JP4041952B2 - Gold ultrafine particle support and catalyst comprising the support - Google Patents

Gold ultrafine particle support and catalyst comprising the support Download PDF

Info

Publication number
JP4041952B2
JP4041952B2 JP2002090572A JP2002090572A JP4041952B2 JP 4041952 B2 JP4041952 B2 JP 4041952B2 JP 2002090572 A JP2002090572 A JP 2002090572A JP 2002090572 A JP2002090572 A JP 2002090572A JP 4041952 B2 JP4041952 B2 JP 4041952B2
Authority
JP
Japan
Prior art keywords
gold
reaction
catalyst
carrier
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002090572A
Other languages
Japanese (ja)
Other versions
JP2003284954A (en
Inventor
利生 林
貴大 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2002090572A priority Critical patent/JP4041952B2/en
Publication of JP2003284954A publication Critical patent/JP2003284954A/en
Application granted granted Critical
Publication of JP4041952B2 publication Critical patent/JP4041952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、金超微粒子担持体、その製造方法、及び該担持体からなる触媒に関する。
【0002】
【従来の技術】
金超微粒子を各種担体に担持させてなる金超微粒子担持体は、高活性を有する触媒として、酸化反応用触媒、水素化反応用触媒などの各種の用途に利用されている。
【0003】
従来、金超微粒子担持体の製造方法としては、pH7〜11程度の酸化物含有水溶液中に、金化合物含有水溶液を滴下して、酸化物表面に金化合物を析出させた後、焼成する方法(析出沈殿法);金化合物を溶解したpH7〜11程度の酸化物含有水溶液中に還元剤を滴下して、金を還元析出させる方法(還元法);金化合物を溶解したpH11以上の酸化物含有水溶液中に、二酸化炭素を吹き込むか、又は酸性水溶液を添加してpHを低下させることによって金の水酸化物を析出させた後、焼成する方法、等が報告されている(特開昭63−252908号公報)。)
これらの方法では、比表面積が小さい担体を用いる場合には、金を多量に担持させようとすると金の粒子径が大きくなって超微粒子として担持させることができず、金を超微粒子として担持させるためには、その担持量を少なくしなければならないという制約がある。このため、金を超微粒子として担持させ、しかも担持量を多くするためには、BET法による比表面積が50m2/g程度を上回るような高比表面積の担体を使用することが必要である。
【0004】
しかしながら、高比表面積の担体に金超微粒子を担持させた担持体は、高活性を有する触媒として有用ではあるが、通常、酸点などの余分な活性点を多く含むために、これを触媒とする場合には、副反応が増加して、主反応の選択率が低下するという弊害がある。
【0005】
このため、比表面積が小さく活性の低い担体に対して、金超微粒子を多量に担持させることができれば、副反応を抑制して主反応の選択率を向上させることが可能となることが期待される。
【0006】
【発明が解決しようとする課題】
本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、比表面積が小さく活性の低い担体に対して金超微粒子を多量に担持させることを可能として、高活性且つ選択性に優れた各種の反応用触媒として有用な新規な金超微粒子担持体を提供することである。
【0007】
【課題を解決するための手段】
本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、金超微粒子の担持法として、いわゆる析出沈殿法を採用し、無機酸化物担体と金化合物を含有する溶液のpHを従来の析出沈殿法におけるpH範囲を下回る特定のpH域に設定する場合には、意外にも、低比表面積の酸化物担体に対して金超微粒子を多量に担持させることが可能となることを見出し、ここに本発明を完成するに至った。
【0008】
即ち、本発明は、金超微粒子担持体、及び該担持体からなる触媒を提供するものである。
1. BET法による比表面積が30m2/g以下の無機酸化物を担体として、該無機酸化物100重量部に対して平均粒子径25nm以下の金超微粒子が3重量部以上担持されてなる金超微粒子担持体。
. 上記項1に記載の金超微粒子担持体からなる酸化反応用触媒。
. 上記項1に記載の金超微粒子担持体からなる水素化反応用触媒。
【0009】
【発明の実施の形態】
金超微粒子担持体
本発明の金超微粒子担持体は、BET法による比表面積が30m2/g以下の無機酸化物100重量部に対して平均粒子径25nm以下の金超微粒子が3重量部以上担持されたものである。
【0010】
該金超微粒子担持体は、BET法による比表面積が30m2/g以下という低比表面積の無機酸化物担体に、これまでにない多量の金超微粒子を担持させたものである。この様な金超微粒子担持体は、金超微粒子の担持量が多く高い触媒活性を有するものであり、且つ、担体については表面積が小さく不活性であり、酸点等の余分な活性点が少ないために、副反応の少ない選択性の高い触媒として有用である。
【0011】
担体としては、BET法による比表面積が30m2/g程度以下のものを用いることが必要であり、好ましくは10m2/g程度以下のものを用いる。
【0012】
担体の種類については、特に限定はないが、無機酸化物が好ましく、それらの内で、特に、その表面の等電点がpH7以上である無機酸化物を用いる場合に目的とする金超微粒子担持体が得られやすい。これに対して、等電点がpH7を下回る無機酸化物を担体として用いる場合には、得られる金担持体における金の担持量を多くすることと、金の粒子径を小さくして超微粒子を得ることの両方を同時に達成することが困難となる。表面の等電点がpH7以上である無機酸化物としては、具体的には、アルミニウム、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、アルカリ土類(マグネシウム、カルシウム、バリウム等)、ランタノイド(ランタン、セリウム等)等の少なくとも一種の元素を含む無機酸化物が好ましい。これらの内で、亜鉛を含む無機酸化物が好ましく、特に、酸化亜鉛を担体として用いることが好ましい。
【0013】
該金超微粒子担持体では、担持される金超微粒子の粒径については限定的ではないが、平均粒子径25nm程度以下の超微粒子であることが好ましく、平均粒子径20nm程度以下であることがより好ましく、平均粒子径10nm程度以下であることが更に好ましい。この様な金超微粒子を担体上に担持させることによって、高い触媒活性を有する担持体を得ることができる。平均粒子径の下限値は特に制限されないが、物理的安定性の見地より約1nm程度とすれば良い。なお、該触媒における金属微粒子の平均粒子径は、担体上の金属微粒子を透過型電子顕微鏡(TEM)により観察し、任意に選んだ100個の粒子径の算術平均値である。
【0014】
金超微粒子の担持量は、後述する本発明の製造方法により、担体100重量部に対して、3重量部程度以上とすることができる。BET法による比表面積が30m2/g程度以下の無機酸化物担体に対して、このような多量の金超微粒子を担持してなる担持体は、これまで得られていない新規な金超微粒子担持体である。担持量の上限については、最終製品の用途、担体の種類等に応じて適宜決めればよいが、通常、担体100重量部に対して、3〜20重量部程度の範囲の担持量とすることが好ましい。
金超微粒子担持体の製造方法
本発明では、金化合物を溶解した水溶液に無機酸化物担体を分散させ、金含有沈殿物を該無機酸化物表面に析出沈殿させた後、金含有沈殿物が析出した無機酸化物を焼成する方法、即ち、析出沈殿法を採用することが必要である。そして、該析出沈殿法において、無機酸化物担体を分散させた金化合物含有水溶液のpHを4〜6.8という特定範囲に維持した状態で金含有沈殿物を析出させることによって、BET法による比表面積が30m2/g以下という低比表面積の無機酸化物担体上に、該担体100重量部に対して3重量部以上という多量の金超微粒子を担持させることが可能となる。
【0015】
本発明方法で用いる金を含む水溶性化合物は、水溶性の金化合物であれば限定されない。例えば、テトラクロロ金(III)酸「H〔AuCl4〕」、テトラクロロ金(III)酸ナトリウム「Na〔AuCl4〕」、ジシアノ金(I)酸カリウム「K〔Au(CN)2〕」、ジエチルアミン金(III)三塩化物「(C252NH〔AuCl3〕」等の錯体;シアン化金(I)等の金化合物が挙げられる。これらの化合物は一種単独又は二種以上を混合して用いることができる。
【0016】
上記水溶液の金濃度は、用いる化合物の種類等によって異なるが、通常は0.1〜100mmol/l程度とすれば良い。
【0017】
上記水溶液と混合する無機酸化物担体は、顆粒状、造粒体等のいずれの形態で使用しても良い。上記担体の使用量は、該担体を水中に均一に分散できる量であれば良く、上記水溶液の濃度、用いる担体の種類等に応じて適宜設定すれば良いが、通常、10〜200g/l程度が適当である。
【0018】
上記水溶液には、必要に応じて、界面活性剤を添加することもできる。界面活性剤は、上記水溶液に応じて公知のもの又は市販品の中から適宜選択すれば良い。例えば、長鎖アルキルスルホン酸及びその塩、長鎖アルキルベンゼンスルホン酸及びその塩、長鎖アルキルカルボン酸及びその塩、アリールカルボン酸及びその塩等のアニオン性界面活性剤;長鎖アルキル4級アンモニウム塩等のカチオン性界面活性剤;ポリアルキレングリコール、ポリオキシエチレンノニルフェノール等のノニオン性界面活性剤;等が挙げられる。これら界面活性剤は一種単独又は二種以上混合して用いることができる。本発明では、アニオン性界面活性剤及びノニオン性界面活性剤が好ましく、特にアニオン性界面活性剤が好ましい。アニオン性界面活性剤の中でも、とりわけ、炭素数8以上の長鎖アルキルスルホン酸及びその塩、炭素数8以上の長鎖アルキルベンゼンスルホン酸及びその塩、炭素数8以上の長鎖アルキルカルボン酸及びその塩、アリールカルボン酸及びその塩等がより好ましい。
【0019】
界面活性剤の使用量は、所望の分散性、用いる界面活性剤の種類等により適宜決定することができるが、通常は界面活性剤の濃度が0.1〜10mmol/l程度とすれば良い。
【0020】
担体を分散させた金化合物含有水溶液は、pH4〜6.8程度の範囲内とすることが必要であり、pH5〜6.5程度の範囲内とすることが好ましい。金化合物含有水溶液のpHをこの範囲内とすることによって、得られる金担持体に担持される金の粒子径が小さくなり且つ金の担持量が多くなって、目的とする金超微粒子担持体を得ることができる。これに対して金化合物含有水溶液のpHが4より小さいと、得られる金担持体の金の粒子径が大きくなって、金超微粒子を担持させることができない。また、pHが6.8を上回ると、金の平均粒径が小さくなり超微粒子が得られ易くなるが、金を多量に担持させることができない。
【0021】
この様に、金化合物含有水溶液のpHを上記した特定範囲とすることによって、30m2/g程度以下という低比表面積の無機酸化物担体に対して、金超微粒子を多量に担持させることが可能となる。該水溶液のpHは、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、アンモニア等のアルカリにより調節することができる。また、必要により、塩酸等の酸を使用することもできる。これらのアルカリ又は酸は、必要に応じて水溶液の形態で使用しても良い。
【0022】
担体を分散させた金化合物含有水溶液の液温については、特に限定的ではないが、通常、10〜100℃程度とすれば良い。
【0023】
また、担体を分散させた水溶液の混合時間は、担体の種類、形状等によって適宜変更できるが、通常は1分〜24時間程度、好ましくは10分〜3時間の範囲内で、所定量の金を含む沈殿物が担体上に析出するように設定すれば良い。
【0024】
担体を分散させた水溶液を混合・攪拌した後、固形分を回収することによって、金含有沈殿物が析出沈殿した無機酸化物を得ることができる。固形分の回収は、上澄液の回収により行ったり、あるいは公知の固液分離法に従って実施することができる。回収された固形分は、残留イオンが実質的になくなるまでイオン交換水等で洗浄することが好ましい。
【0025】
次いで、固形分の焼成を行う。この場合、焼成とは、高温で熱処理することをいう。更に、必要に応じて、焼成に先立って予め加熱して乾燥しても良い。乾燥温度は、通常150℃未満とすれば良い。焼成温度は、通常150〜800℃程度、好ましくは200〜700℃、より好ましくは250〜600℃とすれば良い。焼成雰囲気については特に限定はなく、空気(大気)中又は酸化性雰囲気中でも良いし、あるいは窒素、アルゴンガス、ヘリウム等の不活性ガス雰囲気中、水素ガス、一酸化炭素等の還元性雰囲気中等であっても良い。焼成時間は、焼成温度、固形分の大きさ等に応じて適宜決定すれば良い。焼成によって、金が担体表面に強固に固定された金超微粒子担持体を得ることができる。
【0026】
本発明方法によれば、比表面積が30m2/g程度以下という低い比表面積の無機酸化物担体に、該担体100重量部に対して3重量部以上という多量の金超微粒子を担持させることができる。
【0027】
得られる金超微粒子担持体は、高活性且つ選択性に優れた触媒として、酸化反応用触媒又は水素化反応用触媒として各種の反応に有用である。酸化反応としては、有機化合物の酸化反応に有用であり、アルコール類、アルデヒド類等の酸化反応に好適に用いられ、特に、分子状酸素を酸化剤とするこれらの酸化反応に有用である。水素化反応としては、有機化合物の水素化反応に有用であり、ケトン類やアルデヒド類等のカルボニル基の水素化反応に好適に用いられ、特に、分子状水素を水素化剤とするこれらの水素化反応に有用である。
【0028】
以下、本発明金超微粒子担持体について、酸化反応用触媒又は水素化反応用触媒としての使用例を具体的に説明する。
酸化反応用触媒
アルデヒド及びアルコールを原料とするカルボン酸エステルの製造
本発明の金超微粒子担持体は、酸素の存在下におけるアルデヒドとアルコールからのカルボン酸エステルの製造において、高活性且つ選択率の高い触媒として好適に用いることができる。特に、本発明の金超微粒子担持体の存在下に上記した反応を行う場合には、通常の条件下では比較的多量に生じるアセタール類等の副生が大きく抑制されて、選択性良くカルボン酸エステルを製造することができる。
【0029】
アルデヒドとしては、例えばホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、イソブチルアルデヒド、グリオキザール、ピルバルデヒド等の炭素数1〜10の脂肪族アルデヒド;アクロレイン、メタクロレイン、クロトンアルデヒド等の炭素数3〜10のα、β−不飽和アルデヒド;ベンズアルデヒド、p−メトキシベンズアルデヒド、トルアルデヒド、フタルアルデヒド等の炭素数6〜20の芳香族アルデヒド等のほか、これらアルデヒドの誘導体を用いることができる。好ましくは、脂肪族アルデヒド、α、β−不飽和アルデヒド等を使用できる。これらのアルデヒドは、一種単独又は二種以上混合して用いることができる。
【0030】
アルコールとしては、メタノール、エタノール、イソプロパノール、オクタノール等の炭素数1〜10の脂肪族アルコール;エチレングリコール、ブタンジオール等の炭素数2〜10のジオール;アリルアルコール、メタリルアルコール等の炭素数3〜10の脂肪族不飽和アルコール;ベンジルアルコール等の芳香族アルコール等を用いることができる。好ましくは、炭素数1〜10の脂肪族アルコール等が使用できる。これらアルコールは、一種単独又は二種以上混合して用いることができる。
【0031】
本発明の製造方法では、目的とするカルボン酸エステルの種類等に応じて、原料とするアルデヒド及びアルコールを適宜選択すれば良い。例えば、メチルメタクリレートを合成する場合には、アルデヒドとしてメタクロレインを用い、アルコールとしてメタノールを用いれば良い。
【0032】
アルデヒドとアルコールとの反応割合は特に限定されないが、アルデヒド/アルコールのモル比で10〜1/200程度が好ましく、特に1/2〜1/50の範囲がより好ましい。上記範囲内であれば、より効率的にカルボン酸エステルを合成することが可能になる。
【0033】
本発明では、アルデヒドとアルコールとの反応を本発明金超微粒子担持体からなる触媒と酸素(分子状酸素)の存在下に行うことによって、カルボン酸エステルを得ることができる。
【0034】
上記反応は、液相反応、気相反応等のいずれであっても良い。酸素(酸素ガス)は、窒素ガス、アルゴンガス、ヘリウムガス、二酸化炭素ガス等の不活性ガスで希釈されていても良い。また、酸素含有ガスとして、空気を用いることもできる。酸素の反応系への供給方法は特に限定されず、公知の方法を適用できる。
【0035】
上記反応の形態としては、連続式、回分式、半回分式等のいずれであっても良く、特に限定されるものではない。触媒は、反応形態として回分式を採用する場合には、反応装置に原料とともに一括して仕込めば良い。また、反応形態として連続式を採用する場合には、反応装置に予め上記触媒を充填しておくか、あるいは反応装置に原料とともに触媒を連続的に仕込めば良い。触媒は、固定床、流動床、懸濁床等のいずれの形態であっても良い。
【0036】
触媒の使用量は、アルデヒドとアルコールとの組合せ、触媒の種類、反応条件等に応じて適宜決定すれば良い。反応時間は特に限定されるものではなく、設定した条件により異なるが、通常は反応時間又は滞留時間(反応器内滞留液量/液供給量)として0.5〜20時間程度とすれば良い。
【0037】
反応温度、反応圧力等の諸条件は、アルデヒドとアルコールの組合せ、触媒の種類等に応じて適宜決定すれば良い。反応温度は、通常0〜180℃程度、好ましくは20〜150℃とすれば良い。この範囲内の温度に設定することにより、いっそう効率的に反応を進行させることができる。反応圧力は、減圧、常圧又は加圧のいずれであっても良いが、通常は0.05〜2MPa(ゲージ圧)程度の範囲内が好適である。また、反応器流出ガスの酸素濃度が爆発範囲(8%)を超えないように全圧を設定すれば良い。反応系のpHは、副生成物抑制等の見地よりpH6〜9程度とすることが望ましい。pH調節のために、例えばアルカリ金属化合物、アルカリ土類金属化合物(カルボン酸塩)を反応系への添加剤として使用することもできる。
【0038】
上記の反応後は、反応系から触媒を分離した後、生成したカルボン酸エステルを公知の分離精製手段等を用いて回収すれば良い。触媒の分離方法は公知の方法に従えば良い。例えば、反応系が触媒(固形分)と反応生成物(液状成分)からなる場合は、ろ過、遠心分離等の公知の固液分離方法を用いて触媒と反応生成物を分離することができる。
【0039】
本発明方法で得られるカルボン酸エステルは、従来技術で得られるカルボン酸エステルと同様の用途に使用することができる。例えば、アクリル酸エステル、メタクリル酸エステル等のカルボン酸エステルは、各種アクリル樹脂の原料となる重合用モノマーとして有用である。
水素化反応用触媒
カルボニル化合物からのアルコールの製造
本発明の金超微粒子担持体は、該担持体からなる水素化反応用触媒の存在下にカルボニル化合物と水素化剤とを接触させてアルコールを製造する際に、カルボニル基を選択的に水素化してアルコールとする反応に対して、高い選択性と高活性を有するものである。
【0040】
本発明のアルコールの製造方法では、原料としては、カルボニル基を有する化合物であれば特に限定はなく使用できる。例えば、飽和カルボニル化合物、不飽和カルボニル化合物等を使用でき、これらを混合して用いてもよい。
【0041】
これらの内で、飽和カルボニル化合物としては、アセトアルデヒド、プロピオンアルデヒド、n−ブチルアルデヒド、イソブチルアルデヒド、n−ヘキシルアルデヒド、n−オクチルアルデヒド、2−エチルヘキシルアルデヒド、グリオキザール、ピルビックアルデヒド等のアルデヒド類や、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類等を例示できる。
【0042】
不飽和カルボニル化合物としては、α,β−不飽和カルボニル化合物、芳香族カルボニル化合物等の不飽和カルボニル化合物を用いることができ、特に、アクロレイン、メタクロレイン、クロトンアルデヒド、3−メチル−2−ブテナール、シンナミルアルデヒド等の炭素数3〜10程度のα,β−不飽和アルデヒド類、ベンズアルデヒド、アニスアルデヒド、p−ヒドロキシベンズアルデヒド、テレフタルアルデヒド、フルフラール等の炭素数6〜20程度の芳香族アルデヒド類等を原料とする場合には、選択性良く、高収率で対応する不飽和アルコールを製造することができ、特に、アクロレイン、メタクロレイン、ベンズアルデヒド、テレフタルアルデヒド等が好ましい。
【0043】
カルボニル化合物の水素化反応は、気相反応又は液相反応として行うことができる。
【0044】
カルボニル化合物の水素化反応を液相反応として行う場合には、特に、溶媒中で水素化反応を行うことが好ましい。本発明触媒の存在下に溶媒中で水素化反応を行うことによって、カルボニル化合物のカルボニル基のみを選択性良く水素化して、高い選択率で対応するアルコールを得ることができる。しかも、高圧や高温を要することなく、比較的低温低圧の穏和な条件下においても、高選択率且つ高転化率で目的とするアルコールを製造することができる。
【0045】
溶媒としては、原料であるカルボニル化合物を溶解でき、且つ水素化反応に関与しないものであれば特に限定なく使用できる。この様な溶媒の具体例としては、水;メタノール、エタノール、2−プロパノール、1−ブタノール、1−オクタノール、1,2−エタンジオール等のアルコール類;酢酸メチル、酢酸エチル等のエステル類;ペンタン、ヘキサン、シクロヘキサン等の飽和炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、1,2−ジクロロエタン、塩化ベンゼン等のハロゲン化合物等を挙げることができる。これらの内で、特に、メタノール、2−プロパノール等の脂肪族飽和アルコール類及び水を一種単独又は二種以上混合して用いることが好ましい。
【0046】
原料とするカルボニル化合物は、溶媒中に溶解させて反応に供する。カルボニル化合物の濃度については特に限定的ではないが、通常、0.1〜60重量%程度とすることが好ましく、1〜30重量%程度とすることがより好ましい。
【0047】
カルボニル化合物の水素化反応は、水素化剤として、金属水素化物、分子状水素等を用いて、溶媒中で公知の方法に従って行えばよい。これらの水素化剤の内で、金属水素化物としては、水素化ホウ素ナトリウム、水素化アルミニウム、水素化アルミニウムリチウム等を例示できる。これらの水素化剤の内で、特に分子状水素を用いる場合に、最も簡便で経済性良く水素化反応を行うことができる。
【0048】
水素化反応の方法については、特に限定されるものではなく、連続式、回分式、半回分式のいずれの方法で行っても良く、必要に応じて、撹拌下に反応を行えばよい。
【0049】
触媒の使用方法については、特に限定はなく、反応時に原料であるカルボニル化合物と水素が触媒に充分に接触できる方法であればよい。
【0050】
例えば、回分式で反応を行う場合には、溶媒中に原料と共に触媒を一括して仕込み、撹拌下に反応を行えばよい。また、連続式で反応を行う場合には、溶媒中に原料とともに触媒を仕込み、これを連続的に反応装置に供給するか、或いは反応装置に予め触媒を仕込んでおき、ここに原料を含む溶媒を連続的に供給すればよい。反応装置に触媒を仕込む場合には、反応装置は、固定床、流動床、懸濁床等いずれの形態でも良い。
【0051】
触媒の使用量については、特に限定的ではなく、原料の種類、触媒の種類、極性溶媒の種類等や反応条件等に応じて適宜決めればよい。例えば、溶媒中に原料と共に触媒を仕込む場合には、触媒の使用量については特に限定的ではないが、通常、全溶液量に対して0.01〜50重量%程度とすることが好ましく、0.1〜20重量%程度とすることがより好ましい。また、触媒を仕込んだ反応装置に原料を含む溶液と水素を連続的に供給する方法、例えば、反応装置に何らかの方法で触媒を固定或いは充填したところに原料を含む溶液と水素を連続的に供給する方法では、溶液の触媒層での平均滞留時間又は接触時間は1秒〜2時間程度であることが好ましく、10秒〜30分程度であることがより好ましい。
【0052】
分子状水素の供給方法としては、回分式で反応を行う場合には、水素圧が0.1〜10MPa程度、好ましくは0.2〜2MPa程度となるように、反応装置中に水素を供給し、更に、上記水素圧を反応期間中維持できるように、必要に応じて、水素を追加すればよい。また、連続式で反応を行う場合には、やはり水素圧が0.1〜10MPa程度、好ましくは0.2〜2MPa程度となるように、反応装置中に連続的に水素を供給すればよい。
【0053】
反応温度については、220℃程度以下という比較的低い温度において、高転化率且つ高選択率で目的とするアルコールを得ることができ、特に、副反応を抑制する点では、150℃程度以下とすることが好ましく、120℃程度以下とすることがより好ましい。また、反応温度の下限については特に限定的ではないが、十分な活性を得るためには、0℃程度以上とすることが適当であり、20℃程度以上とすることが好ましく、50℃程度以上とすることがより好ましい。
【0054】
反応時間については、特に限定的ではなく、各種反応条件によって変わり得るが、通常、反応時間又は滞留時間(反応器内滞留液量/液供給量)として0.5〜20時間の範囲内とすればよい。
【0055】
上記した方法によって反応を行った後、必要に応じて、ろ過、遠心分離等の公知の固液分離方法を用いて触媒を分離し、その後、公知の分離精製手段を用いて、生成したアルコール化合物を回収することによって、目的とするアルコールを得ることができる。
【0056】
【発明の効果】
本発明によれば、BET法による比表面積が30m2/g以下という表面積が小さく活性の低い担体に、該担体100重量部に対して3重量部以上という、これまでにない多量の金超微粒子を担持させた担持体を得ることができる。
【0057】
得られる担持体は、担体の表面積が小さく不活性であることから、副反応を抑制でき選択性の高い触媒として、酸化反応用触媒、水素化反応用触媒などとして有用性が高いものである。
【0058】
特に、該担持体は、例えば、アルデヒド及びアルコールを原料とするカルボン酸エステルの製造、カルボニル化合物の水素化によるアルコールの製造等において、高活性且つ優れた選択性を有する触媒として有効に使用できる。
【0059】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
【0060】
実施例1
濃度0.01mol/lの塩化金酸水溶液1リットルを65〜70℃に保持しながら、0.5N水酸化ナトリウム水溶液を用いてpH5に調節した。
【0061】
この水溶液に、担体として酸化亜鉛(JIS規格酸化亜鉛1種、比表面積4m2/g)20gを投入し、温度65〜70℃でpH5〜6に維持しながら、1時間攪拌を続けた。その後、この水溶液を静置して上澄み液を除去し、新たにイオン交換水0.5リットルを加えて、室温で5分間攪拌することによって水洗を行い、これを3回繰り返した後、濾過した。
【0062】
得られた固形物を空気中120℃で10時間乾燥し、更に空気中400℃で3時間焼成した。
【0063】
こうして得られた金担持体について、蛍光X線によりAuの含有量を調べたところ、担体100重量部に対して9.7重量部であった。また、電子顕微鏡にて金粒子を観察したところ、粒子の大きさはほとんどが5〜25nm程度の範囲の超微粒子であり、酸化亜鉛の表面に極めて高密度に担持されていることが判った。
【0064】
実施例2
酸化亜鉛を分散させた溶液のpHを6〜6.8とすること以外は、実施例1と同様にして酸化亜鉛に金を担持させた。
【0065】
得られた金担持体について、蛍光X線によりAuの含有量を調べたところ、担体100重量部に対して5.6重量部であった。また、電子顕微鏡にて金粒子を観察したところ、粒子の大きさはほとんどが3〜20nm程度の範囲の超微粒子であり、酸化亜鉛の表面に極めて高密度に担持されていることが判った。
【0066】
比較例1
酸化亜鉛を分散させた溶液のpHを7〜8とすること以外は、実施例1と同様にして酸化亜鉛に金を担持させた。
【0067】
得られた金担持体について、蛍光X線によりAuの含有量を調べたところ、担体100重量部に対して0.8重量部であった。また、電子顕微鏡にて金粒子を観察したところ、粒子の大きさはほとんどが1〜20nm程度の範囲の超微粒子であった。
【0068】
実施例3
100ml回転攪拌付オートクレーブに、メタクロレイン1.5ml、メタノール15ml、及び実施例1で得られら金超微粒子担持体0.5gを仕込んで密封した。次いで、系内を酸素にて0.3MPaに加圧した後、撹拌下に80℃に加温して2時間同温度に保った。
【0069】
その後、冷却して開封し、内容物をガスクロマトグラフィーで分析したところ、メタクロレインの転化率は82%、メチルメタクリレートの選択率は92%であった。また、従来法で生じる副生物であるメタクロレインジメチルアセタールの選択率は1%未満であった。
【0070】
実施例4
100ml回転攪拌付オートクレーブに、40重量%グリオキザール水溶液2g、メタノール15ml、及び実施例2で得られら金超微粒子担持体0.5gを仕込んで密封した。次いで、系内を酸素にて0.3MPaに加圧した後、撹拌下に80℃に加温して3時間同温度に保った。
【0071】
その後、冷却して開封し、内容物をガスクロマトグラフィーで分析したところ、グリオキザールの転化率は92%、グリオキシル酸メチルの選択率は82%、シュウ酸ジメチルの選択率は17%であった。また、従来法で生じる副生物であるアセタール類の選択率は1%未満であった。
【0072】
実施例5
100ml回転攪拌付オートクレーブに、クロトンアルデヒド1.5g、2−プロパノール15ml、及び実施例2で得られら金超微粒子担持体0.5gを仕込んで密封した。次いで、系内を窒素置換した後、水素にて1MPaに加圧した後、撹拌下に70℃に加温して4時間同温度に保った。
【0073】
その後、冷却して開封し、内容物をガスクロマトグラフィーで分析したところ、クロトンアルデヒドの転化率は52%、クロチルアルコールの選択率は74%であった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gold ultrafine particle carrier, a method for producing the same, and a catalyst comprising the carrier.
[0002]
[Prior art]
A gold ultrafine particle carrier in which gold ultrafine particles are supported on various carriers is used as a highly active catalyst in various applications such as an oxidation reaction catalyst and a hydrogenation reaction catalyst.
[0003]
Conventionally, as a method for producing a gold ultrafine particle carrier, a gold compound-containing aqueous solution is dropped into an oxide-containing aqueous solution having a pH of about 7 to 11, and a gold compound is precipitated on the oxide surface, followed by firing ( Precipitation / precipitation method): A method in which a reducing agent is dropped into an oxide-containing aqueous solution having a pH of about 7 to 11 in which a gold compound is dissolved to reduce and precipitate gold (reduction method); A method is disclosed in which carbon dioxide is blown into an aqueous solution, or an acidic aqueous solution is added to lower the pH to precipitate gold hydroxide, followed by firing, etc. No. 252908). )
In these methods, when a carrier having a small specific surface area is used, if a large amount of gold is supported, the gold particle size becomes large and cannot be supported as ultrafine particles, and gold is supported as ultrafine particles. For this purpose, there is a restriction that the amount of the load must be reduced. Therefore, in order to support gold as ultrafine particles and increase the amount supported, the specific surface area by the BET method is 50 m.2It is necessary to use a carrier having a high specific surface area exceeding about / g.
[0004]
However, a support in which ultrafine gold particles are supported on a carrier having a high specific surface area is useful as a catalyst having high activity. However, since it usually contains a lot of extra active sites such as acid sites, it is used as a catalyst. In this case, there is a harmful effect that the side reaction increases and the selectivity of the main reaction decreases.
[0005]
Therefore, if a large amount of ultrafine gold particles can be supported on a carrier having a small specific surface area and low activity, it is expected that side reactions can be suppressed and the selectivity of the main reaction can be improved. The
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the current state of the prior art described above, and its main object is to enable a large amount of ultrafine gold particles to be supported on a carrier having a small specific surface area and low activity. It is an object of the present invention to provide a novel ultrafine gold particle support useful as a reaction catalyst having various activities and excellent selectivity.
[0007]
[Means for Solving the Problems]
The present inventor has intensively studied to achieve the above-described object. As a result, a so-called precipitation method is adopted as a method for supporting the gold ultrafine particles, and the pH of the solution containing the inorganic oxide carrier and the gold compound is set to a specific pH range lower than the pH range in the conventional precipitation method. In some cases, it was surprisingly found that a large amount of ultrafine gold particles can be supported on an oxide carrier having a low specific surface area, and the present invention has been completed.
[0008]
  That is, the present invention supports gold ultrafine particlesBody, andAnd a catalyst comprising the support.
1. Specific surface area by BET method is 30m2Supporting ultrafine gold particles comprising 3 parts by weight or more of ultrafine gold particles having an average particle diameter of 25 nm or less with respect to 100 parts by weight of the inorganic oxide as a carrier.body.
2. An oxidation reaction catalyst comprising the ultrafine gold particle support according to Item 1.
3. A catalyst for hydrogenation reaction comprising the gold ultrafine particle support according to Item 1.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Gold ultrafine particle carrier
The ultrafine gold particle carrier of the present invention has a specific surface area of 30 m by the BET method.23 parts by weight or more of gold ultrafine particles having an average particle diameter of 25 nm or less are supported on 100 parts by weight of an inorganic oxide of / g or less.
[0010]
The ultrafine gold particle carrier has a specific surface area of 30 m as measured by the BET method.2/ G or less of an inorganic oxide carrier having a low specific surface area to which a large amount of ultrafine gold particles are supported. Such a gold ultrafine particle carrier has a large amount of gold ultrafine particles supported and high catalytic activity, and the carrier has a small surface area and is inactive, and has few extra active sites such as acid sites. Therefore, it is useful as a highly selective catalyst with few side reactions.
[0011]
The carrier has a specific surface area of 30m by the BET method.2/ G or less is necessary, preferably 10 m2/ G or less is used.
[0012]
There are no particular limitations on the type of carrier, but inorganic oxides are preferable. Among them, the intended ultrafine gold particles are supported particularly when inorganic oxides having an isoelectric point of pH 7 or higher are used. The body is easy to obtain. On the other hand, when an inorganic oxide having an isoelectric point lower than pH 7 is used as a carrier, the amount of gold supported in the resulting gold carrier is increased, and the particle size of the gold is reduced to obtain ultrafine particles. It will be difficult to achieve both at the same time. Specific examples of inorganic oxides having a surface isoelectric point of pH 7 or higher include aluminum, iron, cobalt, nickel, copper, zinc, gallium, alkaline earths (magnesium, calcium, barium, etc.), lanthanoids (lanthanum) Inorganic oxides containing at least one element such as cerium and the like are preferred. Among these, an inorganic oxide containing zinc is preferable, and it is particularly preferable to use zinc oxide as a carrier.
[0013]
In the gold ultrafine particle carrier, the particle size of the supported gold ultrafine particle is not limited, but is preferably an ultrafine particle having an average particle size of about 25 nm or less, and an average particle size of about 20 nm or less. More preferably, the average particle size is more preferably about 10 nm or less. By supporting such gold ultrafine particles on a support, a support having high catalytic activity can be obtained. The lower limit of the average particle diameter is not particularly limited, but may be about 1 nm from the viewpoint of physical stability. The average particle size of the metal fine particles in the catalyst is an arithmetic average value of 100 particle sizes arbitrarily selected by observing the metal fine particles on the carrier with a transmission electron microscope (TEM).
[0014]
The amount of gold ultrafine particles supported can be about 3 parts by weight or more with respect to 100 parts by weight of the carrier by the production method of the present invention described later. Specific surface area by BET method is 30m2A support formed by supporting such a large amount of gold ultrafine particles on an inorganic oxide support of about / g or less is a novel gold ultrafine particle support that has not been obtained so far. The upper limit of the loading amount may be appropriately determined according to the use of the final product, the type of the carrier, etc., but the loading amount is usually in the range of about 3 to 20 parts by weight with respect to 100 parts by weight of the carrier. preferable.
Method for producing gold ultrafine particle carrier
In the present invention, the inorganic oxide carrier is dispersed in an aqueous solution in which a gold compound is dissolved, and the gold-containing precipitate is deposited on the surface of the inorganic oxide, and then the inorganic oxide on which the gold-containing precipitate is deposited is fired. That is, it is necessary to employ a precipitation method. In the precipitation method, the gold-containing precipitate is precipitated in a state in which the pH of the gold compound-containing aqueous solution in which the inorganic oxide carrier is dispersed is maintained in a specific range of 4 to 6.8. Surface area is 30m2It becomes possible to support a large amount of ultrafine gold particles of 3 parts by weight or more with respect to 100 parts by weight of the inorganic oxide support having a low specific surface area of / g or less.
[0015]
The water-soluble compound containing gold used in the method of the present invention is not limited as long as it is a water-soluble gold compound. For example, tetrachloroauric (III) acid “H [AuClFour], Sodium tetrachloroaurate (III) "Na [AuClFour], Potassium dicyanoaurate (I) "K [Au (CN)2], Diethylamine gold (III) trichloride "(C2HFive)2NH [AuClThree]; And gold compounds such as gold (C) cyanide. These compounds can be used individually by 1 type or in mixture of 2 or more types.
[0016]
The gold concentration of the aqueous solution varies depending on the type of compound used, but is usually about 0.1 to 100 mmol / l.
[0017]
The inorganic oxide carrier to be mixed with the aqueous solution may be used in any form such as a granular form or a granulated body. The amount of the carrier used may be an amount that can uniformly disperse the carrier in water, and may be set as appropriate according to the concentration of the aqueous solution, the type of carrier used, etc., but is usually about 10 to 200 g / l. Is appropriate.
[0018]
A surfactant may be added to the aqueous solution as necessary. The surfactant may be appropriately selected from known or commercially available products according to the aqueous solution. For example, anionic surfactants such as long-chain alkyl sulfonic acids and salts thereof, long-chain alkyl benzene sulfonic acids and salts thereof, long-chain alkyl carboxylic acids and salts thereof, aryl carboxylic acids and salts thereof; long-chain alkyl quaternary ammonium salts And the like; and nonionic surfactants such as polyalkylene glycol and polyoxyethylene nonylphenol. These surfactants can be used singly or in combination of two or more. In the present invention, anionic surfactants and nonionic surfactants are preferred, and anionic surfactants are particularly preferred. Among anionic surfactants, in particular, long-chain alkyl sulfonic acids having 8 or more carbon atoms and salts thereof, long-chain alkyl benzene sulfonic acids and salts thereof having 8 or more carbon atoms, long-chain alkyl carboxylic acids having 8 or more carbon atoms and their salts More preferred are salts, arylcarboxylic acids and salts thereof.
[0019]
The amount of the surfactant used can be appropriately determined depending on the desired dispersibility, the type of the surfactant used, and the like, but usually the surfactant concentration may be about 0.1 to 10 mmol / l.
[0020]
The gold compound-containing aqueous solution in which the carrier is dispersed needs to be in the range of about pH 4 to 6.8, and preferably in the range of about pH 5 to 6.5. By setting the pH of the gold compound-containing aqueous solution within this range, the particle size of gold supported on the resulting gold support is reduced and the amount of gold supported is increased. Obtainable. On the other hand, when the pH of the gold compound-containing aqueous solution is smaller than 4, the gold particle diameter of the obtained gold carrier becomes large, and gold ultrafine particles cannot be supported. On the other hand, when the pH exceeds 6.8, the average particle size of gold becomes small and it becomes easy to obtain ultrafine particles, but gold cannot be supported in a large amount.
[0021]
In this way, by adjusting the pH of the gold compound-containing aqueous solution to the specific range described above, 30 m2It becomes possible to carry a large amount of ultrafine gold particles on an inorganic oxide carrier having a low specific surface area of about / g or less. The pH of the aqueous solution can be adjusted with an alkali such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, or ammonia. If necessary, an acid such as hydrochloric acid can be used. These alkalis or acids may be used in the form of an aqueous solution as necessary.
[0022]
The liquid temperature of the gold compound-containing aqueous solution in which the carrier is dispersed is not particularly limited, but is usually about 10 to 100 ° C.
[0023]
The mixing time of the aqueous solution in which the carrier is dispersed can be appropriately changed depending on the type and shape of the carrier, but it is usually within a range of about 1 minute to 24 hours, preferably 10 minutes to 3 hours. What is necessary is just to set so that the deposit containing this may precipitate on a support | carrier.
[0024]
After mixing and stirring the aqueous solution in which the carrier is dispersed, an inorganic oxide in which a gold-containing precipitate is precipitated can be obtained by collecting the solid content. The solid content can be recovered by recovering the supernatant or according to a known solid-liquid separation method. The recovered solid content is preferably washed with ion-exchanged water or the like until residual ions are substantially eliminated.
[0025]
Subsequently, baking of solid content is performed. In this case, firing refers to heat treatment at a high temperature. Furthermore, if necessary, prior to firing, heating and drying may be performed. The drying temperature may usually be less than 150 ° C. The firing temperature is usually about 150 to 800 ° C, preferably 200 to 700 ° C, more preferably 250 to 600 ° C. The firing atmosphere is not particularly limited, and may be in air (air) or an oxidizing atmosphere, or in an inert gas atmosphere such as nitrogen, argon gas, or helium, in a reducing atmosphere such as hydrogen gas or carbon monoxide. There may be. The firing time may be appropriately determined according to the firing temperature, the size of the solid content, and the like. By firing, a gold ultrafine particle carrier in which gold is firmly fixed to the surface of the carrier can be obtained.
[0026]
According to the method of the present invention, the specific surface area is 30 m.2A large amount of ultrafine gold particles of 3 parts by weight or more per 100 parts by weight of the inorganic oxide support having a specific surface area as low as about / g or less can be supported.
[0027]
The obtained ultrafine gold particle support is useful for various reactions as a catalyst for oxidation reaction or hydrogenation reaction as a catalyst having high activity and excellent selectivity. As the oxidation reaction, it is useful for an oxidation reaction of an organic compound, is suitably used for an oxidation reaction of alcohols, aldehydes, etc., and is particularly useful for these oxidation reactions using molecular oxygen as an oxidizing agent. The hydrogenation reaction is useful for hydrogenation reactions of organic compounds, and is suitably used for hydrogenation reactions of carbonyl groups such as ketones and aldehydes. In particular, these hydrogens using molecular hydrogen as a hydrogenating agent. It is useful for chemical reaction.
[0028]
Hereinafter, examples of use of the gold ultrafine particle support of the present invention as an oxidation reaction catalyst or a hydrogenation reaction catalyst will be specifically described.
Catalyst for oxidation reaction
Production of carboxylic acid esters from aldehydes and alcohols
The gold ultrafine particle support of the present invention can be suitably used as a highly active and highly selective catalyst in the production of a carboxylic acid ester from an aldehyde and an alcohol in the presence of oxygen. In particular, when the above reaction is carried out in the presence of the ultrafine gold particle support of the present invention, by-products such as acetals that are produced in a relatively large amount under normal conditions are greatly suppressed, and the carboxylic acid has good selectivity. Esters can be produced.
[0029]
Examples of the aldehyde include aliphatic aldehydes having 1 to 10 carbon atoms such as formaldehyde, acetaldehyde, propionaldehyde, isobutyraldehyde, glyoxal, and pyrualdehyde; Saturated aldehydes: In addition to aromatic aldehydes having 6 to 20 carbon atoms such as benzaldehyde, p-methoxybenzaldehyde, tolualdehyde and phthalaldehyde, derivatives of these aldehydes can be used. Preferably, aliphatic aldehydes, α, β-unsaturated aldehydes and the like can be used. These aldehydes can be used singly or in combination of two or more.
[0030]
Examples of the alcohol include aliphatic alcohols having 1 to 10 carbon atoms such as methanol, ethanol, isopropanol and octanol; diols having 2 to 10 carbon atoms such as ethylene glycol and butanediol; and 3 to 3 carbon atoms such as allyl alcohol and methallyl alcohol. 10 aliphatic unsaturated alcohols; aromatic alcohols such as benzyl alcohol can be used. Preferably, a C1-C10 aliphatic alcohol etc. can be used. These alcohols can be used singly or in combination of two or more.
[0031]
In the production method of the present invention, the aldehyde and alcohol as raw materials may be appropriately selected according to the type of the target carboxylic acid ester. For example, when synthesizing methyl methacrylate, methacrolein may be used as the aldehyde and methanol may be used as the alcohol.
[0032]
Although the reaction ratio of aldehyde and alcohol is not particularly limited, the molar ratio of aldehyde / alcohol is preferably about 10 to 1/200, and more preferably in the range of 1/2 to 1/50. If it is in the said range, it will become possible to synthesize | combine carboxylic acid ester more efficiently.
[0033]
In the present invention, a carboxylic acid ester can be obtained by performing a reaction between an aldehyde and an alcohol in the presence of a catalyst comprising the gold ultrafine particle support of the present invention and oxygen (molecular oxygen).
[0034]
The reaction may be any of a liquid phase reaction and a gas phase reaction. Oxygen (oxygen gas) may be diluted with an inert gas such as nitrogen gas, argon gas, helium gas or carbon dioxide gas. Air can also be used as the oxygen-containing gas. The method for supplying oxygen to the reaction system is not particularly limited, and a known method can be applied.
[0035]
The form of the reaction may be any of continuous type, batch type, semi-batch type, etc., and is not particularly limited. In the case of adopting a batch system as a reaction form, the catalyst may be charged into the reaction apparatus together with the raw materials. Further, when a continuous type is adopted as the reaction form, the catalyst may be charged in advance in the reaction device, or the catalyst may be continuously charged together with the raw material in the reaction device. The catalyst may be in any form such as a fixed bed, a fluidized bed, and a suspended bed.
[0036]
What is necessary is just to determine the usage-amount of a catalyst suitably according to the combination of an aldehyde and alcohol, the kind of catalyst, reaction conditions, etc. The reaction time is not particularly limited and varies depending on the set conditions. Usually, the reaction time or residence time (retention liquid amount in the reactor / liquid supply amount) may be about 0.5 to 20 hours.
[0037]
Various conditions such as reaction temperature and reaction pressure may be appropriately determined according to the combination of aldehyde and alcohol, the type of catalyst, and the like. The reaction temperature is usually about 0 to 180 ° C, preferably 20 to 150 ° C. By setting the temperature within this range, the reaction can proceed more efficiently. The reaction pressure may be any of reduced pressure, normal pressure or increased pressure, but is preferably in the range of about 0.05 to 2 MPa (gauge pressure). Further, the total pressure may be set so that the oxygen concentration of the reactor effluent gas does not exceed the explosion range (8%). The pH of the reaction system is preferably about pH 6 to 9 from the viewpoint of byproduct suppression. In order to adjust the pH, for example, an alkali metal compound or an alkaline earth metal compound (carboxylate) can be used as an additive to the reaction system.
[0038]
After the above reaction, after separating the catalyst from the reaction system, the produced carboxylic acid ester may be recovered using a known separation and purification means. The separation method of the catalyst may follow a known method. For example, when the reaction system comprises a catalyst (solid content) and a reaction product (liquid component), the catalyst and the reaction product can be separated using a known solid-liquid separation method such as filtration or centrifugation.
[0039]
The carboxylic acid ester obtained by the method of the present invention can be used for the same application as the carboxylic acid ester obtained by the prior art. For example, carboxylic acid esters such as acrylic acid esters and methacrylic acid esters are useful as polymerization monomers that are raw materials for various acrylic resins.
Catalyst for hydrogenation reaction
Production of alcohols from carbonyl compounds
The ultrafine gold particle carrier of the present invention selectively hydrogenates a carbonyl group when an alcohol is produced by contacting a carbonyl compound with a hydrogenating agent in the presence of a hydrogenation reaction catalyst comprising the carrier. It has high selectivity and high activity for the reaction to make alcohol.
[0040]
In the method for producing an alcohol of the present invention, the raw material is not particularly limited as long as it is a compound having a carbonyl group. For example, a saturated carbonyl compound or an unsaturated carbonyl compound can be used, and these may be used in combination.
[0041]
Among these, as the saturated carbonyl compound, aldehydes such as acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexyl aldehyde, n-octyl aldehyde, 2-ethylhexyl aldehyde, glyoxal, pyruvic aldehyde, Examples include ketones such as acetone, methyl ethyl ketone, and cyclohexanone.
[0042]
As the unsaturated carbonyl compound, unsaturated carbonyl compounds such as α, β-unsaturated carbonyl compounds and aromatic carbonyl compounds can be used, and in particular, acrolein, methacrolein, crotonaldehyde, 3-methyl-2-butenal, [Alpha], [beta] -unsaturated aldehydes having about 3 to 10 carbon atoms such as cinnamyl aldehyde, aromatic aldehydes having about 6 to 20 carbon atoms such as benzaldehyde, anisaldehyde, p-hydroxybenzaldehyde, terephthalaldehyde, and furfural When used as a raw material, the corresponding unsaturated alcohol can be produced with high selectivity and high yield, and acrolein, methacrolein, benzaldehyde, terephthalaldehyde and the like are particularly preferable.
[0043]
The hydrogenation reaction of the carbonyl compound can be performed as a gas phase reaction or a liquid phase reaction.
[0044]
When the hydrogenation reaction of the carbonyl compound is performed as a liquid phase reaction, it is particularly preferable to perform the hydrogenation reaction in a solvent. By performing a hydrogenation reaction in a solvent in the presence of the catalyst of the present invention, only the carbonyl group of the carbonyl compound can be hydrogenated with high selectivity, and the corresponding alcohol can be obtained with high selectivity. Moreover, the target alcohol can be produced with a high selectivity and a high conversion rate even under mild conditions of relatively low temperature and low pressure without requiring high pressure or high temperature.
[0045]
Any solvent can be used without particular limitation as long as it can dissolve the carbonyl compound as a raw material and does not participate in the hydrogenation reaction. Specific examples of such solvents include water; alcohols such as methanol, ethanol, 2-propanol, 1-butanol, 1-octanol and 1,2-ethanediol; esters such as methyl acetate and ethyl acetate; And saturated hydrocarbons such as hexane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; halogen compounds such as dichloromethane, 1,2-dichloroethane and benzene chloride. Among these, it is particularly preferable to use aliphatic saturated alcohols such as methanol and 2-propanol and water alone or in combination of two or more.
[0046]
The carbonyl compound used as a raw material is dissolved in a solvent and used for the reaction. The concentration of the carbonyl compound is not particularly limited, but is usually preferably about 0.1 to 60% by weight, more preferably about 1 to 30% by weight.
[0047]
The hydrogenation reaction of the carbonyl compound may be performed according to a known method in a solvent using a metal hydride, molecular hydrogen or the like as a hydrogenating agent. Among these hydrogenating agents, examples of the metal hydride include sodium borohydride, aluminum hydride, lithium aluminum hydride and the like. Among these hydrogenating agents, particularly when molecular hydrogen is used, the hydrogenation reaction can be carried out most easily and economically.
[0048]
The method for the hydrogenation reaction is not particularly limited, and it may be performed by any of continuous, batch, and semi-batch methods, and the reaction may be performed with stirring as necessary.
[0049]
The method for using the catalyst is not particularly limited as long as the carbonyl compound as a raw material and hydrogen can sufficiently contact the catalyst during the reaction.
[0050]
For example, when the reaction is carried out batchwise, the catalyst may be charged together with the raw materials in a solvent and the reaction may be carried out with stirring. In addition, when the reaction is carried out continuously, the catalyst is charged together with the raw material in a solvent, and this is continuously supplied to the reaction device, or the catalyst is charged in advance in the reaction device, and the solvent containing the raw material here May be supplied continuously. When the catalyst is charged into the reaction apparatus, the reaction apparatus may be in any form such as a fixed bed, a fluidized bed, and a suspension bed.
[0051]
The amount of the catalyst used is not particularly limited, and may be appropriately determined according to the type of raw material, the type of catalyst, the type of polar solvent, reaction conditions, and the like. For example, when the catalyst is charged together with the raw material in the solvent, the amount of the catalyst used is not particularly limited, but it is usually preferably about 0.01 to 50% by weight with respect to the total solution amount. More preferably, it is about 1 to 20% by weight. Also, a method of continuously supplying a solution containing raw materials and hydrogen to a reactor charged with a catalyst, for example, continuously supplying a solution containing raw materials and hydrogen to a reactor where the catalyst is fixed or filled by some method. In this method, the average residence time or contact time of the solution in the catalyst layer is preferably about 1 second to 2 hours, and more preferably about 10 seconds to 30 minutes.
[0052]
As a method for supplying molecular hydrogen, when the reaction is carried out batchwise, hydrogen is supplied into the reactor so that the hydrogen pressure is about 0.1 to 10 MPa, preferably about 0.2 to 2 MPa. Furthermore, hydrogen may be added as necessary so that the hydrogen pressure can be maintained during the reaction period. When the reaction is performed continuously, hydrogen may be continuously supplied into the reaction apparatus so that the hydrogen pressure is about 0.1 to 10 MPa, preferably about 0.2 to 2 MPa.
[0053]
Regarding the reaction temperature, the target alcohol can be obtained with a high conversion and high selectivity at a relatively low temperature of about 220 ° C. or less, and particularly about 150 ° C. or less in terms of suppressing side reactions. The temperature is preferably about 120 ° C. or less. Further, the lower limit of the reaction temperature is not particularly limited, but in order to obtain sufficient activity, it is suitably about 0 ° C. or higher, preferably about 20 ° C. or higher, preferably about 50 ° C. or higher. More preferably.
[0054]
The reaction time is not particularly limited and may vary depending on various reaction conditions, but is usually within the range of 0.5 to 20 hours as the reaction time or residence time (retention liquid amount / liquid supply amount in the reactor). That's fine.
[0055]
After performing the reaction by the above-described method, if necessary, the catalyst is separated using a known solid-liquid separation method such as filtration or centrifugation, and then the produced alcohol compound using a known separation and purification means. The desired alcohol can be obtained by recovering.
[0056]
【The invention's effect】
According to the present invention, the specific surface area by the BET method is 30 m.2It is possible to obtain a carrier in which an unprecedented amount of ultrafine gold particles, such as 3 parts by weight or more per 100 parts by weight of the carrier, is supported on a carrier having a small surface area of less than / g and low activity.
[0057]
Since the obtained support has a small surface area and is inactive, it is highly useful as an oxidation reaction catalyst, a hydrogenation reaction catalyst, etc. as a highly selective catalyst capable of suppressing side reactions.
[0058]
In particular, the carrier can be used effectively as a catalyst having high activity and excellent selectivity in, for example, the production of carboxylic acid esters using aldehydes and alcohols as raw materials, and the production of alcohols by hydrogenation of carbonyl compounds.
[0059]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0060]
Example 1
While maintaining 1 liter of an aqueous solution of 0.01 mol / l chloroauric acid at 65 to 70 ° C., the pH was adjusted to 5 using a 0.5N aqueous sodium hydroxide solution.
[0061]
In this aqueous solution, zinc oxide as a carrier (1 type JIS standard zinc oxide, specific surface area 4 m)2/ G) 20 g was added, and stirring was continued for 1 hour while maintaining the pH at 5 to 6 at a temperature of 65 to 70 ° C. Then, this aqueous solution was allowed to stand to remove the supernatant, and 0.5 liters of ion-exchanged water was newly added, followed by washing with water by stirring for 5 minutes at room temperature. This was repeated three times and then filtered. .
[0062]
The obtained solid was dried in air at 120 ° C. for 10 hours and further calcined in air at 400 ° C. for 3 hours.
[0063]
The gold carrier thus obtained was examined for the content of Au by fluorescent X-rays and found to be 9.7 parts by weight with respect to 100 parts by weight of the carrier. Further, when the gold particles were observed with an electron microscope, it was found that most of the particles were ultrafine particles in the range of about 5 to 25 nm and were supported on the surface of zinc oxide at a very high density.
[0064]
Example 2
Gold was supported on zinc oxide in the same manner as in Example 1 except that the pH of the solution in which zinc oxide was dispersed was adjusted to 6 to 6.8.
[0065]
With respect to the obtained gold carrier, the content of Au was examined by fluorescent X-rays. As a result, it was 5.6 parts by weight with respect to 100 parts by weight of the carrier. Further, when the gold particles were observed with an electron microscope, it was found that most of the particles were ultrafine particles having a size of about 3 to 20 nm and were supported on the surface of zinc oxide at a very high density.
[0066]
Comparative Example 1
Gold was supported on zinc oxide in the same manner as in Example 1 except that the pH of the solution in which zinc oxide was dispersed was adjusted to 7-8.
[0067]
When the gold content of the obtained gold carrier was examined by fluorescent X-rays, it was 0.8 parts by weight with respect to 100 parts by weight of the carrier. Moreover, when the gold particles were observed with an electron microscope, the size of the particles was almost ultrafine particles in the range of about 1 to 20 nm.
[0068]
Example 3
A 100 ml autoclave with rotary stirring was charged with 1.5 ml of methacrolein, 15 ml of methanol, and 0.5 g of the ultrafine gold particle support obtained in Example 1 and sealed. Next, after pressurizing the system to 0.3 MPa with oxygen, the system was heated to 80 ° C. with stirring and kept at the same temperature for 2 hours.
[0069]
Thereafter, the product was cooled and opened, and the contents were analyzed by gas chromatography. As a result, the methacrolein conversion rate was 82% and methyl methacrylate selectivity was 92%. Moreover, the selectivity of methacrolein dimethyl acetal, which is a by-product produced by the conventional method, was less than 1%.
[0070]
Example 4
A 100 ml autoclave with rotary stirring was charged with 2 g of a 40 wt% glyoxal aqueous solution, 15 ml of methanol, and 0.5 g of the ultrafine gold particle support obtained in Example 2 and sealed. Next, after pressurizing the system to 0.3 MPa with oxygen, the system was heated to 80 ° C. with stirring and maintained at the same temperature for 3 hours.
[0071]
After cooling and opening, the contents were analyzed by gas chromatography. The conversion rate of glyoxal was 92%, the selectivity for methyl glyoxylate was 82%, and the selectivity for dimethyl oxalate was 17%. Moreover, the selectivity of acetals which are by-products generated by the conventional method was less than 1%.
[0072]
Example 5
A 100 ml autoclave with rotary stirring was charged with 1.5 g of crotonaldehyde, 15 ml of 2-propanol, and 0.5 g of the ultrafine gold particle support obtained in Example 2 and sealed. Next, the inside of the system was purged with nitrogen, pressurized to 1 MPa with hydrogen, heated to 70 ° C. with stirring, and kept at the same temperature for 4 hours.
[0073]
After cooling and opening, the contents were analyzed by gas chromatography. The conversion of crotonaldehyde was 52% and the selectivity for crotyl alcohol was 74%.

Claims (3)

BET法による比表面積が30m2/g以下の無機酸化物を担体として、該無機酸化物100重量部に対して平均粒子径25nm以下の金超微粒子が3重量部以上担持されてなる金超微粒子担持体。Gold ultrafine particles obtained by supporting 3 parts by weight or more of gold ultrafine particles having an average particle diameter of 25 nm or less with respect to 100 parts by weight of the inorganic oxide, using an inorganic oxide having a specific surface area of 30 m 2 / g or less by the BET method as a carrier. Carrier. 請求項1に記載の金超微粒子担持体からなる酸化反応用触媒。An oxidation reaction catalyst comprising the ultrafine gold particle support according to claim 1. 請求項1に記載の金超微粒子担持体からなる水素化反応用触媒。A catalyst for hydrogenation reaction comprising the ultrafine gold particle support according to claim 1.
JP2002090572A 2002-03-28 2002-03-28 Gold ultrafine particle support and catalyst comprising the support Expired - Fee Related JP4041952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002090572A JP4041952B2 (en) 2002-03-28 2002-03-28 Gold ultrafine particle support and catalyst comprising the support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002090572A JP4041952B2 (en) 2002-03-28 2002-03-28 Gold ultrafine particle support and catalyst comprising the support

Publications (2)

Publication Number Publication Date
JP2003284954A JP2003284954A (en) 2003-10-07
JP4041952B2 true JP4041952B2 (en) 2008-02-06

Family

ID=29235865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002090572A Expired - Fee Related JP4041952B2 (en) 2002-03-28 2002-03-28 Gold ultrafine particle support and catalyst comprising the support

Country Status (1)

Country Link
JP (1) JP4041952B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765371B2 (en) * 2005-03-30 2011-09-07 住友化学株式会社 Process for producing cyclohexanol and / or cyclohexanone
WO2007029667A1 (en) * 2005-09-07 2007-03-15 National University Corporation Nagaoka University Of Technology Hydrogenation catalyst for carbonyl group, method for producing same, and method for producing unsaturated alcohol by using such catalyst
JP2007105699A (en) * 2005-10-17 2007-04-26 Nippon Sheet Glass Co Ltd Noble metal fine particle-supporting material and its manufacturing method
TW200843848A (en) * 2006-11-11 2008-11-16 Uop Llc Hydrogenation processes using functional surface catalyst composition
US20090275788A1 (en) * 2006-11-11 2009-11-05 Uop Llc Hydrogenation Processes Using Functional Surface Catalyst Composition
RU2009122378A (en) * 2006-11-11 2010-12-20 Юоп Ллк (Us) FUNCTIONAL SURFACE CATALYTIC COMPOSITION
WO2008060985A2 (en) * 2006-11-11 2008-05-22 Uop Llc Oxidation processes using functional surface catalyst composition
TW200846074A (en) * 2006-11-11 2008-12-01 Uop Llc Functional surface catalyst composition
TW200843858A (en) * 2006-11-11 2008-11-16 Uop Llc Oxidation processes using functional surface catalyst composition
JP5588657B2 (en) * 2009-11-10 2014-09-10 旭化成ケミカルズ株式会社 Method for producing carboxylic acid

Also Published As

Publication number Publication date
JP2003284954A (en) 2003-10-07

Similar Documents

Publication Publication Date Title
TW593242B (en) A process for the hydrogenation of carbonyl compounds
KR20050059310A (en) CARBON INTERSTICED METALLIC PALLADIUM, PALLADIUM CATALYST AND METHOD FOR PREPARATION THEREOF, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
JP4041952B2 (en) Gold ultrafine particle support and catalyst comprising the support
JP2002361086A (en) Carboxylic acid ester synthesis catalyst and method for producing carboxylic acid ester
JP3884695B2 (en) Catalyst for production of α, β-unsaturated carboxylic acid
JP3818783B2 (en) Method for producing carboxylic acid ester
JP4069242B2 (en) Metal particle carrier and method for producing carboxylic acid ester
JP2007275854A (en) Carboxylate production catalyst excellent in reaction stability and method for producing carboxylate
JP3556397B2 (en) Improved method for producing catalyst for carboxylic acid ester production
JP3408700B2 (en) Method for continuous production of carboxylic acid ester
JP3498102B2 (en) Catalyst for carboxylic acid ester production with excellent strength
JP4174788B2 (en) Process for producing unsaturated alcohol
JP4041953B2 (en) Hydrogenation catalyst and method for producing alcohol
JP3529198B2 (en) Method for activating palladium / lead-containing supported catalyst for carboxylic acid ester production
JP2003192632A (en) Method for producing mixture of unsaturated carboxylic acid ester with unsaturated carboxylic acid
JP3313993B2 (en) Method for producing carboxylic acid ester
JP3103500B2 (en) Method for producing carboxylic acid ester
JP2003103174A (en) Metallic particle carrier and method for producing unsaturated carbonyl compound
JP4507247B2 (en) Catalyst for production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, production method thereof and use thereof
JP3497621B2 (en) Oxidation / reduction activation method for carboxylic acid ester production catalyst
CN115212881B (en) Double bond transposition catalyst for double bond transposition reaction of unsaturated diester, and preparation method and application thereof
JP3498103B2 (en) Method for activating catalyst for carboxylic acid ester production
JP3532668B2 (en) High Purity and High Quality Method for Carboxylic Acid Ester Production Catalyst
JP2004181357A (en) Method for suppressing stripping of gold fine particle
JP2005125306A (en) CATALYST FOR PRODUCTION OF alpha,beta-UNSATURATED CARBOXYLIC ACID, PRODUCTION METHOD THEREOF AND PRODUCTION METHOD FOR alpha,beta-UNSATURATED CARBOXYLIC ACID

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees