JP3503777B2 - Surface-controlled supported catalyst containing palladium and lead - Google Patents

Surface-controlled supported catalyst containing palladium and lead

Info

Publication number
JP3503777B2
JP3503777B2 JP18272195A JP18272195A JP3503777B2 JP 3503777 B2 JP3503777 B2 JP 3503777B2 JP 18272195 A JP18272195 A JP 18272195A JP 18272195 A JP18272195 A JP 18272195A JP 3503777 B2 JP3503777 B2 JP 3503777B2
Authority
JP
Japan
Prior art keywords
lead
catalyst
palladium
reaction
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18272195A
Other languages
Japanese (ja)
Other versions
JPH0929096A (en
Inventor
節男 山松
辰男 山口
耕史郎 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP18272195A priority Critical patent/JP3503777B2/en
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to EP96924148A priority patent/EP0857512B1/en
Priority to US10/101,252 priority patent/USRE38283E1/en
Priority to MYPI96002963A priority patent/MY119415A/en
Priority to EP20030077037 priority patent/EP1361206B1/en
Priority to AT96924148T priority patent/ATE269755T1/en
Priority to AT03077037T priority patent/ATE280750T1/en
Priority to US08/945,308 priority patent/US6040472A/en
Priority to DE69633753T priority patent/DE69633753T2/en
Priority to TW085108875A priority patent/TW348073B/en
Priority to PCT/JP1996/002008 priority patent/WO1997003751A1/en
Priority to CN96193950A priority patent/CN1086313C/en
Priority to KR1019970708219A priority patent/KR100259743B1/en
Priority to DE69632788T priority patent/DE69632788T2/en
Publication of JPH0929096A publication Critical patent/JPH0929096A/en
Priority to HK98110335A priority patent/HK1009412A1/en
Application granted granted Critical
Publication of JP3503777B2 publication Critical patent/JP3503777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルデヒドとアル
コール及び分子状酸素とからカルボン酸エステルを製造
する際に使用する触媒及び該触媒を用いるカルボン酸エ
ステルの製造方法に関する。
TECHNICAL FIELD The present invention relates to a catalyst used for producing a carboxylic acid ester from an aldehyde, an alcohol and molecular oxygen, and a method for producing a carboxylic acid ester using the catalyst.

【0002】[0002]

【従来の技術】工業的に有用なメタクリル酸メチル又は
アクリル酸メチルを製造する方法として、メタクロレイ
ンからメタクリル酸を製造し、さらにメタクリル酸メチ
ルエステルに変換する直酸法と呼ばれる製法が既に工業
化されている。しかしながら、メタクロレインを酸化し
てメタクリル酸とする工程の収率は、長年にわたる触媒
改良により80%台前半まで改善されてきているが、依
然として低く改良の余地が大きい。また使用されるヘテ
ロポリ酸触媒は、熱的安定性にもともと難点があり、反
応温度条件下で分解が徐々に進行する。耐熱性を向上さ
せるための触媒改良が報じられているものの、工業触媒
としては触媒寿命が未だ不十分といわれる。
2. Description of the Related Art As a method for industrially useful production of methyl methacrylate or methyl acrylate, a method called direct acid method for producing methacrylic acid from methacrolein and converting it to methacrylic acid methyl ester has already been industrialized. ing. However, although the yield of the step of oxidizing methacrolein to methacrylic acid has been improved to the low 80% range through many years of catalyst improvement, it is still low and there is a lot of room for improvement. Further, the heteropolyacid catalyst used has a difficulty due to thermal stability, and the decomposition thereof gradually progresses under reaction temperature conditions. Although catalyst improvements for improving heat resistance have been reported, it is said that the catalyst life is still insufficient for industrial catalysts.

【0003】一方、メタクロレイン又はアクロレインを
メタノール及び分子状酸素と反応させて一挙にメタクリ
ル酸メチル又はアクリル酸メチルを製造する新しい方法
が近時脚光をあびている。メタクロレイン又はアクロレ
インをメタノール中で分子状酸素と反応させることによ
って行われ、パラジウムを含む触媒の存在が必須であ
る。
On the other hand, a new method of reacting methacrolein or acrolein with methanol and molecular oxygen to produce methyl methacrylate or methyl acrylate all at once has been highlighted recently. It is carried out by reacting methacrolein or acrolein with molecular oxygen in methanol and the presence of a catalyst containing palladium is essential.

【0004】従来、この製法はアルデヒドの分解反応を
併発して炭化水素や炭酸ガスが生成し、目的とするカル
ボン酸エステルの収率が低く、またカルボン酸エステル
の生成反応と並行して、アルコール自身の酸化による異
種のアルデヒド及びそのアルデヒドから異種のカルボン
酸エステル(例えば、アルコールとしてメタノールを用
いた場合は蟻酸メチル、エタノールの場合は酢酸エチ
ル)が副生し、アルコール基準の選択性も悪かった。し
かも触媒活性を長期にわたり維持できないという欠点も
あった。特に工業的実用価値の高いメタクロレインやア
クロレインなどのα・β−不飽和アルデヒドを出発原料
とした場合には、これら反応中間体の安定性が一段と低
いため、反応中に多量の炭酸ガスやオレフィン(メタク
ロレインの場合はプロピレン)などの分解生成物が発生
し、実用化レベルにはほど遠かった。
Conventionally, in this production method, hydrocarbons and carbon dioxide gas are produced by the simultaneous decomposition reaction of aldehydes, the yield of the desired carboxylic acid ester is low, and alcohol is produced in parallel with the carboxylic acid ester production reaction. Different aldehydes due to own oxidation and different carboxylic acid esters (for example, methyl formate when methanol was used as alcohol, ethyl acetate when ethanol was used) were by-produced from the aldehyde, and the selectivity based on alcohol was also poor. . Moreover, there is a drawback that the catalytic activity cannot be maintained for a long time. Particularly when α / β-unsaturated aldehydes such as methacrolein and acrolein, which are of high industrial practical value, are used as starting materials, the stability of these reaction intermediates is much lower, and therefore a large amount of carbon dioxide and olefins are generated during the reaction. Decomposition products such as (propylene in the case of methacrolein) were generated, which was far from the practical level.

【0005】本発明者らは、特公昭57−035856
号、特公昭57−035857号、特公昭57−035
859号各公報でパラジウム、鉛を含む触媒系を提案
し、メタクロレイン又はアクロレインを基準としたメチ
ルエステルへの選択率を大幅に改善し、90%を超える
高い値となることを示しているが、反応温度は高々50
℃までであった。
The present inventors have found that Japanese Patent Publication No. 57-035856.
No. 57-35857 and 57-3535
In Japanese Patent No. 859, a catalyst system containing palladium and lead is proposed, and it is shown that the selectivity to methyl ester based on methacrolein or acrolein is significantly improved, and it becomes a high value exceeding 90%. , The reaction temperature is at most 50
It was up to ° C.

【0006】引き続き、特公昭62−007902号公
報ではパラジウムと鉛とが簡単な整数比で結合した金属
間化合物を含む触媒を提案し、メタクロレイン又はアク
ロレインの分解反応がほぼ完全に抑止され、かつ触媒活
性も長期間失われることがない触媒系であることを示し
た。これら新しい触媒系を使用する新製法は、前記した
通り収率改善及び触媒寿命改善に頭打ちの感のある直酸
法に比べ工程が短いなどの利点もあり、工業的に有用な
ポリマー原料の新しい製法として工業化が待ち望まれて
いる。
Subsequently, Japanese Patent Publication No. 62-007902 proposes a catalyst containing an intermetallic compound in which palladium and lead are bonded in a simple integer ratio, whereby the decomposition reaction of methacrolein or acrolein is almost completely suppressed, and It has been shown that the catalyst system does not lose its catalytic activity for a long time. As described above, the new production method using these new catalyst systems has advantages such as a shorter process than the direct acid method, which has a peak in improving yield and improving catalyst life. Industrialization is awaited as a manufacturing method.

【0007】しかしながら、工業的実施を前提として経
済的に有利な反応条件である60℃以上の高温、アルデ
ヒドが20%以上の高濃度で本反応を実施すると前記触
媒系ではMMA選択率の低下及びアルコール自身の酸化
による蟻酸メチルの副生量の急増がおこる。即ち、特公
昭62−007902号公報では90%を超える高いM
MA選択率が得られ、しかも蟻酸メチルは0.03〜
0.06モル/モルMMAと僅かしか生成しないことを
例示しているが、これらはアルデヒド濃度が10%以下
でしかも反応温度も40〜60℃という穏和な条件で実
施されたものである。これらの条件では生成するMMA
濃度が低いため未反応メタノールのリサイクル量が多
く、その結果蒸気使用量が増大し経済性を悪化させてい
る。しかも生産性が低く反応器も大きい。経済性改善の
ためにはアルデヒド濃度及び反応温度を可及的に高める
ことが望ましく、特公平5−069813号公報ではメ
タクロレイン濃度20%、反応温度80℃での反応例が
示されている。ところがこのような高いメタクロレイン
濃度及び高い反応温度条件になると90%を超える高い
MMA選択率は得られない。しかも蟻酸メチルが0.0
923モル/モルMMAと倍増する。さらにメタクロレ
イン濃度を30%まで高めたより過酷な条件にすると、
アルデヒドの分解反応が起こりやすくなりMMA選択率
がさらに悪化する。
However, if this reaction is carried out at a high temperature of 60 ° C. or higher, which is an economically advantageous reaction condition on the premise of industrial implementation, and a high concentration of aldehyde of 20% or more, the MMA selectivity of the catalyst system is lowered and A rapid increase in the amount of methyl formate by-product occurs due to the oxidation of alcohol itself. That is, in Japanese Examined Patent Publication No. 62-007902, a high M exceeding 90% is obtained.
MA selectivity is obtained, and methyl formate is 0.03-
Although it is exemplified that the amount is as small as 0.06 mol / mol MMA, these are carried out under mild conditions where the aldehyde concentration is 10% or less and the reaction temperature is 40 to 60 ° C. MMA generated under these conditions
Since the concentration is low, the amount of unreacted methanol recycled is large, and as a result, the amount of steam used increases and economic efficiency deteriorates. Moreover, the productivity is low and the reactor is large. In order to improve the economic efficiency, it is desirable to increase the aldehyde concentration and the reaction temperature as much as possible, and Japanese Patent Publication No. 06-9813 discloses a reaction example in which the methacrolein concentration is 20% and the reaction temperature is 80 ° C. However, under such a high methacrolein concentration and high reaction temperature conditions, a high MMA selectivity exceeding 90% cannot be obtained. Moreover, methyl formate is 0.0
Doubling to 923 mol / mol MMA. If the methacrolein concentration is increased to 30% under more severe conditions,
The decomposition reaction of the aldehyde is likely to occur, and the MMA selectivity is further deteriorated.

【0008】経済性改善のため、高温、高アルデヒド濃
度下で90%を越える高いMMA選択率及び蟻酸メチル
副生の少ない触媒系の出現が待たれていた。
In order to improve the economical efficiency, the advent of a catalyst system having a high MMA selectivity of more than 90% at a high temperature and a high aldehyde concentration and a low methyl formate byproduct was awaited.

【0009】[0009]

【発明が解決しようとする課題】本発明は、アルデヒド
とアルコール及び分子状酸素をパラジウム及び鉛を含む
触媒と反応させてカルボン酸エステルを製造するに際
し、アルデヒドの濃度及び反応温度を高めて経済性を改
善した反応条件においても、カルボン酸エステルの選択
率が高くしかも蟻酸メチルなどのアルコール由来の副生
物の少ないカルボン酸エステルの製造方法を可能にする
触媒及び該触媒を用いたカルボン酸エステルの製造方法
を提供するものである。
DISCLOSURE OF THE INVENTION In the present invention, when an aldehyde, an alcohol, and molecular oxygen are reacted with a catalyst containing palladium and lead to produce a carboxylic acid ester, the concentration of the aldehyde and the reaction temperature are increased to improve the economical efficiency. And a catalyst enabling a method for producing a carboxylic acid ester having a high selectivity of a carboxylic acid ester and a small amount of by-products derived from an alcohol such as methyl formate, and a carboxylic acid ester using the catalyst. It provides a method.

【0010】[0010]

【課題を解決するための手段】本発明者らはこのような
現状に鑑み、カルボン酸エステル選択率が高くしかも蟻
酸メチルなどのアルコール由来の副生物の少ない触媒を
開発すべく、パラジウム、鉛を含む触媒系につき鋭意研
究し、本発明者らが特公昭62−007902号公報で
提案した、パラジウムと鉛が簡単な整数比で結合した金
属間化合物種のうち、原子比3/1のPd3 Pb1 種に
注目し、より緻密な研究を進め、本発明を完成した。
In view of the above situation, the present inventors have developed palladium and lead in order to develop a catalyst having a high carboxylate ester selectivity and a small amount of alcohol-derived byproducts such as methyl formate. Of the intermetallic compound species in which palladium and lead are bonded in a simple integer ratio proposed by the present inventors in Japanese Patent Publication No. 62-007902, Pd 3 having an atomic ratio of 3/1 is studied. The present invention has been completed by paying attention to Pb type 1 and conducting more detailed research.

【0011】すなわち、本発明は以下のとおりである。 1.アルデヒドとアルコール及び分子状酸素からカルボ
ン酸エステルを製造する触媒で、パラジウム及び鉛を含
み、下記(1)〜(3)を満たす担持触媒。 (1)パラジウム/鉛の担持組成比が原子比で3/0.
7〜3/1.3、(2)パラジウム/鉛金属間化合物の
(111)面のX線回折角(2θ)が38.55〜3
8.70、(3)担持触媒のパラジウム金属(3d(3
/2)+3d(5/2))/鉛金属(4f(7/2)×
1.75)のX線光電子スペクトル強度比が1/0.2
〜1/0.7、 2.アルデヒドをアルコール及び分子状酸素と反応させ
てカルボン酸エステルを製造する方法において、アルデ
ヒドを上記1の担持触媒の存在下でアルコール及び分子
状酸素と反応させることを特徴とするカルボン酸エステ
ルの製造方法。 3.アルデヒドがメタクロレイン、アクロレイン又はこ
れらの混合物であり、アルコールがメタノールである上
記2のカルボン酸エステル製造方法。
That is, the present invention is as follows. 1. A catalyst for producing a carboxylic acid ester from an aldehyde, an alcohol, and molecular oxygen, which is a supported catalyst containing palladium and lead and satisfying the following (1) to (3). (1) The supported composition ratio of palladium / lead is 3/0.
7 to 3 / 1.3, the (111) plane X-ray diffraction angle (2θ) of the (2) palladium / lead intermetallic compound is 38.55 to 3
8.70, (3) supported catalyst palladium metal (3d (3
/ 2) + 3d (5/2)) / lead metal (4f (7/2) x
1.75) X-ray photoelectron spectrum intensity ratio is 1 / 0.2
~ 1 / 0.7, 2. A method for producing a carboxylic acid ester by reacting an aldehyde with an alcohol and molecular oxygen, which comprises reacting the aldehyde with the alcohol and the molecular oxygen in the presence of the supported catalyst according to the above 1. . 3. The method for producing a carboxylic acid ester according to the above 2, wherein the aldehyde is methacrolein, acrolein or a mixture thereof, and the alcohol is methanol.

【0012】以下に本発明を詳細に説明する。高品位な
Pd3 Pb1 種を高純度で担体に担持して得られる担持
触媒の中でも、特にパラジウム金属(3d(3/2)+
3d(5/2))/鉛金属(4f(7/2)×1.7
5)のX線光電子スペクトル強度比が、1/0.2〜1
/0.7となるように触媒の表面構造及び表面組成が精
密に制御された触媒は、高いアルデヒド濃度及び高い反
応温度の如く過酷な反応条件であっても、蟻酸メチルの
副生が少なく、当該カルボン酸エステルの選択率が高
い。しかもアルデヒドの転化率も高いことを見いだし
た。Pd3 Pb1 を触媒種として含む触媒の表面構造及
び表面組成を制御するとアルコール及びアルデヒドに対
する反応性が大きく変化するという全く予想外の結果が
得られた。触媒表面の構造及び組成を精密に制御するこ
とが極めて重要であり、触媒がPd3 Pb1 種であっ
て、しかもパラジウム金属(3d(3/2)+3d(5
/2))/鉛金属(4f(7/2)×1.75)のX線
光電子スペクトル強度比が1/0.2〜1/0.7とな
るように触媒の表面構造及び表面組成を精密に制御する
ことで、本発明の課題を解決することが可能となったも
のである。
The present invention will be described in detail below. Among the supported catalysts obtained by supporting high-quality Pd 3 Pb 1 species on a carrier with high purity, particularly palladium metal (3d (3/2) +
3d (5/2)) / lead metal (4f (7/2) x 1.7
X-ray photoelectron spectrum intensity ratio of 5) is 1 / 0.2 to 1
The catalyst whose surface structure and surface composition are precisely controlled to be /0.7 produces less methyl formate by-products even under severe reaction conditions such as high aldehyde concentration and high reaction temperature. The selectivity of the carboxylic acid ester is high. Moreover, they have found that the conversion rate of aldehyde is also high. Controlling the surface structure and surface composition of a catalyst containing Pd 3 Pb 1 as a catalyst species resulted in a completely unexpected result in that the reactivity with alcohol and aldehyde was significantly changed. It is extremely important to precisely control the structure and composition of the catalyst surface, and the catalyst is Pd 3 Pb 1 species, and the palladium metal (3d (3/2) + 3d (5
/ 2)) / lead metal (4f (7/2) x 1.75), so that the X-ray photoelectron spectrum intensity ratio is 1 / 0.2 to 1 / 0.7. The precise control makes it possible to solve the problems of the present invention.

【0013】 本発明はPd3Pb1を化学種として含む
担持触媒の表面構造及び表面組成をパラジウム金属(3
d(3/2)+3d(5/2))/鉛金属(4f(7/
2)×1.75)のX線光電子スペクトル強度比が1/
0.2〜1/0.7となるように制御することが重要で
ある。如何なる理由により、蟻酸メチルの副生が少なく
てしかも当該カルボン酸エステルの選択率が高く、さら
にアルデヒドの転化率が高い触媒となるのか解析は未だ
不十分であるが、酸化還元電位の低い鉛元素は酸化還元
を受けやすく、状態が不安定であることを、触媒表面の
構造及び組成をより精密に制御することで、触媒種とし
てのPd 3 Pb 1 の優れた特性を残すことに成功したこと
が優れた効果を生んだものと推察している。
According to the present invention, the surface structure and surface composition of a supported catalyst containing Pd 3 Pb 1 as a chemical species are defined as palladium metal (3
d (3/2) + 3d (5/2)) / lead metal (4f (7 /
2) × 1.75) X-ray photoelectron spectrum intensity ratio is 1 /
It is important to control so as to be 0.2 to 1 / 0.7. For whatever reason, it is still insufficient to analyze whether it is a catalyst that has a low methyl formate byproduct, a high selectivity of the carboxylic acid ester, and a high aldehyde conversion rate. Has succeeded in retaining the excellent characteristics of Pd 3 Pb 1 as a catalyst species by controlling the structure and composition of the catalyst surface more precisely because it is susceptible to redox and its state is unstable. Is believed to have produced an excellent effect.

【0014】本発明の担持触媒は、パラジウム及び鉛を
含み、第一にパラジウム/鉛の担持組成比(原子比)は
3/0.7〜3/1.3を満たさねばならない。好まし
くは3/0.9〜3/1.1である。担持鉛量が原子比
で1.3を越えると蟻酸メチルの生成が顕著となる。
0.7未満ではアルデヒドの分解によるMMA選択率の
低下が大きい。より好ましくは可及的に3/1に近づけ
ることである。
The supported catalyst of the present invention contains palladium and lead. First, the supported composition ratio (atomic ratio) of palladium / lead must satisfy 3 / 0.7 to 3 / 1.3. It is preferably 3 / 0.9 to 3 / 1.1. When the amount of supported lead exceeds 1.3 by atomic ratio, the formation of methyl formate becomes remarkable.
When it is less than 0.7, the MMA selectivity is largely reduced due to the decomposition of aldehyde. More preferably, it is as close to 3/1 as possible.

【0015】第二にパラジウム/鉛金属間化合物の(1
11)面のX線回折角(2θ)は38.55〜38.7
0の範囲である。38.55未満では蟻酸メチルの副生
が著しい。38.70を越えるとアルデヒドの分解が顕
著となり、MMA選択率が低下する。第三にパラジウム
金属(3d(3/2)+3d(5/2))/鉛金属(4
f(7/2)×1.75)のX線光電子スペクトル強度
比を1/0.2〜1/0.7、好ましくは1/0.3〜
1/0.6の範囲に制御することが必要である。これら
の三条件が満たされた触媒を用いると、蟻酸メチルの生
成が少なくMMA選択率が高く、アルデヒド転化率も高
い。即ち、0.7を越えると蟻酸メチルの副生が増加す
ると同時に触媒活性の低下を招く。一方、0.2未満の
場合にも触媒活性は低下する。更に、X線光電子スペク
トルのパラジウム金属(3d(3/2)+3d(5/
2))/有電荷性鉛(4f(7/2)+4f(5/
2))の強度比を1/0〜1/0.2の範囲に管理する
と蟻酸メチルの副生がより抑制できる。可及的に1/0
であることが最も望ましい。
Secondly, the palladium / lead intermetallic compound (1
The X-ray diffraction angle (2θ) of the 11) plane is 38.55 to 38.7.
The range is 0. If it is less than 38.55, the by-product of methyl formate is remarkable. If it exceeds 38.70, the decomposition of aldehyde becomes remarkable, and the MMA selectivity decreases. Third, palladium metal (3d (3/2) + 3d (5/2)) / lead metal (4
The X-ray photoelectron spectrum intensity ratio of f (7/2) × 1.75) is 1 / 0.2 to 1 / 0.7, preferably 1 / 0.3 to
It is necessary to control in the range of 1 / 0.6. When a catalyst satisfying these three conditions is used, the production of methyl formate is small, the MMA selectivity is high, and the aldehyde conversion is high. That is, when it exceeds 0.7, the by-product of methyl formate increases, and at the same time, the catalytic activity decreases. On the other hand, if it is less than 0.2, the catalytic activity is lowered. Furthermore, palladium metal (3d (3/2) + 3d (5 /
2)) / charged lead (4f (7/2) + 4f (5 /
By controlling the intensity ratio of 2)) within the range of 1/0 to 1 / 0.2, the by-product of methyl formate can be further suppressed. 1/0 as much as possible
Is most desirable.

【0016】触媒成分としてパラジウム、鉛の他に異種
元素として、例えば水銀、タリウム、ビスマス、テル
ル、ニッケル、クロム、コバルト、インジウム、タンタ
ル、銅、亜鉛、ジルコニウム、ハフニウム、タングステ
ン、マンガン、銀、レニウム、アンチモン、スズ、ロジ
ウム、ルテニウム、イリジウム、白金、金、チタン、ア
ルミニウム、硼素、珪素などを含んでいてもよい。これ
らの異種元素は通常、5重量%、好ましくは1重量%を
超えない範囲で含むことができる。さらにはアルカリ金
属化合物及びアルカリ土類金属化合物から選ばれた少な
くとも一員を含むものは反応活性が高くなるなどの利点
がある。アルカリ金属、アルカリ土類金属は通常0.0
1〜30重量%、好ましくは0.01〜5重量%の範囲
から選ばれる。これらの異種元素あるいはアルカリ金属
及びアルカリ土類金属などは結晶格子間に少量、侵入し
たり、結晶格子金属の一部と置換していてもよい。ま
た、アルカリ金属及び/又はアルカリ土類金属化合物は
触媒調製時にパラジウム化合物あるいは鉛化合物を含む
溶液に加えておき担体に吸着あるいは付着させてもよい
し、あらかじめこれらを担持した担体を利用して触媒を
調製することもできる。また、反応条件下に反応系に添
加することも可能である。
In addition to palladium and lead as a catalyst component, different elements such as mercury, thallium, bismuth, tellurium, nickel, chromium, cobalt, indium, tantalum, copper, zinc, zirconium, hafnium, tungsten, manganese, silver and rhenium are used. , Antimony, tin, rhodium, ruthenium, iridium, platinum, gold, titanium, aluminum, boron, silicon and the like may be contained. These different elements can be contained in the range of usually 5% by weight, preferably 1% by weight. Further, compounds containing at least one member selected from alkali metal compounds and alkaline earth metal compounds are advantageous in that the reaction activity becomes high. Alkali metal and alkaline earth metal are usually 0.0
It is selected from the range of 1 to 30% by weight, preferably 0.01 to 5% by weight. These different elements, alkali metals and alkaline earth metals, etc. may penetrate into the crystal lattice in a small amount or may be substituted with a part of the crystal lattice metal. Further, the alkali metal and / or alkaline earth metal compound may be added to a solution containing a palladium compound or a lead compound at the time of catalyst preparation and may be adsorbed or attached to a carrier, or a carrier supporting these in advance may be used as a catalyst. Can also be prepared. It is also possible to add it to the reaction system under the reaction conditions.

【0017】触媒調製のために用いられるパラジウム化
合物及び鉛化合物は、例えば蟻酸塩、酢酸塩などの有機
酸塩、硫酸塩、塩酸塩、硝酸塩のごとき無機酸塩、アン
ミン錯体、ベンゾニトリル錯体などの有機金属錯体、酸
化物、水酸化物などのなかから適宜選ばれるが、パラジ
ウム化合物としては塩化パラジウム、酢酸パラジウムな
どが、鉛化合物としては硝酸鉛、酢酸鉛などが好適であ
る。またアルカリ金属化合物、アルカリ土類金属化合物
についても有機酸塩、無機酸塩、水酸化物などから選ば
れる。
The palladium compound and the lead compound used for preparing the catalyst include organic acid salts such as formate salts and acetate salts, inorganic acid salts such as sulfates, hydrochlorides and nitrates, ammine complexes, benzonitrile complexes and the like. It is appropriately selected from organic metal complexes, oxides, hydroxides and the like. Palladium compounds are preferably palladium chloride, palladium acetate and the like, and lead compounds are preferably lead nitrate, lead acetate and the like. The alkali metal compound and alkaline earth metal compound are also selected from organic acid salts, inorganic acid salts, hydroxides and the like.

【0018】担体は活性炭、シリカ、アルミナ、シリカ
アルミナ、ゼオライト、マグネシア、水酸化マグネシウ
ム、チタニア、炭酸カルシウム、活性炭などから広く選
ぶことができる。担体へのパラジウム担持量は特に限定
はないが担体重量に対して通常0.1〜20重量%、好
ましくは1〜10重量%である。鉛の担持量も特に限定
はないが担体重量に対して通常0.05〜17重量%の
範囲から選ばれ、好ましくは0.45〜8.5である。
但し前記した通り担持パラジウム/担持鉛の原子比は3
/0.7〜3/1.3の範囲でなければならない。好適
には3/0.9〜3/1.1である。
The carrier can be widely selected from activated carbon, silica, alumina, silica-alumina, zeolite, magnesia, magnesium hydroxide, titania, calcium carbonate, activated carbon and the like. The amount of palladium supported on the carrier is not particularly limited, but is usually 0.1 to 20% by weight, preferably 1 to 10% by weight based on the weight of the carrier. The amount of lead supported is not particularly limited, but is usually selected from the range of 0.05 to 17% by weight, preferably 0.45 to 8.5, with respect to the weight of the carrier.
However, as mentioned above, the atomic ratio of supported palladium / supported lead is 3
It should be in the range of /0.7 to 3 / 1.3. It is preferably 3 / 0.9 to 3 / 1.1.

【0019】以下、本発明の触媒の製造例を説明する。
まず通常の調製法に従いパラジウム、鉛含有担持触媒を
準備する。このとき、パラジウム/鉛の担持組成比は原
子比で通常は3/0.1〜3/10の範囲から選ぶ。実
用的には3/0.1〜3/3、より好ましくは3/0.
7〜3/1.3としておくのが好ましい。しかしながら
この範囲を超えて、例えば3/0.1未満もしくは3/
10を超えていても、下記に説明する触媒の構造完成化
工程及び表面構造の制御工程で鉛を追加担持する、ある
いは過剰鉛を除去することが可能であり、上記パラジウ
ム/鉛の担持組成比(原子比)に必ずしも限定されるも
のではない。
The production examples of the catalyst of the present invention will be described below.
First, a palladium / lead-containing supported catalyst is prepared according to a usual preparation method. At this time, the supported composition ratio of palladium / lead is usually selected from the atomic ratio range of 3 / 0.1 to 3/10. Practically 3 / 0.1 to 3/3, more preferably 3/0.
It is preferably set to 7 to 3 / 1.3. However, beyond this range, for example less than 3 / 0.1 or 3 /
Even if it exceeds 10, it is possible to additionally support lead or remove excess lead in the catalyst structure completion step and surface structure control step described below. It is not necessarily limited to (atomic ratio).

【0020】本発明の触媒を得る最も実用的な製法は、
通常の調製法に従い予め準備したパラジウム/鉛の担持
組成比が原子比で3/0.7〜3/1.3のパラジウ
ム、鉛含有担持触媒を以下説明するところの触媒の構
造完成化工程及び触媒の表面構造の制御工程の二つの
ステップを経て得ることができる。即ち通常の調製法で
得られたパラジウム/鉛の担持組成比が原子比で3/
0.7〜3/1.3のパラジウム、鉛含有担持触媒を第
一のステップであるところの構造完成化処理を施し、
(2)の要件であるパラジウム/鉛金属間化合物の(1
11)面のX線回折角(2θ)を38.55〜38.7
0を満たすことにより、(1)及び(2)の要件を満た
している、構造完成化された触媒を得る。
The most practical process for obtaining the catalyst of the present invention is
A catalyst structure-completing step of preparing a palladium / lead-containing supported catalyst having a palladium / lead supported composition ratio of 3 / 0.7 to 3 / 1.3 in atomic ratio prepared in advance according to a conventional preparation method, and It can be obtained through two steps of controlling the surface structure of the catalyst. That is, the supported composition ratio of palladium / lead obtained by the usual preparation method is 3 / atomic ratio.
0.7 to 3 / 1.3 palladium-and-lead-containing supported catalyst is subjected to the structure completion treatment which is the first step,
Palladium / lead intermetallic compound (1
11) plane X-ray diffraction angle (2θ) is 38.55 to 38.7.
By satisfying 0, a structure-completed catalyst satisfying the requirements (1) and (2) is obtained.

【0021】まず、第一に触媒の構造完成化工程につき
説明する。構造完成化には種々の方法があり、すべてを
説明できないが、例えば、前記通常の製法で得られた触
媒を、更に鉛化合物の存在下でホルマリン、蟻酸、ヒド
ラジン、メタノールもしくは分子状水素により構造完成
化させる。また、他の方法として、例えば前記通常の製
法で得られた触媒に対して分子状酸素による酸化と、引
き続きメタノールによる還元からなる一連の酸化還元操
作を少なくとも一回以上実施して得ることも可能である
し、分子状酸素による酸化と、メタノールによる還元を
同時に行うことでも得られる。
First, the step of completing the structure of the catalyst will be described. There are various methods for completing the structure, and all of them cannot be explained.However, for example, the catalyst obtained by the above-mentioned ordinary manufacturing method is further reacted with formalin, formic acid, hydrazine, methanol or molecular hydrogen in the presence of a lead compound. Complete. In addition, as another method, for example, it is possible to obtain the catalyst obtained by the usual production method by performing a series of redox operations consisting of oxidation with molecular oxygen and subsequent reduction with methanol at least once or more. However, it can also be obtained by simultaneously performing oxidation with molecular oxygen and reduction with methanol.

【0022】具体的に説明すれば、参考製造例2に示す
通常の方法で担持パラジウム/担持鉛の原子比が3/
0.98の組成比の担持触媒を予め調製した後、パラジ
ウム/鉛の担持組成比(原子比)が、例えば3/1.3
になるように酢酸鉛を溶かしたメタノールに該担持触媒
を分散させ、反応温度=90℃、反応圧力=5kg/c
2 (以下圧力は絶対圧で表示し、kg/cm2 で示
す。)で、出口酸素濃度=2.0%(酸素分圧0.1k
g/cm2 相当)となるように反応器に空気を供給し、
約20時間活性化を行うことでも構造完成化された触媒
を得ることが可能である。
More specifically, according to the usual method shown in Reference Production Example 2, the atomic ratio of supported palladium / supported lead was 3 /.
After preparing a supported catalyst having a composition ratio of 0.98 in advance, the supported composition ratio (atomic ratio) of palladium / lead is, for example, 3 / 1.3.
So that the supported catalyst is dispersed in methanol in which lead acetate is dissolved, reaction temperature = 90 ° C., reaction pressure = 5 kg / c
m 2 (hereinafter, the pressure is expressed as an absolute pressure and is shown in kg / cm 2 ), and the outlet oxygen concentration is 2.0% (oxygen partial pressure 0.1 k
g / cm 2 equivalent), supplying air to the reactor,
It is also possible to obtain a catalyst having a completed structure by activating it for about 20 hours.

【0023】 この構造完成化のステップだけで(3)
パラジウム金属(3d(3/2)+3d(5/2))/
鉛金属(4f(7/2)×1.75)のX線光電子スペ
クトル強度比1/0.2〜1/0.7を満たす触媒とな
ることもあるが、確実に上記の(3)を満たすために第
二のステップであるところの触媒の表面構造の制御工程
を行う。
Only the step of completing the structure (3)
Palladium metal (3d (3/2) + 3d (5/2)) /
The catalyst may satisfy the X-ray photoelectron spectrum intensity ratio of 1 / 0.2 to 1 / 0.7 of lead metal (4f (7/2) × 1.75), but the above (3) should be surely applied. In order to satisfy the above, a step of controlling the surface structure of the catalyst, which is the second step, is performed.

【0024】次に、第二のステップであるところの触媒
の表面構造の制御について説明する。最も実用的で容易
な方法は、カルボン酸エステルを製造しながら触媒の表
面構造を制御することであり、実用的意義の高い方法で
ある。即ち、パラジウム、鉛を含む構造完成化された触
媒の存在下、アルデヒドとアルコール及び分子状酸素と
を反応させてカルボン酸エステルを製造する際に、反応
器に鉛を含む物質を少量存在させながら、特定の酸素分
圧で反応を実施する。このステップを経させることで確
実に前記(3)を満たす触媒を得ることができる。反応
させるアルデヒド種、アルコール種などの反応原料、反
応条件、反応器形式もしくは該触媒のパラジウム、鉛組
成などにより酸素分圧、鉛の添加量は特定の値に決めが
たいが、例えば、反応器出口の酸素分圧を0.02〜
0.8kg/cm2 に管理し、反応器に添加する鉛濃度
は0.1〜2000ppmの範囲で反応を行う。また、
反応器に供給する鉛量が多くなると、廃水中の鉛を無害
化するための処理コストが高くなり好ましくない。実用
的には1〜200ppmの範囲から必要最小限の量が選
ばれる。
Next, the control of the surface structure of the catalyst, which is the second step, will be described. The most practical and easy method is to control the surface structure of the catalyst while producing the carboxylic acid ester, which is of high practical significance. That is, when a carboxylic acid ester is produced by reacting an aldehyde with an alcohol and molecular oxygen in the presence of a structure-completed catalyst containing palladium and lead, while a small amount of a substance containing lead is present in the reactor. The reaction is carried out at a specific oxygen partial pressure. By carrying out this step, a catalyst satisfying the above (3) can be surely obtained. It is difficult to determine the oxygen partial pressure and the amount of lead added to specific values depending on the reaction raw materials such as the aldehyde species and alcohol species to be reacted, the reaction conditions, the reactor type or the palladium and lead composition of the catalyst, etc. Oxygen partial pressure at the outlet is 0.02-
The concentration of lead added to the reactor is controlled at 0.8 kg / cm 2 , and the reaction is performed in the range of 0.1 to 2000 ppm. Also,
When the amount of lead supplied to the reactor increases, the treatment cost for detoxifying the lead in the wastewater increases, which is not preferable. Practically, the necessary minimum amount is selected from the range of 1 to 200 ppm.

【0025】また、第一のステップである構造完成化の
工程を行わずに、直接に第二のステップであるカルボン
酸エステルの製造反応を行いながら、触媒の構造完成化
と表面構造の制御を同時に行うことも可能である。即
ち、パラジウム、鉛を含む触媒をアルデヒドとアルコー
ル及び分子状酸素と反応させて、カルボン酸エステルを
製造する際に、反応器に鉛を含む物質を少量存在させな
がら特定の酸素分圧で反応を実施する、上記した触媒の
表面構造の制御工程を行うだけで、触媒の構造完成化を
行い、さらに表面構造をも制御することが可能である。
反応させるアルデヒド種、アルコール種などの反応原
料、反応条件、反応器形式もしくは該触媒のパラジウ
ム、鉛組成などにより酸素分圧、鉛の添加量は特定の値
に決めがたいが、第二ステップである、触媒の表面構造
の制御工程と同様に、例えば、反応器出口の酸素分圧を
0.02〜0.8kg/cm2 に管理し、反応器に添加
する鉛濃度は0.1〜2000ppmの範囲で反応を行
うのが好ましい。
Further, without directly carrying out the step of structural completion as the first step, the structural completion of the catalyst and control of the surface structure are carried out by directly carrying out the production reaction of the carboxylic acid ester as the second step. It is also possible to do it at the same time. That is, when a catalyst containing palladium and lead is reacted with an aldehyde, an alcohol and molecular oxygen to produce a carboxylic acid ester, the reaction is carried out at a specific oxygen partial pressure while a small amount of a substance containing lead is present in the reactor. It is possible to complete the structure of the catalyst and also control the surface structure only by performing the above-described step of controlling the surface structure of the catalyst.
The oxygen partial pressure and the amount of lead added are difficult to determine to specific values depending on the reaction raw materials such as aldehyde species to be reacted, alcohol species, reaction conditions, reactor type or palladium and lead composition of the catalyst, but in the second step Similar to the step of controlling the surface structure of the catalyst, for example, the oxygen partial pressure at the reactor outlet is controlled to 0.02 to 0.8 kg / cm 2 , and the lead concentration added to the reactor is 0.1 to 2000 ppm. It is preferable to carry out the reaction within the range.

【0026】触媒の構造完成化及び表面制御のメカニズ
ムは不明であるが、本発明者らの推察するところによる
と該条件で触媒上に存在する活性水素が重要な役割を果
たしており、この活性水素の働きを高めるため、酸素分
圧を絞る必要があるものと推察される。上記の触媒構造
完成化工程及び触媒の表面構造の制御工程に用いるアル
デヒド、アルコールは、本触媒を使用して行うカルボン
酸エステル製造の原料であるところのアルデヒド及びア
ルコールを使用するのが好都合である。例えばメタクリ
酸メチルエステル製造用の触媒とする場合にはアルデヒ
ドとしてメタクロレイン、アルコールとしてメタノール
を選ぶのが有利である。
Although the mechanism for completing the structure and controlling the surface of the catalyst is unknown, it is presumed by the present inventors that the active hydrogen present on the catalyst plays an important role under these conditions. It is presumed that it is necessary to reduce the oxygen partial pressure in order to enhance the function of. As the aldehyde and alcohol used in the step of completing the catalyst structure and the step of controlling the surface structure of the catalyst, it is convenient to use the aldehyde and alcohol that are the raw materials for the production of carboxylic acid ester using the present catalyst. . For example, when used as a catalyst for the production of methacrylic acid methyl ester, it is advantageous to select methacrolein as the aldehyde and methanol as the alcohol.

【0027】上記構造完成化の対象となる触媒は公知の
調製法で準備することができる。典型的な触媒調製法に
ついて説明すれば、可溶性の鉛化合物及び塩化パラジウ
ムなどの可溶性のパラジウム塩を含む水溶液に担体を加
えてパラジウム、鉛を含浸する。ついでホルマリン、蟻
酸、ヒドラジンなどの還元剤あるいは水素ガスなどで還
元する。得られるパラジウム、鉛含有担持触媒は特公昭
62−007902号公報で本発明者らが開示した如
く、触媒種としてPd3 Pb1 金属間化合物を含むもの
の純度が低い。このため、このような通常の製法で得ら
れる担体に担持された触媒は、本発明の要件である、パ
ラジウム/鉛の担持組成比(原子比)、パラジウム/鉛
金属間化合物の(111)面のX線回折角及びパラジウ
ム金属/鉛金属のX線光電子スペクトル強度比を同時に
満たす触媒とはなり得ない。このような通常の製法で得
られた触媒を前記方法で構造完成化及び触媒の表面構造
の制御を実施することで初めて本発明の要件を満たした
触媒を得ることができる。
The catalyst whose structure is to be completed can be prepared by a known preparation method. To describe a typical catalyst preparation method, a carrier is added to an aqueous solution containing a soluble lead compound and a soluble palladium salt such as palladium chloride to impregnate palladium and lead. Then, it is reduced with a reducing agent such as formalin, formic acid, hydrazine, or hydrogen gas. The obtained supported catalyst containing palladium and lead, as disclosed by the present inventors in Japanese Patent Publication No. 62-007902, contains a Pd 3 Pb 1 intermetallic compound as a catalyst species, but its purity is low. For this reason, the catalyst supported on the carrier obtained by such a usual production method is the required composition ratio (atomic ratio) of palladium / lead and the (111) plane of the palladium / lead intermetallic compound, which are the requirements of the present invention. It cannot be a catalyst that simultaneously satisfies the X-ray diffraction angle and the X-ray photoelectron spectrum intensity ratio of palladium metal / lead metal. A catalyst satisfying the requirements of the present invention can be obtained only by completing the structure of the catalyst obtained by such a conventional production method and controlling the surface structure of the catalyst by the above method.

【0028】本発明の触媒は、アルデヒドをアルコール
及び分子状酸素と反応させてカルボン酸エステルを製造
する反応に好適に使用することができる。触媒の使用量
は、反応原料の種類、触媒の組成や調製法、反応条件、
反応形式などによって大巾に変更することができ、特に
限定はないが、触媒をスラリー状態で反応させる場合に
は反応液1リットル中に0.04〜0.5kg使用する
のが好ましい。
The catalyst of the present invention can be suitably used for the reaction of reacting an aldehyde with an alcohol and molecular oxygen to produce a carboxylic acid ester. The amount of the catalyst used depends on the types of reaction raw materials, the composition and preparation method of the catalyst, the reaction conditions,
The amount can be largely changed depending on the reaction type and the like, but is not particularly limited, but when the catalyst is reacted in a slurry state, it is preferable to use 0.04 to 0.5 kg in 1 liter of the reaction liquid.

【0029】本発明のカルボン酸エステルの製造におい
て使用するアルデヒドとしては、例えば、ホルムアルデ
ヒド、アセトアルデヒド、プロピオンアルデヒド、イソ
ブチルアルデヒド、グリオキサールなどの脂肪族飽和ア
ルデヒド、アクロレイン、メタクロレイン、クロトンア
ルデヒドなどの脂肪族α・β−不飽和アルデヒド、ベン
ズアルデヒド、トリルアルデヒド、ベンジルアルデヒ
ド、フタルアルデヒドなどの芳香族アルデヒド、並びに
これらアルデヒドの誘導体などがあげられる。これらの
アルデヒドは単独もしくは任意の二種以上の混合物とし
て用いることができる。
Examples of the aldehyde used in the production of the carboxylic acid ester of the present invention include aliphatic saturated aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, isobutyraldehyde and glyoxal, and aliphatic α such as acrolein, methacrolein and crotonaldehyde. -Aromatic aldehydes such as β-unsaturated aldehyde, benzaldehyde, tolylaldehyde, benzylaldehyde, phthalaldehyde, and derivatives of these aldehydes. These aldehydes can be used alone or as a mixture of two or more kinds.

【0030】本発明のカルボン酸エステルの製造におい
て使用するアルコールとしては、例えば、メタノール、
エタノール、イソプロパノール、オクタノールなどの脂
肪族飽和アルコール、エチレングリコール、ブタンジオ
ールなどのジオール、アリルアルコール、メタリルアル
コールなどの脂肪族不飽和アルコール、ベンジルアルコ
ールなどの芳香族アルコールなどがあげられる。これら
のアルコールは単独もしくは任意の二種以上の混合物と
して用いることができる。
The alcohol used in the production of the carboxylic acid ester of the present invention is, for example, methanol,
Examples thereof include aliphatic saturated alcohols such as ethanol, isopropanol and octanol, diols such as ethylene glycol and butanediol, aliphatic unsaturated alcohols such as allyl alcohol and methallyl alcohol, and aromatic alcohols such as benzyl alcohol. These alcohols can be used alone or as a mixture of two or more kinds.

【0031】本発明のカルボン酸エステルの製造におけ
るアルデヒドとアルコールとの使用量比には特に限定は
なく例えばアルデヒド/アルコールのモル比で10〜1
/1000のような広い範囲で実施できるが、一般的に
は1/2〜1/50の範囲で実施される。本発明のカル
ボン酸エステルの製造反応は気相反応、液相反応、潅液
反応などの任意の従来公知の方法で実施できる。例えば
液相で実施する際には気泡塔反応器、ドラフトチューブ
型反応器、撹拌槽反応器などの任意の反応器形式による
ことができる。
There is no particular limitation on the amount ratio of the aldehyde and the alcohol used in the production of the carboxylic acid ester of the present invention. For example, the molar ratio of aldehyde / alcohol is 10-1.
Although it can be carried out in a wide range such as / 1000, it is generally carried out in a range of 1/2 to 1/50. The production reaction of the carboxylic acid ester of the present invention can be carried out by any conventionally known method such as a gas phase reaction, a liquid phase reaction and a perfusion reaction. For example, when it is carried out in the liquid phase, it may be carried out in any reactor type such as a bubble column reactor, a draft tube type reactor and a stirred tank reactor.

【0032】本発明のカルボン酸エステルの製造反応で
使用する酸素は、分子状酸素、すなわち酸素ガス自体又
は酸素ガスを反応に不活性な希釈剤、例えば窒素、炭酸
ガスなどで希釈した混合ガスの形とすることができ、空
気を用いることもできる。また、本反応を連続的に実施
する際には鉛を含む物質を反応器に加えながら反応を行
うことで触媒の劣化を抑制できる。このとき、反応器出
口側の酸素分圧を0.8kg/cm2 以下とすることで
反応器に供給する原料液中の鉛濃度を少量にして触媒の
劣化を抑制できる。反応させるアルデヒド種、アルコー
ル種などの反応原料、反応条件もしくは反応器形式など
により鉛の添加量、反応器出口の酸素分圧は特定の値に
決めがたいが、酸素条件にあわせて鉛量を決定して反応
器に供給することで触媒のパラジウム/鉛の担持組成比
を原子比で3/0.7〜3/1.3に、パラジウム/鉛
化合物の(111)面のX線回折角(2θ)を38.5
5〜38.70、パラジウム金属(3d(3/2)+3
d(5/2))/鉛金属(4f(7/2)×1.75)
のX線光電子スペクトル強度比を1/0.2〜1/0.
7と本発明の触媒の状態を反応中も安定に維持すること
ができる。
The oxygen used in the reaction for producing the carboxylic acid ester of the present invention is molecular oxygen, that is, oxygen gas itself or a mixed gas obtained by diluting oxygen gas with a diluent inert to the reaction, such as nitrogen or carbon dioxide. It can be shaped and air can be used. When the present reaction is continuously carried out, the deterioration of the catalyst can be suppressed by carrying out the reaction while adding a substance containing lead to the reactor. At this time, by setting the oxygen partial pressure on the outlet side of the reactor to 0.8 kg / cm 2 or less, it is possible to suppress the deterioration of the catalyst by reducing the lead concentration in the raw material liquid supplied to the reactor. It is difficult to determine the lead addition amount and oxygen partial pressure at the reactor outlet to a specific value depending on the reaction raw materials such as aldehyde species and alcohol species to be reacted, reaction conditions or reactor type, etc. The palladium / lead loading composition ratio of the catalyst was determined to be 3 / 0.7 to 3 / 1.3 in atomic ratio and the X-ray diffraction angle of the (111) plane of the palladium / lead compound was determined and supplied to the reactor. (2θ) is 38.5
5 to 38.70, palladium metal (3d (3/2) +3
d (5/2)) / lead metal (4f (7/2) × 1.75)
X-ray photoelectron spectrum intensity ratio of 1 / 0.2 to 1/0.
7 and the catalyst of the present invention can be stably maintained during the reaction.

【0033】添加する鉛量が多い場合には、排水中の鉛
を無害化するための処理コストが高くなったり、また反
応副生物の蟻酸メチルの量が多くなるなど好ましくない
ため、反応器出口側の酸素分圧は0.4kg/cm2
下として供給する鉛量を減らすのが好ましい。更に好ま
しくは0.2kg/cm2 以下にすることもできるが反
応に必要な酸素を確保せねば酸素不足になり原料アルデ
ヒドの転化率が低下したり、不都合な副生物が生成する
ためこれらの悪影響がでない範囲で選べばよい。
When the amount of lead added is large, the treatment cost for detoxifying the lead in the waste water becomes high, and the amount of the reaction by-product, methyl formate, becomes large, which is not preferable. The oxygen partial pressure on the side is preferably 0.4 kg / cm 2 or less to reduce the amount of lead supplied. More preferably, it can be set to 0.2 kg / cm 2 or less, but if oxygen necessary for the reaction is not secured, oxygen deficiency will occur and the conversion rate of the raw material aldehyde will decrease, and inconvenient by-products will be generated. You can choose within the range.

【0034】反応圧力は減圧から加圧下の任意の広い圧
力範囲で実施することができるが、通常は0.5〜20
kg/cm2 の圧力で実施される。反応器流出ガスの酸
素濃度が爆発範囲(8%)を越えないように全圧を設定
するとよい。本発明反応は、反応系にアルカリ金属もし
くはアルカリ土類金属の化合物(例えば、酸化物、水酸
化物、炭酸塩、カルボン酸塩など)を添加して反応系の
pHを6〜9に保持することが好ましい。特にpHを6
以上にすることで触媒中の鉛成分の溶解を防ぐ効果があ
る。これらのアルカリ金属もしくはアルカリ土類金属の
化合物は単独もしくは二種以上組み合わせて使用するこ
とができる。
The reaction pressure can be carried out in any wide pressure range from reduced pressure to increased pressure, but usually 0.5 to 20.
It is carried out at a pressure of kg / cm 2 . The total pressure should be set so that the oxygen concentration in the gas discharged from the reactor does not exceed the explosion range (8%). In the reaction of the present invention, the pH of the reaction system is maintained at 6 to 9 by adding an alkali metal or alkaline earth metal compound (eg, oxide, hydroxide, carbonate, carboxylate, etc.) to the reaction system. It is preferable. Especially pH 6
With the above, there is an effect of preventing dissolution of the lead component in the catalyst. These alkali metal or alkaline earth metal compounds can be used alone or in combination of two or more.

【0035】本発明のアルデヒド濃度の高い反応におい
ては、100℃以上の高温でも実施できるが、好ましく
は30〜100℃である。より好ましくは60〜90℃
である。反応時間は特に限定されるものではなく、設定
した条件により異なるので一義的には決められないが通
常1〜20時間である。
The high aldehyde concentration reaction of the present invention can be carried out at a high temperature of 100 ° C. or higher, but is preferably 30 to 100 ° C. More preferably 60 to 90 ° C
Is. The reaction time is not particularly limited and cannot be uniquely determined because it varies depending on the set conditions, but it is usually 1 to 20 hours.

【0036】[0036]

【発明の実施の形態】以下に実施例、比較例を用いて本
発明をさらに詳細に説明する。なお、実施例等で用いる
圧力は絶対圧で表示し、kg/cm2 で表示する。 <参考製造例1>シリカゾル水溶液としてスノーテック
スN−30(日産化学(株)製 商品名SiO2 分:3
0重量%)に硝酸アルミニウム、硝酸マグネシウムをそ
れぞれAl/Si+Al=10モル%、Mg/Si+M
g=10モル%となるように加え溶解させた後、130
℃の温度に設定した噴霧乾燥機で噴霧乾燥して平均粒子
系60μmの球状担体を得た。300℃、ついで600
℃で焼成した後、これを担体として塩化パラジウム、硝
酸鉛を担体100重量部当たりそれぞれパラジウム、鉛
分として5重量部、6.5重量部となるように担持した
後、ヒドラジンで還元して触媒(Pd5.0Pb6.5
/Mg、Al−SiO2 と表記する。)を得た。得られ
た担持触媒のPd/Pb担持組成比は原子比で3/1.
95、パラジウム/鉛金属間化合物の(111)面のX
線回折角(2θ)は38.745度であり、パラジウム
金属(3d)/鉛金属(4f)のX線光電子スペクトル
の強度比は1/1.24であった。 <Pd/Pb金属間化合物の(111)面のX線回折角
度の測定>測定は理学製RAD−RAを使用して通常の
粉末X線回折の測定手順に従い、CuKα1線(1.5
405981Å)を用いて該担持触媒パラジウム/鉛金
属間化合物の(111)面の回折角2θを測定した。測
定は特に高精度に行わねばならない。例えばNational I
nstitute of Standards & Technologyが標準参照物質66
0として定めるところのLaB6 化合物の(111)
面、(200)面を測定しそれぞれの値を37.44
1、43.506となるように規準化する。これにより
測定精度が高く再現性のよい結果が得られる。触媒は1
60℃で真空排気し、3時間処理することで低分子の吸
着/吸蔵成分を除去した後、測定する。 <X線光電子スペクトルの測定>測定はVG製ESCA
LAB−200−Xを使用して行った。図2に示す如
く、ピーク分離処理した後各ピークの面積を求め、パラ
ジウム金属(3d(3/2)+3d(5/2))/鉛金
属(4f(7/2)×1.75)の面積比及び、パラジ
ウム金属(3d(3/2)+3d(5/2))/有電荷
性鉛(4f(7/2)+4f(5/2))の面積比を求
め、これをピーク強度比とした。図1、図2にそれぞれ
パラジウム(3d)、鉛(4f)の測定例を示す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below with reference to Examples and Comparative Examples. The pressure used in Examples and the like is expressed as an absolute pressure and is expressed as kg / cm 2 . <Reference Production Example 1> As a silica sol aqueous solution, Snowtex N-30 (manufactured by Nissan Chemical Co., Ltd., trade name: SiO 2 min: 3)
Aluminum nitrate and magnesium nitrate in Al / Si + Al = 10 mol%, Mg / Si + M
After adding and dissolving so that g = 10 mol%, 130
Spray drying was carried out with a spray dryer set to a temperature of ° C to obtain a spherical carrier having an average particle size of 60 µm. 300 ℃, then 600
After calcination at ℃, palladium chloride and lead nitrate were used as a carrier to support palladium and lead to 5 and 6.5 parts by weight, respectively, per 100 parts by weight of the carrier, and then reduced with hydrazine to reduce the catalyst. (Pd5.0Pb6.5
/ Mg, expressed as Al-SiO 2. ) Got. The Pd / Pb supported composition ratio of the obtained supported catalyst was 3/1.
95, X of (111) plane of palladium / lead intermetallic compound
The line diffraction angle (2θ) was 38.745 degrees, and the intensity ratio of the X-ray photoelectron spectrum of palladium metal (3d) / lead metal (4f) was 1 / 1.24. <Measurement of X-Ray Diffraction Angle of (111) Face of Pd / Pb Intermetallic Compound> The measurement was performed using RAD-RA manufactured by Rigaku Co., Ltd. according to the usual measurement procedure of powder X-ray diffraction, and CuKα1 ray (1.5
The diffraction angle 2θ of the (111) plane of the supported catalyst palladium / lead intermetallic compound was measured using 405981Å). The measurement must be performed with high precision. For example National I
Institute of Standards & Technology 66
(111) of the LaB 6 compound defined as 0
Plane and (200) plane were measured and the respective values were 37.44.
Normalize to be 1,43.506. As a result, highly accurate measurement results with high reproducibility can be obtained. 1 catalyst
It is vacuum-evacuated at 60 ° C. and treated for 3 hours to remove low-molecular adsorption / occlusion components, and then measured. <Measurement of X-ray photoelectron spectrum> Measurement is made by VG ESCA
Performed using LAB-200-X. As shown in FIG. 2, after the peak separation treatment, the areas of the respective peaks were calculated, and the area of palladium metal (3d (3/2) + 3d (5/2)) / lead metal (4f (7/2) × 1.75) was calculated. The area ratio and the area ratio of palladium metal (3d (3/2) + 3d (5/2)) / charged lead (4f (7/2) + 4f (5/2)) were obtained, and this was calculated as the peak intensity ratio. And 1 and 2 show measurement examples of palladium (3d) and lead (4f), respectively.

【0037】[0037]

【実施例1】触媒分離器を備え、液相部が1.2リット
ルの外部循環型ステンレス製気泡塔反応器に、上記の参
考製造例1で得られた担持触媒300gを仕込み反応を
実施した。反応器に36.7重量%のメタクロレイン/
メタノール溶液を0.54リットル/hr、NaOH/
メタノール溶液を0.06リットル/hr連続的に供給
し、反応温度80℃、反応圧力5kg/cm2 で出口酸
素濃度が3.0%(酸素分圧0.15kg/cm2
当)となるように空気量を調整しながら反応器に空気を
供給して触媒の構造完成化処理を行った。反応液のpH
は7.1となるように反応器に供給するNaOH濃度を
コントロールし、構造完成化処理を50時間行った。引
き続き触媒の表面構造制御のため反応器の出口酸素濃度
を4.0%(酸素分圧0.20kg/cm2 相当)に変
更し、同時に反応器に供給する36.7重量%のメタク
ロレイン/メタノール溶液へ酢酸鉛を供給原料液中の鉛
濃度が20ppmとなるように添加することを始めた。
構造完成化処理時間を含めてトータル100時間経過し
たところで、反応器から触媒を抜き出して分析したとこ
ろ、Pd/Pbの担持組成比は原子比で3/1.08、
パラジウム/鉛金属間化合物の(111)面のX線回折
角(2θ)は38.612度、またパラジウム金属(3
d)/鉛金属(4f)のX線光電子スペクトルの強度比
は1/0.49へとそれぞれ変化していた。
Example 1 An external circulation type stainless steel bubble column reactor having a catalyst separator and a liquid phase portion of 1.2 liters was charged with 300 g of the supported catalyst obtained in Reference Production Example 1 above to carry out a reaction. . 36.7% by weight of methacrolein /
0.54 liter / hr methanol solution, NaOH /
A methanol solution was continuously supplied at 0.06 liter / hr so that the outlet oxygen concentration would be 3.0% (oxygen partial pressure 0.15 kg / cm 2 equivalent) at a reaction temperature of 80 ° C. and a reaction pressure of 5 kg / cm 2. Air was supplied to the reactor while adjusting the amount of air to complete the structure of the catalyst. PH of reaction solution
Was controlled to 7.1 so that the concentration of NaOH supplied to the reactor was controlled, and the structure completion treatment was performed for 50 hours. Subsequently, in order to control the surface structure of the catalyst, the oxygen concentration at the outlet of the reactor was changed to 4.0% (corresponding to an oxygen partial pressure of 0.20 kg / cm 2 ), and at the same time, 36.7 wt% of methacrolein / was supplied to the reactor. It was started to add lead acetate to the methanol solution so that the lead concentration in the feedstock liquid would be 20 ppm.
After a total of 100 hours including the structure completion treatment time, the catalyst was taken out from the reactor and analyzed. As a result, the Pd / Pb supported composition ratio was 3 / 1.08 by atomic ratio.
The X-ray diffraction angle (2θ) of the (111) plane of the palladium / lead intermetallic compound was 38.612 degrees, and the palladium metal (3
The intensity ratio of the X-ray photoelectron spectrum of d) / lead metal (4f) was changed to 1 / 0.49.

【0038】この触媒240gを触媒分離器を備え、液
相部が1.2リットルの外部循環型ステンレス製気泡塔
反応器に仕込みMMA生成反応を実施した。反応器に酢
酸鉛を供給原料液中の鉛濃度が20ppmとなるように
溶かした36.7重量%のメタクロレイン/メタノール
溶液を0.54リットル/hr、NaOH/メタノール
溶液を0.06リットル/hr連続的に供給し、反応温
度80℃、反応圧力5kg/cm2 で出口酸素濃度が
4.0%(酸素分圧0.20kg/cm2 相当)となる
ように空気量を調整しながら反応器に空気を供給してM
MA生成反応を行い、10時間経過したところで反応生
成物を分析したところ、メタクロレイン転化率は61.
8%、メタクリル酸メチル選択率は91.6%であり、
副生物としてプロピレンが選択率1.23%、蟻酸メチ
ルが0.045モル/モルMMA生成していた。
240 g of this catalyst was equipped in a catalyst separator, and the liquid phase portion was charged into an external circulation type bubble column reactor made of stainless steel to carry out MMA formation reaction. 0.54 liters / hr of a 36.7 wt% methacrolein / methanol solution and 0.06 liters of a NaOH / methanol solution were prepared by dissolving lead acetate in the reactor so that the lead concentration in the feedstock solution was 20 ppm. The reaction was carried out by continuously supplying the gas at a reaction temperature of 80 ° C. and a reaction pressure of 5 kg / cm 2 so that the outlet oxygen concentration was 4.0% (corresponding to an oxygen partial pressure of 0.20 kg / cm 2 ). Supply air to the vessel
The MA production reaction was carried out, and when the reaction product was analyzed after 10 hours, the methacrolein conversion rate was 61.
8%, methyl methacrylate selectivity is 91.6%,
Propylene had a selectivity of 1.23% and methyl formate was produced at 0.045 mol / mol MMA as a by-product.

【0039】[0039]

【実施例2】参考製造例1で得られた担持触媒を構造完
成化処理条件は実施例1と同一の操作及び条件で行った
後、50時間以降の触媒表面構造の制御条件として供給
原料液中の鉛濃度を10ppmに変更した以外は、実施
例1と同一の条件で反応を行い、活性化処理時間を含め
てトータル100時間経過したところで反応器から触媒
を抜き出して分析したところ、Pd/Pb担持組成比は
原子比で3/1.02、パラジウム/鉛金属間化合物の
(111)面のX線回折角(2θ)は38.609度、
またパラジウム金属(3d)/鉛金属(4f)のX線光
電子スペクトルの強度比は1/0.32だった。この触
媒を用いて実施例1と同様にMMA生成反応を行い、1
0時間経過したところで反応生成物を分析したところ、
メタクロレイン転化率は60.9%、メタクリル酸メチ
ル選択率は90.2%であり、副生物としてプロピレン
が選択率1.93%、蟻酸メチルが0.032モル/モ
ルMMA生成していた。
Example 2 The supported catalyst obtained in Reference Production Example 1 was subjected to the structure completion treatment under the same operation and conditions as in Example 1, and the feedstock solution was used as a control condition for the catalyst surface structure after 50 hours. The reaction was carried out under the same conditions as in Example 1 except that the lead concentration in the reactor was changed to 10 ppm, and after a total of 100 hours including the activation treatment time, the catalyst was extracted from the reactor and analyzed. The composition ratio of Pb supported is 3 / 1.02 in atomic ratio, the X-ray diffraction angle (2θ) of the (111) plane of the palladium / lead intermetallic compound is 38.609 degrees,
The intensity ratio of the X-ray photoelectron spectrum of palladium metal (3d) / lead metal (4f) was 1 / 0.32. Using this catalyst, an MMA producing reaction is carried out in the same manner as in Example 1, and 1
When the reaction product was analyzed at 0 hours,
The conversion of methacrolein was 60.9%, the selectivity of methyl methacrylate was 90.2%, propylene had a selectivity of 1.93%, and methyl formate produced 0.032 mol / mol MMA as by-products.

【0040】[0040]

【比較例1】実施例1で触媒構造完成化までは、実施例
1と全く同じように反応を50時間行った後、反応器か
ら触媒を抜き出して分析したところ、Pd/Pb担持組
成比は原子比で3/1.24、パラジウム/鉛金属間化
合物の(111)面のX線回折角(2θ)は38.65
2度、またパラジウム金属(3d)/鉛金属(4f)の
X線光電子スペクトルの強度比は1/0.89であっ
た。この触媒を用いて実施例1と同様にMMA生成反応
を行い、10時間経過したところで反応生成物を分析し
たところ、メタクロレイン転化率は57.3%、メタク
リル酸メチル選択率は90.7%であり、副生物として
プロピレンが選択率1.72%、蟻酸メチルが0.08
5モル/モルMMA生成していた。
Comparative Example 1 In Example 1, until the catalyst structure was completed, the reaction was performed for 50 hours in exactly the same manner as in Example 1, and then the catalyst was extracted from the reactor and analyzed. The atomic ratio was 3 / 1.24, and the X-ray diffraction angle (2θ) of the (111) plane of the palladium / lead intermetallic compound was 38.65.
The intensity ratio of the X-ray photoelectron spectrum of the palladium metal (3d) / lead metal (4f) twice was 1 / 0.89. Using this catalyst, an MMA forming reaction was carried out in the same manner as in Example 1, and the reaction product was analyzed after 10 hours. The conversion of methacrolein was 57.3% and the selectivity of methyl methacrylate was 90.7%. As a by-product, propylene has a selectivity of 1.72% and methyl formate is 0.08.
5 mol / mol MMA was produced.

【0041】[0041]

【実施例3〜7及び比較例3〜7】実施例3〜7、比較
例3〜7として表1に記載の各種触媒が、表1のPd/
Pb担持組成比(原子比)、パラジウム/鉛金属間化合
物の(111)面のX線回折角(2θ)及びパラジウム
金属(3d)/鉛金属(4f)のX線光電子スペクトル
の強度比を示す際の反応成績をまとめた。比較のため反
応成績の評価は出口酸素濃度は4.0%(酸素分圧0.
20kg/cm2 相当)、供給原料液中の鉛濃度は20
ppmとし、10時間反応を行った。
Examples 3 to 7 and Comparative Examples 3 to 7 The various catalysts listed in Table 1 as Examples 3 to 7 and Comparative Examples 3 to 7 were prepared according to Pd /
The composition ratio of Pb (atomic ratio), the X-ray diffraction angle (2θ) of the (111) plane of the palladium / lead intermetallic compound, and the intensity ratio of the X-ray photoelectron spectrum of palladium metal (3d) / lead metal (4f) are shown. The reaction results at the time are summarized. For comparison, the reaction results were evaluated by outlet oxygen concentration of 4.0% (oxygen partial pressure of 0.
20 kg / cm 2 equivalent), the lead concentration in the feedstock liquid is 20
The reaction was carried out for 10 hours in ppm.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【実施例8】実施例1で用いた触媒分離器を備え、液相
部が1.2リットルの外部循環型ステンレス製気泡塔反
応器を直列に2基連結し、各反応器に参考製造例1で得
られた担持触媒で、すでに構造完成化処理を終えた触媒
240gを仕込み、反応を実施した。第一段目の反応器
に、酢酸鉛を供給原料液中の鉛濃度が20ppmとなる
ように溶かした36.7重量%のメタクロレイン/メタ
ノール溶液を0.54リットル/hr、NaOH/メタ
ノール溶液を0.06リットル/hr連続的に供給し、
反応温度80℃、反応圧力5kg/cm2 で出口酸素濃
度が4.0%(酸素分圧0.20kg/cm2 相当)と
なるように空気量を調整しながら、反応器に空気を供給
して反応を行った。触媒懸濁液は液固分離して触媒は反
応器に戻し、反応液のみを第二段反応器にNaOH/メ
タノール溶液0.06リットル/hrと共に送り、第一
段反応器の流出ガスは第二段反応器に通気する一方、第
二段反応器の出口酸素濃度が2.2%(酸素分圧0.1
1kg/cm2 相当)となるように不足分の空気を第二
段反応器に追加し反応温度80℃、反応圧力4.6kg
/cm2 で反応を行った。また、第一段反応器、第二段
反応器ともに反応液のpHが7.1となるように反応器
に供給するNaOH濃度をコントロールした。500時
間後に反応生成物を分析したところメタクロレイン転化
率は61.6%、メタクリル酸メチル選択率は91.5
%、プロピレンが選択率1.36%、蟻酸メチルが0.
049モル/モルMMAであった。また、同時に第一段
反応器及び第二段反応器からそれぞれ触媒の一部を抜き
出して分析したところ、第一段反応器触媒はPd/Pb
担持組成比は原子比で3/1.05、パラジウム/鉛金
属間化合物の(111)面のX線回折角(2θ)は3
8.602度であり、パラジウム金属(3d)/鉛金属
(4f)のX線光電子スペクトルの強度比は1/0.4
5、また第二段反応器触媒はPd/Pb担持組成比は原
子比で3/0.98、パラジウム/鉛金属間化合物の
(111)面のX線回折角(2θ)が38.612度で
あり、パラジウム金属(3d)/鉛金属(4f)のX線
光電子スペクトルの強度比は1/0.45であった。こ
の条件でさらに反応を500時間、実施した。反応成績
および第一段、第二段反応器の触媒のPd/Pb担持組
成比、パラジウム/鉛化合物の(111)面のX線回折
角(2θ)、並びにパラジウム金属(3d)/鉛金属
(4f)のX線光電子スペクトルの強度比は大きな変化
は見られなかったが、蟻酸メチルだけが0.039モル
/モルMMAへと減少していた。
[Embodiment 8] The catalyst separator used in Embodiment 1 is provided, and two external circulation type stainless steel bubble column reactors each having a liquid phase of 1.2 liter are connected in series. With the supported catalyst obtained in No. 1, 240 g of a catalyst for which the structure completion treatment had already been completed was charged and the reaction was carried out. In the first-stage reactor, 0.53 liter / hr of a 36.7 wt% methacrolein / methanol solution in which lead acetate was dissolved so that the lead concentration in the feedstock liquid was 20 ppm, NaOH / meta
Continuously supplying 0.06 liter / hr of the nol solution,
The reaction is performed by supplying air to the reactor while adjusting the amount of air so that the outlet oxygen concentration is 4.0% (oxygen partial pressure is 0.20 kg / cm2) at a reaction temperature of 80 ° C and a reaction pressure of 5 kg / cm2. I went. The catalyst suspension is liquid-solid separated, the catalyst is returned to the reactor, only the reaction liquid is sent to the second stage reactor together with NaOH / methanol solution 0.06 liter / hr, and the outflow gas of the first stage reactor is While venting to the two-stage reactor, the outlet oxygen concentration of the second-stage reactor was 2.2% (oxygen partial pressure 0.1
1 kg / cm2 equivalent), adding a shortage of air to the second stage reactor, reaction temperature 80 ° C, reaction pressure 4.6 kg
The reaction was carried out at / cm @ 2. Further, in both the first-stage reactor and the second-stage reactor, the concentration of NaOH supplied to the reactor was controlled so that the pH of the reaction solution was 7.1. When the reaction product was analyzed after 500 hours, the conversion of methacrolein was 61.6% and the selectivity of methyl methacrylate was 91.5.
%, Propylene has a selectivity of 1.36%, and methyl formate has a selectivity of 0.
It was 049 mol / mol MMA. At the same time, when a part of the catalyst was extracted from each of the first-stage reactor and the second-stage reactor and analyzed, it was found that the catalyst of the first-stage reactor was Pd / Pb.
The supported composition ratio was 3 / 1.05 in atomic ratio, and the X-ray diffraction angle (2θ) of the (111) plane of the palladium / lead intermetallic compound was 3
It is 8.602 degrees, and the intensity ratio of the X-ray photoelectron spectrum of palladium metal (3d) / lead metal (4f) is 1 / 0.4.
5, the second-stage reactor catalyst had an atomic ratio of Pd / Pb loading composition ratio of 3 / 0.98, and an X-ray diffraction angle (2θ) of the (111) plane of the palladium / lead intermetallic compound of 38.612 degrees. The intensity ratio of the X-ray photoelectron spectrum of palladium metal (3d) / lead metal (4f) was 1 / 0.45. The reaction was further carried out under these conditions for 500 hours. Reaction results and Pd / Pb supported composition ratio of catalysts in the first and second stage reactors, X-ray diffraction angle (2θ) of (111) plane of palladium / lead compound, and palladium metal (3d) / lead metal ( No significant change was observed in the intensity ratio of the X-ray photoelectron spectrum of 4f), but only methyl formate decreased to 0.039 mol / mol MMA.

【0044】[0044]

【参考製造例2】富士シリシア社製シリカゲル(商品
名:キャリアクト10)100重量部にパラジウム5.
0重量部、鉛を3.18重量部担持した触媒を得た。得
られた触媒のPd/Pb担持組成比は原子比で3/0.
98、パラジウム/鉛金属間化合物の(111)面のX
線回折角(2θ)は38.927度であり、パラジウム
(3d)/鉛(4f)のX線光電子スペクトルの強度比
は1/0.15であった。
[Reference Production Example 2] Palladium was added to 100 parts by weight of silica gel (trade name: Carriact 10) manufactured by Fuji Silysia.
A catalyst carrying 0 parts by weight and 3.18 parts by weight of lead was obtained. The composition ratio of Pd / Pb supported on the obtained catalyst was 3/0.
98, X of (111) plane of palladium / lead intermetallic compound
The line diffraction angle (2θ) was 38.927 degrees, and the intensity ratio of the X-ray photoelectron spectrum of palladium (3d) / lead (4f) was 1 / 0.15.

【0045】[0045]

【実施例9】液相部が6リットルの攪拌槽型反応器に、
参考製造例2で得られた触媒1kgそして触媒のPd/
Pb担持組成比(原子比)を3/1.3とするのに不足
する鉛分に相当する酢酸鉛を溶かしたメタノールを仕込
み、反応温度90℃、反応圧力5kg/cm2 で出口酸
素濃度が2.0%(酸素分圧0.10kg/cm2
当)となるように空気量を調整しながら反応器に空気を
供給して触媒の構造完成化処理を20時間行った。この
触媒200gを、実施例1と同一容量をもつ攪拌槽型反
応器に仕込み、反応器に酢酸鉛を供給原料液中の鉛濃度
が20ppmとなるように溶かした36.7重量%のメ
タクロレイン/メタノール溶液を0.54リットル/h
r、NaOH/メタノール溶液を0.06リットル/h
r連続的に供給し、反応温度80℃、反応圧力5kg/
cm2 で出口酸素濃度が4.0%(酸素分圧0.20k
g/cm2 相当)となるように空気量を調整しながら反
応器に空気を供給し触媒表面構造の制御を50時間行っ
た。反応液のpHは7.1となるように反応器に供給す
るNaOH濃度をコントロールした。得られた触媒を分
析したところPd/Pb担持組成比は原子比で3/1.
10、パラジウム/鉛金属間化合物の(111)面のX
線回折角(2θ)が38.611度でありパラジウム金
属(3d)/鉛金属(4f)のX線光電子スペクトルの
強度比は0.428であった。上記表面構造制御条件で
10時間反応を行い反応生成物を分析したところ、メタ
クロレイン転化率は63.2%、メタクリル酸メチル選
択率は91.3%であり副生物としてプロピレンが選択
率1.1%、蟻酸メチルが0.052モル/モルMMA
生成していた。
Example 9 In a stirred tank reactor having a liquid phase portion of 6 liters,
1 kg of the catalyst obtained in Reference Production Example 2 and Pd / of the catalyst
Methanol in which lead acetate corresponding to the lead content that is insufficient for setting the Pb supported composition ratio (atomic ratio) to 3 / 1.3 was dissolved was charged, and the outlet oxygen concentration was adjusted at a reaction temperature of 90 ° C. and a reaction pressure of 5 kg / cm 2. Air was supplied to the reactor while adjusting the amount of air to 2.0% (corresponding to an oxygen partial pressure of 0.10 kg / cm 2 ), and the catalyst structure completion treatment was performed for 20 hours. 200 g of this catalyst was charged into a stirred tank reactor having the same capacity as in Example 1, and 36.7 wt% of methacrolein was prepared by dissolving lead acetate in the reactor so that the lead concentration in the feedstock liquid was 20 ppm. / Methanol solution 0.54 l / h
r, NaOH / methanol solution 0.06 liter / h
r continuously supplied, reaction temperature 80 ° C, reaction pressure 5 kg /
The outlet oxygen concentration is 4.0% in cm 2 (oxygen partial pressure 0.20 k
Air was supplied to the reactor while the amount of air was adjusted so that it became g / cm 2 ) and the catalyst surface structure was controlled for 50 hours. The concentration of NaOH supplied to the reactor was controlled so that the pH of the reaction solution was 7.1. When the obtained catalyst was analyzed, the composition ratio of Pd / Pb supported was 3/1.
10. Palladium / lead intermetallic compound (111) plane X
The line diffraction angle (2θ) was 38.611 degrees, and the intensity ratio of the X-ray photoelectron spectrum of palladium metal (3d) / lead metal (4f) was 0.428. When the reaction product was analyzed by carrying out the reaction for 10 hours under the above surface structure control conditions, the conversion of methacrolein was 63.2%, the selectivity of methyl methacrylate was 91.3%, and the selectivity of propylene was 1. 1%, methyl formate 0.052 mol / mol MMA
Was being generated.

【0046】[0046]

【比較例8】実施例9で触媒構造完成化処理のみ施した
触媒のPd/Pb担持組成比は原子比で3/1.27、
パラジウム/鉛金属間化合物の(111)面のX線回折
角(2θ)は38.691度であり、パラジウム金属
(3d)/鉛金属(4f)のX線光電子スペクトルの強
度比は0.763であった。この触媒200gを、実施
例1と同一容量をもつ攪拌槽型反応器に仕込み、反応器
に36.7重量%のメタクロレイン/メタノール溶液を
0.54リットル/hr、NaOH/メタノール溶液を
0.06リットル/hr連続的に供給し、反応温度80
℃、反応圧力5kg/cm2 で出口酸素濃度が4.0%
(酸素分圧0.20kg/cm2 相当)となるように空
気量を調整しながら反応器に空気を供給し反応を行っ
た。反応液のpHは7.1となるように反応器に供給す
るNaOH濃度をコントロールした。また、反応器に供
給する36.7重量%のメタクロレイン/メタノール溶
液へ、酢酸鉛を供給原料液中の鉛濃度が20ppmとな
るように添加した。10時間経過したところで反応生成
物を分析したところ、メタクロレイン転化率は57.2
%、メタクリル酸メチル選択率は89.3%であり、副
生物としてプロピレンが選択率2.03%、蟻酸メチル
が0.152モル/モルMMA生成していた。
Comparative Example 8 The Pd / Pb supported composition ratio of the catalyst which was subjected only to the catalyst structure completion treatment in Example 9 was 3 / 1.27 in atomic ratio,
The X-ray diffraction angle (2θ) of the (111) plane of the palladium / lead intermetallic compound was 38.691 degrees, and the intensity ratio of the X-ray photoelectron spectrum of palladium metal (3d) / lead metal (4f) was 0.763. Met. 200 g of this catalyst was charged into a stirred tank reactor having the same capacity as in Example 1, and the reactor was charged with 36.7 wt% of methacrolein / methanol solution at 0.54 liter / hr and NaOH / methanol solution at 0. 06 liter / hr continuously supplied, reaction temperature 80
℃, reaction pressure 5kg / cm 2 outlet oxygen concentration 4.0%
The reaction was performed by supplying air to the reactor while adjusting the amount of air so that the oxygen partial pressure was equivalent to 0.20 kg / cm 2 . The concentration of NaOH supplied to the reactor was controlled so that the pH of the reaction solution was 7.1. Further, lead acetate was added to a 36.7 wt% methacrolein / methanol solution supplied to the reactor so that the lead concentration in the feedstock liquid would be 20 ppm. When the reaction product was analyzed after 10 hours, the conversion of methacrolein was 57.2.
%, Methyl methacrylate selectivity was 89.3%, propylene had a selectivity of 2.03% and methyl formate was 0.152 mol / mol MMA as by-products.

【0047】[0047]

【比較例9】液相部が6リットルの攪拌槽に参考製造例
2の触媒1kg、触媒のPd/Pb担持組成比(原子
比)を3/1.3にするのに不足する鉛分に相当する酢
酸鉛を溶かした水を仕込み、90℃に加熱した後、37
%ホルマリン水溶液をホルマリン/担持パラジウム=1
0モルになるように加え、さらに1時間かき混ぜながら
加熱した。得られた触媒のPd/Pb担持組成比は原子
比で3/1.27、パラジウム/鉛金属間化合物の(1
11)面のX線回折角(2θ)が38.642度、パラ
ジウム金属(3d)/鉛金属(4f)のX線光電子スペ
クトルの強度比は0.953であった。
[Comparative Example 9] 1 kg of the catalyst of Reference Production Example 2 was added to a stirring tank having a liquid phase portion of 6 liters, and the lead content was insufficient to make the Pd / Pb supported composition ratio (atomic ratio) of the catalyst 3 / 1.3. Charge water with the corresponding lead acetate and heat to 90 ° C.
% Formalin aqueous solution formalin / supported palladium = 1
The mixture was added to 0 mol, and the mixture was heated with stirring for 1 hour. The composition ratio of Pd / Pb supported on the obtained catalyst was 3 / 1.27 in atomic ratio, and the palladium / lead intermetallic compound (1
The X-ray diffraction angle (2θ) of the 11) plane was 38.642 degrees, and the intensity ratio of the X-ray photoelectron spectrum of palladium metal (3d) / lead metal (4f) was 0.953.

【0048】この触媒240gを触媒分離器を備え、液
相部が1.2リットルの外部循環型ステンレス製気泡塔
反応器に仕込み反応を実施した。酢酸鉛を供給原料液中
の鉛濃度が20ppmとなるように溶かした36.7重
量%のメタクロレイン/メタノール溶液を0.54リッ
トル/hr、NaOH/メタノール溶液を0.06リッ
トル/hrを連続的に反応器に供給し(アルデヒド濃度
約33%に相当)、反応温度80℃、反応圧力5kg/
cm2 で出口酸素濃度が4.0%(酸素分圧0.20k
g/cm2 )となるように空気量を調整しながらMMA
生成反応を行い、10時間経過したところで反応生成物
を分析したところ、メタクロレイン転化率は56.8
%、メタクリル酸メチル選択率は91.2%であり、副
生物としてプロピレンが選択率1.03%、蟻酸メチル
が0.178モル/モルMMA生成していた。
240 g of this catalyst was placed in an external circulation type stainless steel bubble column reactor equipped with a catalyst separator and having a liquid phase portion of 1.2 liter, and the reaction was carried out. 0.54 liters / hr of a 36.7 wt% methacrolein / methanol solution in which lead acetate was dissolved so that the lead concentration in the feedstock solution was 20 ppm, and NaOH / methanol solution was 0.06 liters / hr continuously Is supplied to the reactor (corresponding to an aldehyde concentration of about 33%), the reaction temperature is 80 ° C., the reaction pressure is 5 kg /
The outlet oxygen concentration is 4.0% in cm 2 (oxygen partial pressure 0.20 k
g / cm 2 ) MMA while adjusting the air volume so that
When the production reaction was performed and the reaction product was analyzed after 10 hours, the conversion of methacrolein was 56.8.
%, Methyl methacrylate selectivity was 91.2%, propylene had a selectivity of 1.03% and methyl formate was 0.178 mol / mol MMA as by-products.

【0049】[0049]

【実施例10】実施例1のMMA生成反応をさらに50
0時間継続し反応生成物を分析した。メタクロレイン転
化率、メタクリル酸メチル選択率及びプロピレン選択率
は100時間目とほぼ変わらないのに対し、蟻酸メチル
は0.045から0.032モル/モルMMAにまで減
少していた。反応器から触媒の一部を抜き出して分析し
たところ、Pd/Pb担持組成比(原子比)、パラジウ
ム/鉛化合物の(111)面のX線回折角(2θ)、及
びパラジウム金属(3d)/鉛金属(4f)のX線光電
子スペクトルの強度比は100時間目とほぼ同じだった
が、パラジウム金属(3d)/有電荷鉛(4f)のX線
光電子スペクトルの強度比が100時間目の1/0.1
1から500時間目は1/0へと大きく変化していた。
なお実施例1で使用した参考製造例1の触媒のパラジウ
ム金属(3d)/有電荷鉛(4f)の光電子スペクトル
の強度比を測定すると1/0.35だった。
[Example 10] The MMA production reaction of Example 1 was further conducted 50 times.
The reaction product was analyzed for 0 hours. The methacrolein conversion rate, methyl methacrylate selectivity and propylene selectivity were almost unchanged from the 100th hour, while methyl formate was reduced from 0.045 to 0.032 mol / mol MMA. When a part of the catalyst was extracted from the reactor and analyzed, the composition ratio (atomic ratio) supporting Pd / Pb, the X-ray diffraction angle (2θ) of the (111) plane of the palladium / lead compound, and the palladium metal (3d) / The intensity ratio of the X-ray photoelectron spectrum of the lead metal (4f) was almost the same as that at the 100th hour, but the intensity ratio of the X-ray photoelectron spectrum of the palladium metal (3d) / charged lead (4f) was 1 at the 100th hour. /0.1
From the 1st to the 500th hour, it changed greatly to 1/0.
The intensity ratio of the photoelectron spectrum of palladium metal (3d) / charged lead (4f) of the catalyst of Reference Production Example 1 used in Example 1 was 1 / 0.35.

【0050】[0050]

【実施例11】実施例4の触媒を用いて、メタクロレイ
ンにかえてアクロレインを反応させた以外は実施例9の
MMA生成反応と同様の操作及び反応条件で反応を行い
反応生成物を分析したところアクロレイン転化率は6
1.2%、アクリル酸メチル選択率は91.3%であり
副生物としてエチレンが選択率1.2%、蟻酸メチルが
0.055モル/モルMA生成していた。
[Example 11] Using the catalyst of Example 4, a reaction product was analyzed by performing the reaction under the same operation and reaction conditions as in the MMA forming reaction of Example 9 except that acrolein was reacted instead of methacrolein. However, the acrolein conversion rate is 6
The selectivity was 1.2%, the methyl acrylate selectivity was 91.3%, ethylene was 1.2% as a byproduct, and 0.055 mol / mol MA of methyl formate was produced.

【0051】[0051]

【発明の効果】本発明の担持触媒は、アルデヒドとアル
コールを分子状酸素と反応させてカルボン酸エステルを
製造するに際し、当該カルボン酸エステル選択率を高
く、アルコール由来のエステルの副生を少なく、しかも
アルデヒドの転化率を高くする。したがって、工業的実
用価値の高いメタクリル酸メチルエステルの経済性に優
れた製造法を提供することを可能にし、産業上大いに有
用である。
INDUSTRIAL APPLICABILITY The supported catalyst of the present invention has a high carboxylic acid ester selectivity when reacting an aldehyde and an alcohol with molecular oxygen to produce a carboxylic acid ester, and reduces the by-product of an ester derived from an alcohol. Moreover, the conversion rate of aldehyde is increased. Therefore, it is possible to provide a highly economical production method of methacrylic acid methyl ester having a high industrial practical value, and it is industrially very useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】Pd(3d)のX線光電子スペクトル例を示す
スペクトル図である。
FIG. 1 is a spectrum diagram showing an example of an X-ray photoelectron spectrum of Pd (3d).

【図2】Pd(4f)のX線光電子スペクトル及びカー
ブフィッティング例を示すスペクトル図である。
FIG. 2 is a spectrum diagram showing an X-ray photoelectron spectrum of Pd (4f) and an example of curve fitting.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−151533(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 C07C 67/00 - 67/62 EUROPAT(QUESTEL) JSTPlus(JOIS) CAplus(STN)─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-55-151533 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00-38/74 C07C 67 / 00-67/62 EUROPAT (QUESTEL) JSTPlus (JOIS) CAplus (STN)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルデヒドとアルコール及び分子状酸素
とからカルボン酸エステルを製造する触媒で、パラジウ
ム及び鉛を含み、下記(1)〜(3)を満たす担持触
媒。 (1)パラジウム/鉛の担持組成比が原子比で3/0.
7〜3/1.3、 (2)パラジウム/鉛金属間化合物の(111)面のX
線回折角(2θ)が38.55〜38.70、 (3)担持触媒のパラジウム金属(3d(3/2)+3
d(5/2))/鉛金属(4f(7/2)×1.75)
のX線光電子スペクトル強度比が1/0.2〜1/0.
7、
1. A catalyst for producing a carboxylic acid ester from an aldehyde, an alcohol, and molecular oxygen, which is a supported catalyst containing palladium and lead and satisfying the following (1) to (3). (1) The supported composition ratio of palladium / lead is 3/0.
7 to 3 / 1.3, (2) X of (111) plane of palladium / lead intermetallic compound
Line diffraction angle (2θ) is 38.55 to 38.70, (3) Palladium metal (3d (3/2) +3) as a supported catalyst.
d (5/2)) / lead metal (4f (7/2) × 1.75)
X-ray photoelectron spectrum intensity ratio of 1 / 0.2 to 1/0.
7,
【請求項2】 パラジウム/鉛の担持組成比が原子比で
3/0.9〜3/1.1であることを特徴とする請求項
1記載の担持触媒。
2. The loading composition ratio of palladium / lead is atomic ratio.
It is 3 / 0.9-3 / 1.1, It is characterized by the above-mentioned.
1. The supported catalyst according to 1.
【請求項3】 担持触媒のパラジウム金属(3d(3/
2)+3d(5/2))/鉛金属(4f(7/2)×
1.75)のX線光電子スペクトル強度比が1/0.3
〜1/0.6であることを特徴とする請求項1又は2記
載の担持触媒。
3. Palladium metal (3d (3 /
2) + 3d (5/2)) / lead metal (4f (7/2) ×
1.75) X-ray photoelectron spectrum intensity ratio is 1 / 0.3
~ 1 / 0.6, claim 1 or 2 characterized in that
Loaded supported catalyst.
【請求項4】 担持触媒のパラジウム金属(3d(3/
2)+3d(5/2))/有電荷性鉛(4f(7/2)
+4f(5/2))のX線光電子スペクトル強度比が1
/0〜1/0.2であることを特徴とする請求項1又は
2記載の担持触媒。
4. Palladium metal (3d (3 /
2) + 3d (5/2)) / charged lead (4f (7/2)
+ 4f (5/2)) X-ray photoelectron spectrum intensity ratio is 1
It is /0/1/0.2, It is characterized by the above-mentioned.
2. The supported catalyst according to 2.
【請求項5】 アルカリ金属、アルカリ土類金属を0.
01〜30重量%含有することを特徴とする請求項1記
載の担持触媒。
5. An alkali metal or alkaline earth metal is added to
The content of 01 to 30% by weight.
Loaded supported catalyst.
【請求項6】 アルデヒドをアルコール及び分子状酸素
と反応させてカルボン酸エステルを製造する方法におい
て、アルデヒドを請求項1〜5のいずれかに記載の担持
触媒の存在下でアルコール及び分子状酸素と反応させる
ことを特徴とするカルボン酸エステルの製造方法。
6. A method for producing a carboxylic acid ester by reacting an aldehyde with an alcohol and molecular oxygen, wherein the aldehyde is reacted with the alcohol and the molecular oxygen in the presence of the supported catalyst according to claim 1. A method for producing a carboxylic acid ester, which comprises reacting.
【請求項7】 アルデヒドがメタクロレイン、アクロレ
イン又はこれらの混合物であり、アルコールがメタノー
ルであることを特徴とする請求項6記載のカルボン酸エ
ステル製造方法。
7. The method for producing a carboxylic acid ester according to claim 6 , wherein the aldehyde is methacrolein, acrolein or a mixture thereof, and the alcohol is methanol.
JP18272195A 1995-07-18 1995-07-19 Surface-controlled supported catalyst containing palladium and lead Expired - Lifetime JP3503777B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP18272195A JP3503777B2 (en) 1995-07-19 1995-07-19 Surface-controlled supported catalyst containing palladium and lead
PCT/JP1996/002008 WO1997003751A1 (en) 1995-07-18 1996-07-18 Catalyst for the preparation of carboxylic esters
MYPI96002963A MY119415A (en) 1995-07-18 1996-07-18 Catalyst for use in producing carboxylic esters
EP20030077037 EP1361206B1 (en) 1995-07-18 1996-07-18 Method for producing carboxylic esters
AT96924148T ATE269755T1 (en) 1995-07-18 1996-07-18 CATALYST FOR PRODUCING CARBOXYLIC ACID ESTERS
AT03077037T ATE280750T1 (en) 1995-07-18 1996-07-18 METHOD FOR PRODUCING CARBOXYLIC ACID ESTERS
US08/945,308 US6040472A (en) 1995-07-18 1996-07-18 Catalyst for use in producing carboxylic esters
DE69633753T DE69633753T2 (en) 1995-07-18 1996-07-18 Process for the preparation of carboxylic acid esters
EP96924148A EP0857512B1 (en) 1995-07-18 1996-07-18 catalyst for the preparation of carboxylic esters
US10/101,252 USRE38283E1 (en) 1995-07-18 1996-07-18 Catalyst for use in producing carboxylic esters
CN96193950A CN1086313C (en) 1995-07-18 1996-07-18 Catalyst for the preparation of carboxylic esters
KR1019970708219A KR100259743B1 (en) 1995-07-18 1996-07-18 Catalyst for producing carboxylic esters
DE69632788T DE69632788T2 (en) 1995-07-18 1996-07-18 CATALYST FOR THE PREPARATION OF CARBOXYLIC ACID ESTERS
TW085108875A TW348073B (en) 1995-07-18 1996-07-18 Catalyst for production of carboxylic ester
HK98110335A HK1009412A1 (en) 1995-07-18 1998-09-01 Catalyst for the preparation of carboxylic esters.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18272195A JP3503777B2 (en) 1995-07-19 1995-07-19 Surface-controlled supported catalyst containing palladium and lead

Publications (2)

Publication Number Publication Date
JPH0929096A JPH0929096A (en) 1997-02-04
JP3503777B2 true JP3503777B2 (en) 2004-03-08

Family

ID=16123288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18272195A Expired - Lifetime JP3503777B2 (en) 1995-07-18 1995-07-19 Surface-controlled supported catalyst containing palladium and lead

Country Status (1)

Country Link
JP (1) JP3503777B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288147A (en) * 2000-04-11 2001-10-16 Mitsubishi Rayon Co Ltd Method for producing methyl methacrylate
JP4860064B2 (en) * 2001-08-03 2012-01-25 旭化成ケミカルズ株式会社 PH control method in carboxylic acid ester synthesis reactor
EP2886529A1 (en) * 2013-12-20 2015-06-24 Evonik Industries AG Process for producing methyl methacrylate

Also Published As

Publication number Publication date
JPH0929096A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
TW593242B (en) A process for the hydrogenation of carbonyl compounds
JP4491063B2 (en) Catalysts and their use in the production of vinyl acetate
US5011980A (en) Process for preparation of allyl acetate
US20030060655A1 (en) Catalyst for the preparation of carboxylic esters and method for producing carboxylic esters
JPH0472578B2 (en)
ZA200604363B (en) Layered support material for catalysts
CN101160259B (en) Process for the production of hydrogen peroxide
JP3556397B2 (en) Improved method for producing catalyst for carboxylic acid ester production
JP3511350B2 (en) Catalyst for carboxylic acid ester production
JP3503777B2 (en) Surface-controlled supported catalyst containing palladium and lead
JP3818783B2 (en) Method for producing carboxylic acid ester
JP3258354B2 (en) Method for producing carboxylic acid ester
JP3408700B2 (en) Method for continuous production of carboxylic acid ester
JP3497621B2 (en) Oxidation / reduction activation method for carboxylic acid ester production catalyst
JP3529198B2 (en) Method for activating palladium / lead-containing supported catalyst for carboxylic acid ester production
JP3498103B2 (en) Method for activating catalyst for carboxylic acid ester production
JP3498102B2 (en) Catalyst for carboxylic acid ester production with excellent strength
JP3532668B2 (en) High Purity and High Quality Method for Carboxylic Acid Ester Production Catalyst
JP3408662B2 (en) Continuous production method of carboxylic acid ester
JP3503776B2 (en) Supported catalyst containing palladium and lead for carboxylic acid ester production
JP3313993B2 (en) Method for producing carboxylic acid ester
US8053593B2 (en) Catalyst and process for preparing carboxylic acid esters
JP2001220367A (en) Method and catalyst for producing carboxylic acid ester
JP2003192632A (en) Method for producing mixture of unsaturated carboxylic acid ester with unsaturated carboxylic acid
JP2002241345A (en) Method for producing carboxylic ester

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

EXPY Cancellation because of completion of term