For 24 hours. Table 1 shows the results of cooling and collecting the product for a certain time and analyzing the collected liquid by gas chromatography together with Comparative Examples 1 to 3.
[0013]
Comparative Example 1
In the same manner as in Example 1, a catalyst of Cu: Ti = 100: 150 (atomic ratio) was prepared from copper nitrate and titanium oxide. The results of carrying out the reaction at 300 ° C. in the same manner as in Example 1 are shown in Table 1.
[0014]
Comparative Example 2
In the same manner as in Example 1, a catalyst not containing titanium oxide of Cu: Mo: Cr = 100: 2: 0.1 (atomic ratio) was prepared and reacted at 280 ° C. in the same manner as in Example 1. The results are shown in Table 1.
[0015]
Comparative Example 3
40 ml of a commercially available Adkins type catalyst (JGC Chemical: N-201) was filled in a reaction tube, and the reaction was conducted at 300 ° C. in the same manner as in Example 1.
[0016]
Example 2
Similar to Example 1, Cu: Mo: Cr: Ti = 100: 5: 0.1: 150
A catalyst of (atomic ratio) was prepared. The reaction was performed at 300 ° C. in the same manner as in Example 1 except that SV = 3,800 hr −1 . The results are shown in Table 2.
[0017]
Example 3
In the same manner as in Example 1, a catalyst of Cu: Mo: Cr: Ti = 100: 2: 0.1: 150 (atomic ratio) was prepared. The reaction was performed at 280 ° C. in the same manner as in Example 1 except that methyl 6-hydroxycaproate was used as a raw material instead of ε-caprolactone. The results are shown in Table 3 in comparison with the results of Example 1.
[0018]
Example 4
In place of the titanium oxide powder W-10 used in Example 1, MC-50 (Ishihara Sangyo) was fired at 600 ° C. in air for 5 hours, and 3 × 3 mm hammering was performed in the same manner as in Example 1. A tablet product was obtained.
The obtained molded article was fired at 700 ° C. in air for 7 hours. The catalyst composition after firing was Cu: Mo: Cr: Ti = 100: 2: 0.2: 100 (atomic ratio).
Then, after performing catalyst reduction like Example 1, it reacted at 300 degreeC like Example 1. FIG. The reaction lasted for 3 days and the results are shown in Table 4.
[0019]
Example 5
In the same manner as in Example 4, catalyst preparation was performed using titanium oxide powder MC-50 calcined at 600 ° C. for 5 hours in air to obtain a molded product of 3 × 3 mm. This molded product was calcined in N 2 at 700 ° C. for 7 hours to obtain a catalyst having a catalyst composition of Cu: Mo: Cr: Ti = 100: 3: 0.2: 100 (atomic ratio). Table 5 shows the results obtained by carrying out the reaction at 300 ° C. in the same manner as in Example 1 using this catalyst.
[0020]
Example 6
In the same manner as in Example 4, a catalyst of Cu: Mo: Cr: Ti = 100: 3: 0.1: 100 (atomic ratio) was prepared. Using this catalyst, the reaction was carried out at 300 ° C. in the same manner as in Example 1. After the reaction was continued for 250 hours, the catalyst was regenerated by calcination with 2% O 2 gas (in N 2 ) and air, and the continuous operation was performed for about one month by repeating the reaction for 250 hours. The results are shown in Table 6.
[0021]
[Table 1]
[G / l. hr]
[0022]
[Table 2]
Table 2
Reaction temperature [℃] 300 300 300 300
Reaction time [hrs] 4 24 48 72
Lactone conversion [%] 100 99.8 99.6 99.0
Lactam selectivity [mol%] 70.6 76.6 82.4 82.1
Lactam yield [mol%] 70.6 76.4 82.1 81.3
Space-time yield [g / l. hr] 222 240 258 255
[0023]
[Table 3]
[0024]
[Table 4]
Table 4
Reaction temperature [℃] 300 300 300 300
Reaction time [hrs] 4 24 48 72
Lactone conversion rate [%] 100 99.9 99.8 99.6
Lactam selectivity [mol%] 81.9 85.0 85.5 86.1
Lactam yield [mol%] 81.9 84.9 85.3 85.8
Space-time yield [g / l. hr] 196 204 205 206
[0025]
[Table 5]
Table 5
Reaction temperature [℃] 300 300 300 300
Reaction time [hrs] 4 24 48 72
Lactone conversion [%] 99.9 99.5 99.2 98.7
Lactam selectivity [mol%] 83.2 87.5 88.5 86.1
Lactam yield [mol%] 83.1 87.1 87.8 85.0
Space-time yield [g / l. hr] 199 209 211 204
[0026]
[Table 6]
Table 6
First reaction time [hrs] 4 48 123 170 220
Lactone conversion rate [%] 100 99.9 99.8 99.6 99.1
Lactam selectivity [mol%] 80.7 85.5 84.6 83.4 83.6
Lactam yield [mol%] 80.7 85.4 84.4 83.1 82.8
Space-time yield [g / l. hr] 194 205 202 199 199
Second time (after catalyst regeneration)
Reaction time [hrs] 255 302 373 398 446
Lactone conversion [%] 100 100 99.7 99.7 99.3
Lactam selectivity [mol%] 79.8 83.8 84.0 84.6 84.7
Lactam yield [mol%] 79.8 83.8 83.7 84.3 84.1
Space-time yield [g / l. hr] 191 201 201 202 202
3rd time (after catalyst regeneration)
Reaction time [hrs] 525 597 645 703 746
Lactone conversion [%] 99.9 99.8 99.6 99.5 99.1
Lactam selectivity [mol%] 79.5 83.0 83.7 84.0 83.5
Lactam yield [mol%] 79.4 82.8 83.4 83.6 82.7
Space-time yield [g / l. hr] 190 199 200 200 198
[0027]
【The invention's effect】
The catalyst used in the present invention can be used industrially because a high space time yield is obtained as compared with conventional catalysts and the catalytic activity is maintained for a long time. Therefore, the industrial significance of this method is great as a method for producing ε-caprolactam free from the production of ammonium sulfate.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15311595A JP4164603B2 (en) | 1995-06-20 | 1995-06-20 | Method for producing ε-caprolactam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15311595A JP4164603B2 (en) | 1995-06-20 | 1995-06-20 | Method for producing ε-caprolactam |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH093041A JPH093041A (en) | 1997-01-07 |
JP4164603B2 true JP4164603B2 (en) | 2008-10-15 |
Family
ID=15555304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15311595A Expired - Lifetime JP4164603B2 (en) | 1995-06-20 | 1995-06-20 | Method for producing ε-caprolactam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4164603B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4182273B2 (en) | 2000-06-27 | 2008-11-19 | 住友化学株式会社 | Method for producing ε-caprolactam |
US6828278B2 (en) * | 2003-03-24 | 2004-12-07 | E.I. Du Pont De Nemours And Company | Production of N-aryl-2-lactam and N-cycloalkyl-2-lactam by reductive amination of lactones with arly amines |
DE102008060340A1 (en) | 2008-12-03 | 2010-06-10 | Wolfgang F. Prof. Dr. Hölderich | Production of lactams and carboxylic acid amides by Beckmann rearrangement of oximes in the presence of Nb catalysts |
DE102012006946A1 (en) | 2012-04-10 | 2013-10-10 | Stratley Ag | Process for the preparation of caprolactam |
DE102015005238A1 (en) | 2015-04-24 | 2016-10-27 | Wolfgang Hölderich | Production of lactams by Beckmann rearrangement of oximes |
CN108774172A (en) * | 2018-08-20 | 2018-11-09 | 铜仁学院 | A kind of preparation method of caprolactam and N substitution caprolactams |
CN114605307A (en) * | 2022-03-10 | 2022-06-10 | 浙江新和成股份有限公司 | Amination reaction and catalyst therefor |
-
1995
- 1995-06-20 JP JP15311595A patent/JP4164603B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH093041A (en) | 1997-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6514902B1 (en) | Method for producing an oxide catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane | |
EP0227461B1 (en) | Process for preparing cyclic amines | |
US4841061A (en) | Process for producing cyclic amines | |
EP0183225B1 (en) | Catalyst for vapor-phase hydrogen transfer reaction | |
KR19980071833A (en) | Process for preparing acrolein from propylene by redox reaction and use of solid composite oxide composition as redox system in this reaction | |
JP4164603B2 (en) | Method for producing ε-caprolactam | |
JP3669077B2 (en) | Nitrile production method | |
JPH1057813A (en) | Manufacture of mixed metal oxide catalyst and acrylic acid production using thereof | |
US20040192545A1 (en) | Method for preparing a catalyst for partial oxidation of propylene | |
JP4182237B2 (en) | Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same | |
JP3331629B2 (en) | Catalyst for the production of nitriles from alkanes | |
US4457905A (en) | Process for oxidation and ammoxidation | |
JPH06228073A (en) | Production of nitrile | |
JPH03857B2 (en) | ||
JPS59118745A (en) | Manufacture of amine | |
JP3129547B2 (en) | Method for producing glycolate | |
JP2966650B2 (en) | Method for producing methacrylic acid and its ester | |
JPH01313313A (en) | Method for reducing carbon dioxide | |
JP2003048870A (en) | Method of producing acrylonitrile and/or acrylic acid | |
EP0452695B1 (en) | Production of a catalyst and its use for producing phenol | |
JP3230243B2 (en) | Phenol production catalyst and phenol production method | |
JPH05186414A (en) | Production of isocyanate | |
JP4313854B2 (en) | Process for producing 2,3,5-collidine and 2-ethyl-5-methylpyridine | |
JP3221445B2 (en) | Catalyst for producing phenol, method for producing the same, and method for producing phenol | |
JPH1043587A (en) | Catalyst for production of nitrile compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080702 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080715 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |