JP3313993B2 - Method for producing carboxylic acid ester - Google Patents

Method for producing carboxylic acid ester

Info

Publication number
JP3313993B2
JP3313993B2 JP33315296A JP33315296A JP3313993B2 JP 3313993 B2 JP3313993 B2 JP 3313993B2 JP 33315296 A JP33315296 A JP 33315296A JP 33315296 A JP33315296 A JP 33315296A JP 3313993 B2 JP3313993 B2 JP 3313993B2
Authority
JP
Japan
Prior art keywords
weight
catalyst
magnesia
silica
benzaldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33315296A
Other languages
Japanese (ja)
Other versions
JPH10158214A (en
Inventor
康一 吉田
裕司 三上
求 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP33315296A priority Critical patent/JP3313993B2/en
Publication of JPH10158214A publication Critical patent/JPH10158214A/en
Application granted granted Critical
Publication of JP3313993B2 publication Critical patent/JP3313993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルデヒドとアル
コールから対応するカルボン酸エステルを液相、一段で
製造する方法に関する。
The present invention relates to a process for producing a corresponding carboxylic acid ester from an aldehyde and an alcohol in a liquid phase in one step.

【0002】[0002]

【従来の技術】アルデヒドとアルコールから一段でカル
ボン酸エステルを製造する方法は公知であり、高収率で
得る方法についていくつか検討されている。特公昭57
−35856号公報、特公平4−72578号公報、特
開昭57−50545号公報等にパラジウム、鉛系触媒
が、特開昭61−243044号公報にパラジウム、テ
ルル系触媒が、特公昭57−35860号公報にパラジ
ウム、タリウム、水銀系触媒が、特公昭57−1909
0号公報にパラジウム、アルカリ土類金属、亜鉛、カド
ミウム系触媒が、特公昭61−60820号公報、特公
昭62−7902号公報、特開平5−148184号公
報等にパラジウム、ビスマス系触媒を用いる方法が提案
されている。
2. Description of the Related Art A method for producing a carboxylic acid ester from an aldehyde and an alcohol in one step is known, and several methods for obtaining a high yield thereof have been studied. Tokiko 57
JP-A-35856, JP-B-4-72578, JP-A-57-50545 and the like disclose palladium and lead-based catalysts. No. 35860 discloses a palladium, thallium and mercury-based catalyst.
No. 0 uses palladium, alkaline earth metal, zinc, and cadmium-based catalysts. A method has been proposed.

【0003】一方、触媒担体に関しても反応成績を向上
させるため改良研究が行われている。特公昭57−35
856号公報、特公昭57−35860号公報には触媒
担体として炭酸カルシウムを使用した例が、特公平4−
46618号公報には酸化亜鉛−アルミナ、チタニア−
酸化ランタン、酸化亜鉛−チタニアを触媒担体に用いる
例が、特公平4−72578号公報には酸化亜鉛を触媒
担体に用いる例が、特開昭57−50942号公報には
比表面積が70m2 /g以下の担体を用いる例が、特開
平5−148184号公報には疎水性担体を用いる例が
開示されている。
[0003] On the other hand, improvement research has been conducted on catalyst carriers in order to improve the reaction results. Tokiko 57-35
JP-A-856 and JP-B-57-35860 disclose examples using calcium carbonate as a catalyst carrier.
No. 46618 discloses zinc oxide-alumina, titania-
An example in which lanthanum oxide and zinc oxide-titania are used as a catalyst carrier is disclosed in Japanese Patent Publication No. 4-72578, and an example in which zinc oxide is used as a catalyst carrier, and a specific surface area of 70 m 2 / For example, Japanese Patent Application Laid-Open No. 5-148184 discloses an example using a hydrophobic carrier.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、アル
デヒドとアルコールから一段でカルボン酸エステルを有
利に製造するための活性および目的生成物の選択性の優
れた新規な触媒を用いる製造法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a process for producing a carboxylic acid ester from an aldehyde and an alcohol in one step by using a novel catalyst having excellent activity and selectivity of a desired product. To provide.

【0005】[0005]

【課題を解決するための手段】本発明は、分子状酸素の
存在下にアルデヒドとアルコールを液相で反応させてカ
ルボン酸エステルを製造するに当り、パラジウム、Xお
よびY(Xはビスマスおよび/または鉛、Yはクロム、
鉄、コバルト、亜鉛および銀からなる群より選ばれた少
なくとも1種の元素)を含有し、これらの成分を平均粒
径が20〜150μmのシリカ−マグネシアに担持して
なる触媒を用いることを特徴とするカルボン酸エステル
の製造法にある。
SUMMARY OF THE INVENTION The present invention provides a method for producing a carboxylic acid ester by reacting an aldehyde and an alcohol in a liquid phase in the presence of molecular oxygen. Or lead, Y is chrome,
At least one element selected from the group consisting of iron, cobalt, zinc and silver), and using a catalyst comprising these components supported on silica-magnesia having an average particle size of 20 to 150 μm. In the method for producing a carboxylic acid ester.

【0006】[0006]

【発明の実施の形態】本発明の原料に用いられるアルデ
ヒドとしては、ベンズアルデヒド、メチルベンズアルデ
ヒド、ニトロベンズアルデヒドなどの芳香族アルデヒ
ド、アセトアルデヒド、プロピオンアルデヒド、イソブ
チルアルデヒド等の飽和脂肪族アルデヒド、アクロレイ
ン、メタクロレイン、クロトンアルデヒド等の不飽和脂
肪族アルデヒドである。
BEST MODE FOR CARRYING OUT THE INVENTION The aldehyde used in the raw material of the present invention includes aromatic aldehydes such as benzaldehyde, methylbenzaldehyde and nitrobenzaldehyde, saturated aliphatic aldehydes such as acetaldehyde, propionaldehyde and isobutyraldehyde, acrolein, methacrolein, and the like. It is an unsaturated aliphatic aldehyde such as crotonaldehyde.

【0007】また、一方の反応原料であるアルコールと
しては、メタノール、エタノール、イソプロパノール、
アリルアルコール、メタリルアルコールなどが挙げられ
る。
[0007] On the other hand, alcohols as one of the reaction raw materials include methanol, ethanol, isopropanol, and the like.
Examples include allyl alcohol and methallyl alcohol.

【0008】本発明で使用する触媒は、シリカ−マグネ
シア担体上にパラジウムが存在することが必須であり、
これに加えてさらに、ビスマスおよび/または鉛の元素
(X)と、クロム、鉄、コバルト、亜鉛および銀からな
る群より選ばれた少なくとも1種の元素(Y)とが平均
粒径が20〜150μmのシリカ−マグネシア担体上に
存在してなる触媒である。
In the catalyst used in the present invention, it is essential that palladium is present on a silica-magnesia carrier.
In addition, the element (X) of bismuth and / or lead and at least one element (Y) selected from the group consisting of chromium, iron, cobalt, zinc and silver have an average particle size of 20 to It is a catalyst which is present on a 150 μm silica-magnesia carrier.

【0009】用いる担体の平均粒径は20〜150μm
の範囲内の必要がある。平均粒径が20μm未満の担体
を用いると反応後、目的生成物と触媒を分離することが
困難となる場合がある。また、平均粒径が150μmを
超える担体を用いると触媒の反応活性が低下し、目的生
成物の収率が低くなる場合がある。
The average particle size of the carrier used is 20 to 150 μm.
Need to be within the range. If a carrier having an average particle size of less than 20 μm is used, it may be difficult to separate the target product from the catalyst after the reaction. When a carrier having an average particle size of more than 150 μm is used, the reaction activity of the catalyst may be reduced, and the yield of the target product may be reduced.

【0010】本発明における金属化合物のシリカ−マグ
ネシアへの担持量は、シリカ−マグネシアに対して、パ
ラジウムは1〜15重量%、好ましくは3〜13重量
%、前記Xは0.1〜15重量%、好ましくは0.5〜
12重量%、前記Yは0.1〜15重量%、好ましくは
0.3〜12重量%である。
In the present invention, the amount of the metal compound supported on silica-magnesia is 1 to 15% by weight, preferably 3 to 13% by weight, and the X is 0.1 to 15% by weight based on silica-magnesia. %, Preferably 0.5 to
Y is 0.1 to 15% by weight, preferably 0.3 to 12% by weight.

【0011】本発明で使用する触媒を構成する元素の原
料化合物としては、パラジウムの原料として、酢酸パラ
ジウム、塩化パラジウム、硝酸パラジウム、塩化パラジ
ウムアンモニウム、パラジウムアンミン錯塩などが、ビ
スマスの原料としては、酢酸ビスマス、炭酸ビスマス、
塩化ビスマス、硝酸ビスマス、硫酸ビスマスなどが、鉛
の原料としては、酢酸鉛、炭酸鉛、塩化鉛、硝酸鉛、硫
酸鉛、酒石酸鉛、クエン酸鉛などが、その他の金属の原
料としては、酢酸塩、硝酸塩、硫酸塩、シュウ酸塩、塩
化物、水酸化物などの一般的な金属化合物が使用でき
る。
The raw material compounds of the elements constituting the catalyst used in the present invention include palladium raw materials such as palladium acetate, palladium chloride, palladium nitrate, palladium ammonium chloride, and palladium ammine complex salts. Bismuth, bismuth carbonate,
Bismuth chloride, bismuth nitrate, bismuth sulfate, etc. are used as the raw materials for lead, such as lead acetate, lead carbonate, lead chloride, lead nitrate, lead sulfate, lead tartrate, and lead citrate. Common metal compounds such as salts, nitrates, sulfates, oxalates, chlorides and hydroxides can be used.

【0012】触媒は常法に従って調製することができ
る。一例として、シリカ−マグネシア上にパラジウム、
ビスマスおよび鉄を担持させた触媒の調製法につき説明
すると、塩化パラジウム、硝酸ビスマスおよび硝酸を水
に入れ加熱して溶解させる。ついで該水溶液にシリカ−
マグネシア粉末を加えた後ホルマリン等の還元剤を添加
し、加熱しながら撹拌する。所定時間処理した後、濾過
し、得られた固形物を硝酸第二鉄の水溶液に浸漬した
後、所望により再度還元剤で還元して金属を析出させ、
濾過した後、乾燥して調製することができる。また、こ
のようにして調製した触媒は、常法に従って活性化する
こともできる。
The catalyst can be prepared according to a conventional method. As an example, palladium on silica-magnesia,
A method for preparing a catalyst supporting bismuth and iron will be described. Palladium chloride, bismuth nitrate and nitric acid are put in water and dissolved by heating. Then, the aqueous solution
After adding the magnesia powder, a reducing agent such as formalin is added, and the mixture is stirred while heating. After treatment for a predetermined time, filtration, after immersing the obtained solid in an aqueous solution of ferric nitrate, if necessary, reducing again with a reducing agent to precipitate a metal,
After filtration, it can be prepared by drying. The catalyst thus prepared can be activated according to a conventional method.

【0013】本発明の反応におけるアルデヒドの供給量
とアルコールの供給量との比率は、モル比として1:1
00〜1:1が適当であり、特に1:80〜1:3が好
ましい。
The ratio of the supply amount of the aldehyde to the supply amount of the alcohol in the reaction of the present invention is 1: 1 as a molar ratio.
The ratio is preferably from 00 to 1: 1 and particularly preferably from 1:80 to 1: 3.

【0014】反応は液相で、触媒は懸濁状態で用いる。
反応形式は回分式、半回分式、連続式のいずれも採用で
きる。また、反応に必要な分子状酸素源には空気、酸素
富化した空気、酸素などが用いられる。このとき酸化剤
として反応液中に過酸化水素などを加えてもよい。
The reaction is performed in a liquid phase, and the catalyst is used in a suspended state.
The reaction system can be any of a batch system, a semi-batch system, and a continuous system. Air, oxygen-enriched air, oxygen and the like are used as a molecular oxygen source necessary for the reaction. At this time, hydrogen peroxide or the like may be added to the reaction solution as an oxidizing agent.

【0015】反応温度は、0〜100℃、好ましくは3
0〜80℃で実施される。反応は常圧で行えるが、加圧
下で行ってもよい。
[0015] The reaction temperature is 0 to 100 ° C, preferably 3 to 100 ° C.
Performed at 0-80 ° C. The reaction can be performed under normal pressure, but may be performed under pressure.

【0016】[0016]

【実施例】以下、本発明を実施例、比較例を掲げてさら
に詳しく説明する。説明中シリカ−マグネシアへの金属
化合物の担持量は、シリカ−マグネシアに対する重量%
を意味する。なお、分析はガスクロマトグラフィーによ
り行った。
The present invention will be described in more detail with reference to examples and comparative examples. In the description, the amount of the metal compound supported on silica-magnesia is expressed as a percentage by weight based on silica-magnesia.
Means The analysis was performed by gas chromatography.

【0017】[実施例1]塩化パラジウム0.85g、
硝酸ビスマス0.46gおよび60重量%硝酸水溶液5
gを純水50mlに加熱溶解し、これに平均粒径100
μmのシリカ−マグネシア粉末10gを加え撹拌した。
ついで5重量%水酸化ナトリウムおよび5重量%ホルマ
リン含有水溶液50mlを添加し、70℃で30分間撹
拌した後、濾過、水洗した(固形物A)。次に、硝酸第
二鉄0.72gを純水40mlに溶解した溶液に固形物
Aを加え撹拌した。ついで5重量%ホルマリン水溶液2
0mlを加え、濾過、水洗した後、乾燥し、5重量%パ
ラジウム−2重量%ビスマス−1重量%鉄を担持したシ
リカ−マグネシア触媒を得た。
Example 1 0.85 g of palladium chloride
0.46 g of bismuth nitrate and 60 wt% nitric acid aqueous solution 5
g in 50 ml of pure water by heating.
10 g of silica-magnesia powder of μm was added and stirred.
Then, 50 ml of an aqueous solution containing 5% by weight of sodium hydroxide and 5% by weight of formalin was added, and the mixture was stirred at 70 ° C. for 30 minutes, then filtered and washed with water (solid A). Next, solid A was added to a solution of 0.72 g of ferric nitrate dissolved in 40 ml of pure water, and the mixture was stirred. Next, a 5% by weight aqueous solution of formalin 2
After adding 0 ml, filtering, washing with water and drying, a silica-magnesia catalyst supporting 5% by weight of palladium, 2% by weight of bismuth and 1% by weight of iron was obtained.

【0018】300mlの還流器付きフラスコに、上記
触媒2g、ベンズアルデヒド4.3gおよびメタノール
80gを添加した。空気を毎分100mlの流量で吹き
込みながら、50℃で2時間反応させた。反応生成物を
捕集し分析した結果、ベンズアルデヒドの転化率は9
3.3%で、ベンズアルデヒドを基準とした安息香酸メ
チルの選択率は95.2%であった。
To a 300 ml flask equipped with a reflux condenser were added 2 g of the above catalyst, 4.3 g of benzaldehyde and 80 g of methanol. The reaction was carried out at 50 ° C. for 2 hours while blowing air at a flow rate of 100 ml / min. As a result of collecting and analyzing the reaction products, the conversion of benzaldehyde was 9%.
At 3.3%, the selectivity for methyl benzoate based on benzaldehyde was 95.2%.

【0019】[実施例2]実施例1において硝酸第二鉄
の代りに酢酸コバルト0.42gを使用した以外は実施
例1と同じ方法で触媒を調製し、5重量%パラジウム−
2重量%ビスマス−1重量%コバルトを担持したシリカ
−マグネシア触媒を得た。この触媒を用い実施例1と同
じ反応条件で実験を行ったところ、ベンズアルデヒドの
転化率は92.3%で、ベンズアルデヒドを基準とした
安息香酸メチルの選択率は94.0%であった。
Example 2 A catalyst was prepared in the same manner as in Example 1 except that 0.42 g of cobalt acetate was used instead of ferric nitrate.
A silica-magnesia catalyst carrying 2% by weight bismuth-1% by weight cobalt was obtained. When an experiment was conducted using this catalyst under the same reaction conditions as in Example 1, the conversion of benzaldehyde was 92.3%, and the selectivity of methyl benzoate based on benzaldehyde was 94.0%.

【0020】[実施例3]実施例1において硝酸第二鉄
の代りに酢酸亜鉛0.34gを使用した以外は実施例1
と同じ方法で触媒を調製し、5重量%パラジウム−2重
量%ビスマス−1重量%亜鉛を担持したシリカ−マグネ
シア触媒を得た。この触媒を用い実施例1と同じ反応条
件で実験を行ったところ、ベンズアルデヒドの転化率は
91.0%で、ベンズアルデヒドを基準とした安息香酸
メチルの選択率は93.3%であった。
Example 3 Example 1 was repeated except that 0.34 g of zinc acetate was used in place of ferric nitrate.
A catalyst was prepared in the same manner as described above to obtain a silica-magnesia catalyst supporting 5% by weight of palladium-2% by weight of bismuth-1% by weight of zinc. When an experiment was conducted using this catalyst under the same reaction conditions as in Example 1, the conversion of benzaldehyde was 91.0%, and the selectivity of methyl benzoate based on benzaldehyde was 93.3%.

【0021】[実施例4]塩化パラジウム0.85g、
硝酸鉛0.16gおよび60重量%硝酸水溶液2gを純
水50mlに加熱溶解し、これに平均粒径100μmの
シリカ−マグネシア粉末10gを加え撹拌した。ついで
5重量%水酸化ナトリウムおよび5重量%ホルマリン含
有水溶液50mlを添加し、80℃で30分間撹拌した
後、濾過、水洗した(固形物B)。次に、硝酸クロム
0.77gを純水40mlに溶解した溶液に固形物Bを
加え撹拌した。ついで5重量%ホルマリン水溶液20m
lを加え、濾過、水洗した後、乾燥し、5重量%パラジ
ウム−1重量%鉛−1重量%クロムを担持したシリカ−
マグネシア触媒を得た。この触媒を用い実施例1と同じ
反応条件で実験を行ったところ、ベンズアルデヒドの転
化率は90.2%で、ベンズアルデヒドを基準とした安
息香酸メチルの選択率は92.7%であった。
Example 4 0.85 g of palladium chloride,
0.16 g of lead nitrate and 2 g of a 60% by weight nitric acid aqueous solution were dissolved by heating in 50 ml of pure water, and 10 g of silica-magnesia powder having an average particle diameter of 100 μm was added thereto and stirred. Then, 50 ml of an aqueous solution containing 5% by weight of sodium hydroxide and 5% by weight of formalin was added, and the mixture was stirred at 80 ° C. for 30 minutes, and then filtered and washed with water (solid B). Next, solid B was added to a solution of 0.77 g of chromium nitrate dissolved in 40 ml of pure water, and the mixture was stirred. Then, a 5% by weight aqueous solution of formalin 20 m
l, filtered, washed with water, dried, and dried with 5% by weight palladium-1% by weight lead-1% by weight chromium-supported silica.
A magnesia catalyst was obtained. When an experiment was conducted using this catalyst under the same reaction conditions as in Example 1, the conversion of benzaldehyde was 90.2% and the selectivity of methyl benzoate based on benzaldehyde was 92.7%.

【0022】[実施例5]実施例4において硝酸クロム
の代りに酢酸銀0.16gを使用した以外は実施例4と
同じ方法で触媒を調製し、5重量%パラジウム−1重量
%鉛−1重量%銀を担持したシリカ−マグネシア触媒を
得た。この触媒を用いて実施例1と同じ反応条件で実験
を行ったところ、ベンズアルデヒドの転化率は89.7
%で、ベンズアルデヒドを基準とした安息香酸メチルの
選択率は92.1%であった。
Example 5 A catalyst was prepared in the same manner as in Example 4 except that 0.16 g of silver acetate was used instead of chromium nitrate, and 5% by weight of palladium-1% by weight of lead-1 A silica-magnesia catalyst supporting silver by weight was obtained. When an experiment was carried out using this catalyst under the same reaction conditions as in Example 1, the conversion of benzaldehyde was 89.7.
%, The selectivity for methyl benzoate based on benzaldehyde was 92.1%.

【0023】[実施例6]実施例4において硝酸クロム
の代りに硝酸第二鉄0.72gを使用した以外は実施例
4と同じ方法で触媒を調製し、5重量%パラジウム−1
重量%鉛−1重量%鉄を担持したシリカ−マグネシア触
媒を得た。この触媒を用いて実施例1と同じ反応条件で
実験を行ったところ、ベンズアルデヒドの転化率は9
0.2%で、ベンズアルデヒドを基準とした安息香酸メ
チルの選択率は90.8%であった。
Example 6 A catalyst was prepared in the same manner as in Example 4 except that 0.72 g of ferric nitrate was used instead of chromium nitrate.
There was obtained a silica-magnesia catalyst supporting 1% by weight of lead and 1% by weight of iron. When an experiment was carried out using this catalyst under the same reaction conditions as in Example 1, the conversion of benzaldehyde was 9%.
At 0.2%, the selectivity for methyl benzoate based on benzaldehyde was 90.8%.

【0024】[実施例7]実施例4において硝酸クロム
の代りに酢酸亜鉛0.34gを使用した以外は実施例4
と同じ方法で触媒を調製し、5重量%パラジウム−1重
量%鉛−1重量%亜鉛を担持したシリカ−マグネシア触
媒を得た。この触媒を用いて実施例1と同じ反応条件で
実験を行ったところ、ベンズアルデヒドの転化率は8
8.9%で、ベンズアルデヒドを基準とした安息香酸メ
チルの選択率は90.3%であった。
Example 7 Example 4 was repeated except that 0.34 g of zinc acetate was used instead of chromium nitrate.
A catalyst was prepared in the same manner as described above to obtain a silica-magnesia catalyst supporting 5% by weight of palladium-1% by weight of lead-1% by weight of zinc. When an experiment was conducted using this catalyst under the same reaction conditions as in Example 1, the conversion of benzaldehyde was 8%.
At 8.9%, the selectivity for methyl benzoate based on benzaldehyde was 90.3%.

【0025】[実施例8]実施例4において硝酸クロム
の代りに硝酸第二鉄0.72gおよび酢酸亜鉛0.17
を使用した以外は実施例4と同じ方法で触媒を調製し、
5重量%パラジウム−1重量%鉛−1重量%鉄−0.5
重量%亜鉛を担持したシリカ−マグネシア触媒を得た。
この触媒を用いて実施例1と同じ反応条件で実験を行っ
たところ、ベンズアルデヒドの転化率は90.1%で、
ベンズアルデヒドを基準とした安息香酸メチルの選択率
は93.5%であった。
Example 8 In Example 4, 0.72 g of ferric nitrate and 0.17 of zinc acetate were used instead of chromium nitrate.
A catalyst was prepared in the same manner as in Example 4 except that
5% by weight palladium-1% by weight lead-1% by weight iron-0.5
There was obtained a silica-magnesia catalyst supporting weight% zinc.
When an experiment was conducted using this catalyst under the same reaction conditions as in Example 1, the conversion of benzaldehyde was 90.1%.
The selectivity for methyl benzoate based on benzaldehyde was 93.5%.

【0026】[実施例9]塩化パラジウム0.85g、
硝酸鉛0.16g、硝酸ビスマス0.46gおよび60
重量%硝酸水溶液5gを純水50mlに加熱溶解し、こ
れに平均粒径100μmのシリカ−マグネシア粉末10
gを加え撹拌した。ついで5重量%水酸化ナトリウムお
よび5重量%ホルマリン含有水溶液80mlを添加し、
70℃で30分間撹拌した後、濾過、水洗した(固形物
C)。硝酸第二鉄0.72gを純水40mlに溶解した
溶液に固形物Cを加え撹拌した。ついで5重量%ホルマ
リン水溶液20mlを加え、濾過、水洗した後、乾燥
し、5重量%パラジウム−2重量%ビスマス−1重量%
鉛−1重量%鉄を担持したシリカ−マグネシア触媒を得
た。この触媒を用いて実施例1と同じ反応条件で実験を
行ったところ、ベンズアルデヒドの転化率は94.3%
で、ベンズアルデヒドを基準とした安息香酸メチルの選
択率は95.8%であった。
Example 9 0.85 g of palladium chloride
0.16 g lead nitrate, 0.46 g bismuth nitrate and 60
A 5% by weight aqueous solution of nitric acid was heated and dissolved in 50 ml of pure water.
g was added and stirred. Then, 80 ml of an aqueous solution containing 5% by weight of sodium hydroxide and 5% by weight of formalin was added,
After stirring at 70 ° C. for 30 minutes, the mixture was filtered and washed with water (solid C). Solid C was added to a solution of 0.72 g of ferric nitrate dissolved in 40 ml of pure water, followed by stirring. Then, 20 ml of a 5% by weight formalin aqueous solution was added, filtered, washed with water, dried, and dried at 5% by weight palladium-2% by weight bismuth-1% by weight
A silica-magnesia catalyst supporting lead-1 wt% iron was obtained. When an experiment was carried out under the same reaction conditions as in Example 1 using this catalyst, the conversion of benzaldehyde was 94.3%.
The selectivity for methyl benzoate based on benzaldehyde was 95.8%.

【0027】[実施例10]実施例9において硝酸第二
鉄の代りに酢酸亜鉛0.34gを、および平均粒径が5
0μmのシリカ−マグネシア粉末を使用した以外は実施
例9と同じ方法で触媒を調製し、5重量%パラジウム−
2重量%ビスマス−1重量%鉛−1重量%亜鉛を担持し
たシリカ−マグネシア触媒を得た。この触媒を用いて実
施例1と同じ反応条件で実験を行ったところ、ベンズア
ルデヒドの転化率は93.3%で、ベンズアルデヒドを
基準とした安息香酸メチルの選択率は94.5%であっ
た。
Example 10 In Example 9, 0.34 g of zinc acetate was used instead of ferric nitrate, and the average particle size was 5%.
A catalyst was prepared in the same manner as in Example 9 except that silica-magnesia powder of 0 μm was used.
A silica-magnesia catalyst carrying 2% by weight bismuth-1% by weight lead-1% by weight zinc was obtained. When an experiment was carried out using this catalyst under the same reaction conditions as in Example 1, the conversion of benzaldehyde was 93.3%, and the selectivity of methyl benzoate based on benzaldehyde was 94.5%.

【0028】[0028]

【0029】[実施例12]実施例1で調製した触媒を
用い、アルデヒドとしてp−メチルベンズアルデヒドを
5.02g用いた以外は実施例1と同じ反応条件で実験
を行ったところ、p−メチルベンズアルデヒドの転化率
は97.8%で、p−メチルベンズアルデヒドを基準と
したp−メチル安息香酸メチルの選択率は93.7%で
あった。
Example 12 An experiment was carried out under the same reaction conditions as in Example 1 except that the catalyst prepared in Example 1 was used and 5.02 g of p-methylbenzaldehyde was used as the aldehyde. Was 97.8% and the selectivity for methyl p-methylbenzoate based on p-methylbenzaldehyde was 93.7%.

【0030】[実施例13]実施例1で調製した触媒を
用い、アルデヒドとしてp−ニトロベンズアルデヒドを
6.41g用いた以外は実施例1と同じ反応条件で実験
を行ったところ、p−ニトロベンズアルデヒドの転化率
は69.0%で、p−ニトロベンズアルデヒドを基準と
したp−ニトロ安息香酸メチルの選択率は90.8%で
あった。
Example 13 An experiment was conducted under the same reaction conditions as in Example 1 except that the catalyst prepared in Example 1 was used and 6.41 g of p-nitrobenzaldehyde was used as the aldehyde. Was 69.0% and the selectivity for methyl p-nitrobenzoate based on p-nitrobenzaldehyde was 90.8%.

【0031】[実施例14]実施例1で調製した触媒を
用い、アルデヒドとしてメタクロレインを2.87g用
い、反応時間を4時間とした以外は実施例1と同じ反応
条件で実験を行ったところ、メタクロレインの転化率は
88.0%で、メタクロレインを基準としたメタクリル
酸メチルの選択率は96.8%であった。
Example 14 An experiment was performed under the same reaction conditions as in Example 1 except that the catalyst prepared in Example 1 was used, 2.87 g of methacrolein was used as the aldehyde, and the reaction time was 4 hours. And the conversion of methacrolein was 88.0%, and the selectivity of methyl methacrylate based on methacrolein was 96.8%.

【0032】[実施例15]実施例2で調製した触媒を
用い、アルデヒドとしてメタクロレインを2.87g用
い、反応時間を4時間とした以外は実施例1と同じ反応
条件で実験を行ったところ、メタクロレインの転化率は
85.0%で、メタクロレインを基準としたメタクリル
酸メチルの選択率は95.7%であった。
Example 15 An experiment was conducted under the same reaction conditions as in Example 1 except that the catalyst prepared in Example 2 was used, 2.87 g of methacrolein was used as the aldehyde, and the reaction time was 4 hours. The conversion of methacrolein was 85.0%, and the selectivity of methyl methacrylate based on methacrolein was 95.7%.

【0033】[実施例16]実施例1で調製した触媒を
用い、アルデヒドとしてアクロレインを2.3g用い、
反応時間を4時間とした以外は実施例1と同じ反応条件
で実験を行ったところ、アクロレインの転化率は95.
0%で、アクロレインを基準としたアクリル酸メチルの
選択率は96.3%であった。
Example 16 Using the catalyst prepared in Example 1, 2.3 g of acrolein as an aldehyde was used.
The experiment was carried out under the same reaction conditions as in Example 1 except that the reaction time was changed to 4 hours, and the conversion of acrolein was 95.
At 0%, the selectivity for methyl acrylate based on acrolein was 96.3%.

【0034】[比較例1]実施例1において硝酸第二鉄
を用いずに実施例1と同じ方法で調製して得た、5重量
%パラジウム−2重量%ビスマスを担持したシリカ−マ
グネシア触媒を用い、実施例1と同じ反応条件で実験を
行ったところ、ベンズアルデヒドの転化率は93.7%
で、ベンズアルデヒドを基準とした安息香酸メチルの選
択率は85.1%であった。
Comparative Example 1 A silica-magnesia catalyst carrying 5% by weight of palladium and 2% by weight of bismuth and prepared by the same method as in Example 1 without using ferric nitrate was used. When the experiment was carried out under the same reaction conditions as in Example 1, the conversion of benzaldehyde was 93.7%.
The selectivity for methyl benzoate based on benzaldehyde was 85.1%.

【0035】[比較例2]実施例1においてシリカ−マ
グネシアの代りに平均粒径50μmのマグネシア粉末を
用いた点以外は実施例1と同じ方法で触媒を調製して得
た、5重量%パラジウム−2重量%ビスマス−1重量%
鉄を担持したマグネシア触媒を用い、実施例1と同じ反
応条件で実験を行ったところ、ベンズアルデヒドの転化
率は86.3%で、ベンズアルデヒドを基準とした安息
香酸メチルの選択率は87.9%であった。
Comparative Example 2 5% by weight of palladium obtained by preparing a catalyst in the same manner as in Example 1 except that magnesia powder having an average particle size of 50 μm was used instead of silica-magnesia in Example 1 -2% by weight bismuth-1% by weight
When an experiment was carried out under the same reaction conditions as in Example 1 using a magnesia catalyst supporting iron, the conversion of benzaldehyde was 86.3%, and the selectivity of methyl benzoate based on benzaldehyde was 87.9%. Met.

【0036】[比較例3]実施例1において平均粒径1
00μmのシリカ−マグネシアの代りに平均粒径0.5
μmのシリカ−マグネシア粉末を用いた点以外は実施例
1と同じ方法で触媒を調製して得た、5重量%パラジウ
ム−2重量%ビスマス−1重量%鉄を担持したシリカ−
マグネシア触媒を用い、実施例1と同じ反応条件で実験
を行ったところ、ベンズアルデヒドの転化率は93.9
%で、ベンズアルデヒドを基準とした安息香酸メチルの
選択率は93.5%であったが、反応終了後の反応液か
ら濾過によって触媒を分離することが極めて困難であっ
た。
Comparative Example 3 The average particle size of Example 1 was 1
Average particle size 0.5 instead of 00 μm silica-magnesia
5% by weight of palladium-2% by weight of bismuth-1% by weight of iron-supported silica obtained by preparing a catalyst in the same manner as in Example 1 except that a μm silica-magnesia powder was used.
When an experiment was carried out under the same reaction conditions as in Example 1 using a magnesia catalyst, the conversion of benzaldehyde was 93.9.
%, The selectivity of methyl benzoate based on benzaldehyde was 93.5%, but it was extremely difficult to separate the catalyst from the reaction solution after the reaction by filtration.

【0037】[比較例4]比較例3においてシリカ−マ
グネシアとして平均粒径250μmのものを用いた以外
は比較例3と同様に実験を行ったところ、ベンズアルデ
ヒドの転化率58.0%、ベンズアルデヒドを基準とし
た安息香酸メチルの選択率は79.5%であった。
Comparative Example 4 An experiment was performed in the same manner as in Comparative Example 3 except that silica-magnesia having an average particle size of 250 μm was used as the silica-magnesia. The conversion of benzaldehyde was 58.0%, and The standard selectivity for methyl benzoate was 79.5%.

【0038】[0038]

【0039】[0039]

【発明の効果】本発明の方法によれば、アルデヒドとア
ルコールから一段でカルボン酸エステルを活性および選
択性よく製造することができる。
According to the method of the present invention, a carboxylic acid ester can be produced from an aldehyde and an alcohol in one step with good activity and selectivity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 23/89 C07C 69/00 C07B 61/00 300 69/54 C07C 69/00 69/78 69/54 201/12 69/78 205/57 201/12 B01J 23/64 101Z 205/57 103 (56)参考文献 特開 平9−52044(JP,A) 特開 昭58−198442(JP,A) 特開 昭57−50942(JP,A) 特開 昭53−68718(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 67/39 C07C 69/00 C07C 69/54 C07C 69/78 C07C 201/12 C07C 205/57 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI B01J 23/89 C07C 69/00 C07B 61/00 300 69/54 C07C 69/00 69/78 69/54 201/12 69/78 205/57 201/12 B01J 23/64 101Z 205/57 103 (56) References JP-A-9-52044 (JP, A) JP-A-58-198442 (JP, A) JP-A-57-50942 (JP) (A) JP-A-53-68718 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 67/39 C07C 69/00 C07C 69/54 C07C 69/78 C07C 201/12 C07C 205/57

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分子状酸素の存在下にアルデヒドとアル
コールを液相で反応させてカルボン酸エステルを製造す
るに当り、パラジウム、XおよびY(Xはビスマスおよ
び/または鉛、Yはクロム、鉄、コバルト、亜鉛および
銀からなる群より選ばれた少なくとも1種の元素)を含
有し、これらの成分を平均粒径が20〜150μmのシ
リカ−マグネシアに担持してなる触媒を用いることを特
徴とするカルボン酸エステルの製造法。
In producing a carboxylic acid ester by reacting an aldehyde and an alcohol in the liquid phase in the presence of molecular oxygen, palladium, X and Y (X is bismuth and / or lead, Y is chromium, iron , At least one element selected from the group consisting of cobalt, zinc and silver), and using a catalyst comprising these components supported on silica-magnesia having an average particle size of 20 to 150 μm. A method for producing a carboxylic acid ester.
JP33315296A 1996-11-29 1996-11-29 Method for producing carboxylic acid ester Expired - Lifetime JP3313993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33315296A JP3313993B2 (en) 1996-11-29 1996-11-29 Method for producing carboxylic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33315296A JP3313993B2 (en) 1996-11-29 1996-11-29 Method for producing carboxylic acid ester

Publications (2)

Publication Number Publication Date
JPH10158214A JPH10158214A (en) 1998-06-16
JP3313993B2 true JP3313993B2 (en) 2002-08-12

Family

ID=18262880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33315296A Expired - Lifetime JP3313993B2 (en) 1996-11-29 1996-11-29 Method for producing carboxylic acid ester

Country Status (1)

Country Link
JP (1) JP3313993B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631230B2 (en) * 2001-08-03 2011-02-16 マツダ株式会社 Exhaust gas purification catalyst
TW201512168A (en) * 2013-07-29 2015-04-01 Rohm & Haas Oxidative esterification process
TW201509900A (en) * 2013-07-29 2015-03-16 Rohm & Haas Oxidative esterification process
WO2016069225A1 (en) * 2014-10-31 2016-05-06 Rohm And Haas Company Oxidative esterification process for making methyl methacrylate

Also Published As

Publication number Publication date
JPH10158214A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
US5892102A (en) Catalyst used in production of carboxylic acid esters and process for producing these esters
TW593242B (en) A process for the hydrogenation of carbonyl compounds
JP4664902B2 (en) Catalyst and method for hydrogenating carbonyl compounds
JP3313993B2 (en) Method for producing carboxylic acid ester
JP3818783B2 (en) Method for producing carboxylic acid ester
JP3297342B2 (en) Method for producing carboxylic acid ester
JP3258354B2 (en) Method for producing carboxylic acid ester
JP4041952B2 (en) Gold ultrafine particle support and catalyst comprising the support
JP3103500B2 (en) Method for producing carboxylic acid ester
WO2004037411A1 (en) CATALYST FOR α,ß-UNSATURATED CARBOXYLIC ACID PRODUCTION, PROCESS FOR PRODUCING THE SAME, AND PROCESS FOR PRODUCING α,ß-UNSATURATED CARBOXYLIC ACID
JP4069242B2 (en) Metal particle carrier and method for producing carboxylic acid ester
JPH09221452A (en) Production of carboxylate
JP3525937B2 (en) Method for producing α-hydroxyisobutyric acid amide
JP3529198B2 (en) Method for activating palladium / lead-containing supported catalyst for carboxylic acid ester production
JPH1143463A (en) Production of carboxylic ester
JPH08301815A (en) Production of glyoxylic acid ester
JP3497621B2 (en) Oxidation / reduction activation method for carboxylic acid ester production catalyst
JP3503777B2 (en) Surface-controlled supported catalyst containing palladium and lead
JPH09255626A (en) Production of aromatic carboxylic acid ester
JP3498103B2 (en) Method for activating catalyst for carboxylic acid ester production
JPH09253489A (en) Method for regeneration of catalyst for preparing carboxylate
JPH07232069A (en) Preparation of hydrogenation catalyst for preparing alcohol
JP3503776B2 (en) Supported catalyst containing palladium and lead for carboxylic acid ester production
JPS609492B2 (en) Method for producing diglycolic acid
KR19990015522A (en) Catalyst for preparing carboxylic acid ester and preparation method of carboxylic acid ester

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term