JP2793485B2 - Process for producing alkanolamine, catalyst used therefor, and process for preparing catalyst - Google Patents

Process for producing alkanolamine, catalyst used therefor, and process for preparing catalyst

Info

Publication number
JP2793485B2
JP2793485B2 JP5295993A JP29599393A JP2793485B2 JP 2793485 B2 JP2793485 B2 JP 2793485B2 JP 5295993 A JP5295993 A JP 5295993A JP 29599393 A JP29599393 A JP 29599393A JP 2793485 B2 JP2793485 B2 JP 2793485B2
Authority
JP
Japan
Prior art keywords
catalyst
general formula
reaction
pore
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5295993A
Other languages
Japanese (ja)
Other versions
JPH07126228A (en
Inventor
篤 守屋
英昭 常木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP5295993A priority Critical patent/JP2793485B2/en
Priority to EP94117083A priority patent/EP0652207B1/en
Priority to DE69409463T priority patent/DE69409463T2/en
Priority to CA002134720A priority patent/CA2134720A1/en
Priority to CN94118671A priority patent/CN1077882C/en
Priority to US08/333,329 priority patent/US5599999A/en
Priority to KR1019940028653A priority patent/KR100189786B1/en
Publication of JPH07126228A publication Critical patent/JPH07126228A/en
Priority to US08/704,244 priority patent/US5880058A/en
Application granted granted Critical
Publication of JP2793485B2 publication Critical patent/JP2793485B2/en
Priority to CN00117896A priority patent/CN1302689A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体触媒を用いて、ア
ルキレンオキシドをアンモニアでアミノ化してアルカー
ノールアミン類を製造する場合に、特にすべての活性水
素にアルキレンオキシドの付加した生成物を抑え、モノ
アルカノールアミンを選択的に、しかも生産性良く製造
する方法に関する。特に、工業的にエチレンオキシドを
アンモニアでアミノ化するエタノールアミン類の製造に
おいて有用である。
The present invention relates to the production of alkanolamines by amination of an alkylene oxide with ammonia using a solid catalyst, and particularly to the suppression of the product of addition of an alkylene oxide to all active hydrogens. And a method for selectively producing monoalkanolamines with high productivity. Particularly, it is useful in the production of ethanolamines for aminating ethylene oxide with ammonia industrially.

【0002】[0002]

【従来の技術】アルキレンオキシドをアンモニアでアミ
ノ化してアルカノールアミン類を製造する方法として
は、工業的にはエチレンオキシドとアンモニア水(20
〜40重量%のアンモニア濃度)とを反応させてエタノ
ールアミン類を製造する方法が行われている。この方法
では、モノエタノールアミン以外にジエタノールアミン
やトリエタノールアミンが副生するが、これらの中でト
リエタノールアミンの需要が減退しているので、トリエ
タノールアミンの生成を抑えることが求められている。
そのため、通常、アンモニアとエチレンオキシドとのモ
ル比を3〜5程度とアンモニア大過剰にして反応を行う
が、それでもトリエタノールアミンの選択率は10〜2
0重量%ないしそれ以上であリ、モノエタノールアミン
の選択率も50重量%以下である。
2. Description of the Related Art As a method for producing an alkanolamine by aminating an alkylene oxide with ammonia, industrially, ethylene oxide and aqueous ammonia (20%) are used.
(Ammonia concentration of 4040% by weight) to produce ethanolamines. In this method, in addition to monoethanolamine, diethanolamine and triethanolamine are by-produced. Among them, the demand for triethanolamine has declined, and thus it is required to suppress the production of triethanolamine.
For this reason, usually, the reaction is carried out with a large excess of ammonia such that the molar ratio of ammonia to ethylene oxide is about 3 to 5, but the selectivity of triethanolamine is still 10 to 2
It is 0% by weight or more, and the selectivity of monoethanolamine is also 50% by weight or less.

【0003】一方、水が存在しない系ではアルキレンオ
キシドとアンモニアとは、ほとんど反応しない。従っ
て、このような反応には、触媒の存在が不可欠であり、
例えば、有機酸類、無機酸類、アンモニウム塩などの均
一系の触媒が提案されている(スエーデン国特許第15
8167号)。均一系の触媒では触媒の分離に難点があ
り、また性能も十分ではなかった。この均一系の酸触媒
を固定化する試みとして、スルホン酸基を樹脂に固定し
たイオン交換樹脂が提案された(特公昭49−4772
8号)。この触媒は比較的活性および選択性がよく工業
的に実施されている。しかし、イオン交換樹脂では最高
使用温度が低いという問題がある。通常市販されている
イオン交換樹脂の使用できる最高温度は120℃程度と
かなり低く(「イオン交換−理論と応用への手引き−」
黒田六朗・渋川雅美共訳、1981年丸善株式会社発
行、34ページ参照)、従ってアンモニアとエチレンオ
キシドとのモル比を低くして反応すると、反応熱のため
触媒層の温度が耐熱温度を超えてしまい、長期間このよ
うな温度条件で使用すると触媒が劣化してしまう問題が
ある。このためアンモニアとエチレンオキシドとのモル
比を20〜25程度以下にする事は困難である。そこで
耐熱性が低いというイオン交換樹脂の欠点を克服するた
め、熱安定性に優れる無機の触媒が検討されてきた。米
国特許第4438281号では一般的によく用いられる
シリカアルミナが活性を示すことが開示されている。イ
ンダストリアル・アンド・エンジニアリングケミストリ
ー、プロダクトリサーチ・アンド・デベロップメント、
1986年、25巻、424−430頁にはイオン交換
樹脂と、各種ゼオライト触媒が比較検討されているが、
選択性の面ではイオン交換樹脂に勝るものではなかっ
た。また特開平2−225446号公報では、酸活性化
粘土触媒が開示されている。これらの触媒でもモノエタ
ノールアミンの収率が60重量%以上もの高いものもあ
る。しかし、いずれもモノアルカノールアミンへの選択
率が十分ではないので、アンモニアとエチレンオキシド
とのモル比を20〜30倍以上にして反応を行ってお
り、アンモニアを回収し循環使用するための設備費が大
きくて実用上困難が多い。
On the other hand, in a system in which water does not exist, the alkylene oxide hardly reacts with ammonia. Therefore, the presence of a catalyst is indispensable for such a reaction,
For example, homogeneous catalysts such as organic acids, inorganic acids and ammonium salts have been proposed (Swedish Patent No. 15).
No. 8167). In the case of a homogeneous catalyst, there were difficulties in separating the catalyst, and the performance was not sufficient. As an attempt to immobilize this homogeneous acid catalyst, an ion exchange resin in which sulfonic acid groups are immobilized on the resin has been proposed (Japanese Patent Publication No. 49-4772).
No. 8). This catalyst has relatively high activity and selectivity and is industrially practiced. However, ion exchange resins have a problem that the maximum use temperature is low. The maximum temperature at which commercially available ion-exchange resins can be used is as low as about 120 ° C (“Ion-exchange-guide to theory and application-”
(Translated by Rokuro Kuroda and Masami Shibukawa, published by Maruzen Co., Ltd. in 1981, p. 34) Therefore, when the reaction is carried out with a low molar ratio of ammonia and ethylene oxide, the temperature of the catalyst layer exceeds the heat resistance temperature due to heat of reaction. However, when used under such temperature conditions for a long time, there is a problem that the catalyst is deteriorated. For this reason, it is difficult to reduce the molar ratio of ammonia to ethylene oxide to about 20 to 25 or less. Therefore, in order to overcome the drawback of the ion exchange resin having low heat resistance, an inorganic catalyst having excellent thermal stability has been studied. U.S. Pat. No. 4,438,281 discloses that commonly used silica alumina exhibits activity. Industrial and engineering chemistry, product research and development,
In 1986, Vol. 25, pp. 424-430, ion exchange resins and various zeolite catalysts are compared and studied.
It was not superior to ion exchange resins in terms of selectivity. Japanese Patent Application Laid-Open No. 225446/1990 discloses an acid-activated clay catalyst. In some of these catalysts, the yield of monoethanolamine is as high as 60% by weight or more. However, since the selectivity to monoalkanolamine is not sufficient in all cases, the reaction is carried out at a molar ratio of ammonia to ethylene oxide of 20 to 30 times or more, and equipment costs for recovering and recycling ammonia are reduced. There are many practical difficulties.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、アン
モニアとアルキレンオキシドとのモル比を実用上有利に
なるモル比まで低くでき、かつ、そのモル比でもモノア
ルカノールアミンを選択性良く製造する工業的な方法と
それに用いる触媒の調製法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to reduce the molar ratio of ammonia to alkylene oxide to a practically advantageous molar ratio, and to produce a monoalkanolamine with high selectivity even at that molar ratio. An object of the present invention is to provide an industrial method and a method for preparing a catalyst used in the method.

【0005】本発明者らは鋭意研究を重ねた結果、アン
モニアもしくはアミンとアルキレンオキシドからアルカ
ノールアミン類を液相中で合成するに当たり、優れた性
能を発揮する触媒を見いだした(特願平4−20208
1号、特願平5−203038号)。しかしこれらの触
媒は極めて小さな粒径の触媒における評価で、このまま
触媒を1〜5m程度の反応器に充填すると、圧力損失が
3〜50MPaにもなって実用上大きな問題になる。触
媒層の圧力損失を実用的な水準まで下げるために0.3
mm以上の粒径に成型する必要がある。このような粒径に
成型すると触媒性能が低下する問題が生ずる。
As a result of intensive studies, the present inventors have found a catalyst exhibiting excellent performance in synthesizing alkanolamines from ammonia or an amine and an alkylene oxide in a liquid phase (Japanese Patent Application No. Hei. 20208
No. 1, Japanese Patent Application No. 5-203038). However, these catalysts are evaluated for catalysts having an extremely small particle size. If the catalyst is charged into a reactor of about 1 to 5 m as it is, the pressure loss becomes 3 to 50 MPa, which is a serious problem in practical use. 0.3 to reduce the catalyst layer pressure loss to a practical level
It is necessary to mold to a particle size of mm or more. Molding into such a particle size causes a problem that catalyst performance is reduced.

【0006】[0006]

【課題を解決するための手段】本発明者らは前記課題を
解決すべく鋭意研究を重ねた結果、細孔径10nm以上
10μm以下の細孔の容積が0.2〜1cm3 /gであ
る触媒を用いることによって前記課題を解決できること
を見出し、またこのような触媒を調製する方法として、
乾燥後の触媒原料重量にたいして20〜200重量%の
細孔形成剤を触媒原料に混入して成型したのち、高温処
理によって除去する方法を見いだし、本発明を完成する
に到った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, have found that the volume of pores having a pore diameter of 10 nm or more and 10 μm or less is 0.2-1 cm 3 / g. Is found to be able to solve the above problems, and as a method for preparing such a catalyst,
A method for removing 20 to 200% by weight of a pore forming agent based on the weight of the dried catalyst raw material into the catalyst raw material and then removing the mixture by high-temperature treatment was found, and the present invention was completed.

【0007】すなわち本発明によれば、2〜4個の炭素
原子を有する一般式(I)
That is, according to the present invention, general formula (I) having 2 to 4 carbon atoms

【0008】[0008]

【化5】 (式中、R1 、R2 、R3 およびR4 は各々独立して水
素原子、メチル基またはエチル基を表す。)で示される
アルキレンオキシドとアンモニアを、液相で、平均触媒
粒径が0.3mm以上で、細孔径10nm以上10μm
以下の細孔の容積が0.2〜1cm3/gである無機固体
触媒の存在下、反応させることを特徴とする一般式(I
I)
Embedded image (Wherein R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a methyl group or an ethyl group.) 0.3 mm or more, pore diameter 10 nm or more and 10 μm
The reaction is carried out in the presence of an inorganic solid catalyst having the following pore volume of 0.2 to 1 cm 3 / g.
I)

【0009】[0009]

【化6】 (式中、R1 、R2 、R3 およびR4 は一般式(I)と
同じものである。)で示されるアルカノールアミンの製
造法および、2〜4個の炭素原子を有する一般式(I)
Embedded image (Wherein, R 1 , R 2 , R 3 and R 4 are the same as those in the general formula (I)), and the general formula (C) having 2 to 4 carbon atoms. I)

【0010】[0010]

【化7】 (式中、R1 、R2 、R3 およびR4 は各々独立して水
素原子、メチル基またはエチル基を表す。)で示される
アルキレンオキシドとアンモニアを反応させることによ
って一般式(II)
Embedded image (Wherein R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a methyl group or an ethyl group), and reacting the alkylene oxide represented by the general formula (II)

【0011】[0011]

【化8】 (式中、R1 、R2 、R3 およびR4 は一般式(I)と
同じものである。)で示されるアルカノールアミンを製
造するに際して使用する触媒であって、平均触媒粒径が
0.3mm以上で、細孔径10nm以上10μm以下の
細孔の容積が0.2〜1cm3 /gであることを特徴と
するアルカノールアミン製造用無機固体触媒ならびに、
触媒原料に細孔形成剤を混合して成型したのち、高温処
理によって細孔形成剤を除去し細孔径10nm以上10
μm以下の細孔の容積を0.2〜1cm3/gにすること
を特徴とするノアルカノールアミン製造用触媒の調製法
に関するものである。
Embedded image (Wherein, R 1 , R 2 , R 3 and R 4 are the same as those in the general formula (I)), wherein the catalyst has an average catalyst particle size of 0. An inorganic solid catalyst for producing an alkanolamine, wherein the volume of pores having a pore diameter of 0.3 mm or more and a pore diameter of 10 nm or more and 10 μm or less is 0.2 to 1 cm 3 / g;
After mixing and molding the pore forming agent with the catalyst raw material, the pore forming agent is removed by high-temperature treatment, and the pore diameter is 10 nm or more.
The present invention relates to a method for preparing a catalyst for producing noalkanolamine, wherein the volume of pores having a size of μm or less is set to 0.2 to 1 cm 3 / g.

【0012】本発明に係る触媒は、従来知られている固
体酸触媒よりもモノアルカノールアミンの選択性が優
れ、触媒の耐熱性も高いので、アルキレンオキシドに対
するアンモニアのモル比を低くすることも可能であり、
触媒層の圧力損失を小さくすることが可能であるので工
業的に優位に実施することができる。
The catalyst according to the present invention has higher selectivity for monoalkanolamine and higher heat resistance than the conventionally known solid acid catalyst, so that the molar ratio of ammonia to alkylene oxide can be reduced. And
Since it is possible to reduce the pressure loss of the catalyst layer, it can be carried out industrially advantageously.

【0013】以下、本発明を詳しく説明する。Hereinafter, the present invention will be described in detail.

【0014】本発明に係る触媒の活性成分としては、公
知の固体触媒成分を使用することが可能であるが、本来
の触媒性能が優れていなければ細孔容積を増加させる効
果がほとんど現れないため、希土類元素を無機質耐火性
担体に担持した触媒や、架橋処理した粘土化合物、ある
いは細孔径が0.45〜0.7nmのマイクロポーラス
クリスタル類が好ましい。
As the active component of the catalyst according to the present invention, a known solid catalyst component can be used, but if the original catalytic performance is not excellent, the effect of increasing the pore volume is hardly exhibited. A catalyst in which a rare earth element is supported on an inorganic refractory carrier, a crosslinked clay compound, or a microporous crystal having a pore diameter of 0.45 to 0.7 nm is preferable.

【0015】希土類元素担持型触媒では、希土類元素と
して周期律表のランタノイド族(ランタン、セリウム、
プラセオジム、ネオジム、サマリム、ユーロピウム、ガ
ドリニウム、テルビウム、ジスプロシウム、ホルミウ
ム、エルビウム、ツリウム、イッテルビウム、ルテチ
ム)、スカンジウム、イットリウムが用いられる。
In the rare earth element-supported catalyst, a lanthanoid group of the periodic table (lanthanum, cerium,
Praseodymium, neodymium, samarim, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetim), scandium, and yttrium are used.

【0016】希土類元素原料としては、熱処理によって
調製後に、反応液に不溶性となる物であればよく、特に
硝酸塩、硫酸塩、炭酸塩、酢酸塩、シュウ酸塩、ヘテロ
ポリ酸塩、リン酸塩、ハロゲン化物、酸化物、水酸化物
などを用いることができる。本発明の触媒の担体として
は比表面積が1〜500m2 /gで、無機質耐火性であ
ればよく、公知の種々の担体たとえば天然物(珪藻土、
軽石、粘土など)、単独酸化物(シリカ、アルミナ、チ
タニア、ジルコニアなど)、複合酸化物(シリカアルミ
ナ、チタニアシリカ、ジルコニアシリカ、ペロブスカイ
トなど)、無機耐火物(炭化珪素、窒化ケイ素、グラフ
ァイトなど)、無機のイオン交換体(SAPO、MeA
PO、メタロシリケート、層状粘土化合物など)が使用
できる。
The rare earth element raw material may be any material that becomes insoluble in the reaction solution after being prepared by heat treatment, and particularly includes nitrates, sulfates, carbonates, acetates, oxalates, heteropolyacid salts, phosphates, and the like. A halide, an oxide, a hydroxide, or the like can be used. The carrier of the catalyst of the present invention may have a specific surface area of 1 to 500 m 2 / g and inorganic refractory, and may be any of various known carriers such as natural products (diatomaceous earth,
Pumice, clay, etc.), single oxides (silica, alumina, titania, zirconia, etc.), composite oxides (silica alumina, titania silica, zirconia silica, perovskite, etc.), inorganic refractories (silicon carbide, silicon nitride, graphite, etc.) , Inorganic ion exchangers (SAPO, MeA
PO, metallosilicate, layered clay compound, etc.) can be used.

【0017】担持方法はイオン交換法、含浸法、混練法
などを用いることができる。
As a supporting method, an ion exchange method, an impregnation method, a kneading method, or the like can be used.

【0018】含浸法とは、成型した担体を可溶性の希土
類元素溶液に投入し、加熱して溶媒を除去して担持する
方法である。
The impregnation method is a method in which a molded carrier is charged into a soluble rare earth element solution, and the solvent is removed by heating to carry the carrier.

【0019】混練法とは、担体粉末に担持する希土類元
素化合物を加え、少量の溶媒を用い混練機で十分混練し
て得られたケーキを成型する方法である。
The kneading method is a method in which a rare earth element compound supported on a carrier powder is added, and a kneading machine is sufficiently kneaded using a small amount of a solvent to form a cake.

【0020】イオン交換法とは担体を可溶性希土類元素
溶液に投入し、イオン交換体の交換サイトにあるアルカ
リ金属イオンなどを希土類元素でイオン交換した後、溶
液と分離して担持する方法である。希土類元素を担体上
に均一に担持するためにはイオン交換法が便利である。
イオン交換法では担体には無機のイオン交換体を用い
る。無機のイオン交換体としてはたとえばSAPO、M
eAPO、メタロシリケート、層状粘土化合物などが挙
げられる。
The ion exchange method is a method in which a carrier is put into a soluble rare earth element solution, alkali metal ions and the like at an exchange site of the ion exchanger are ion-exchanged with the rare earth element, and then separated from the solution and supported. The ion exchange method is convenient for uniformly supporting the rare earth element on the carrier.
In the ion exchange method, an inorganic ion exchanger is used as a carrier. Examples of inorganic ion exchangers include SAPO, M
eAPO, metallosilicate, layered clay compound, and the like.

【0021】SAPOは結晶性リン酸アルミニウム(A
lPO)のリンの一部を珪素で置換あるいは一対のアル
ミニウムとリンを2個の珪素で置換した物質である。M
eAPOは同じくAlPOのアルミニウムを珪素以外の
金属元素(Co,Mg,Mn,Zn,,Feなど)で置
換した物質である。それぞれイオン交換サイトを持って
おり、SAPO−5,−11,−17,−40、MAP
O(Mg)−5,−11,−36、MnAPO−5,−
11、CoAPO−5,−36、FAPO(Fe)−3
4、ZAPO(Zn)−34などが知られている(−番
号は対応する構造のAlPOと同じ識別番号である)。
SAPO is a crystalline aluminum phosphate (A
lPO) is a substance in which part of phosphorus is replaced with silicon or a pair of aluminum and phosphorus is replaced with two silicons. M
eAPO is a substance in which aluminum of AlPO is replaced by a metal element other than silicon (such as Co, Mg, Mn, Zn, or Fe). Each has an ion exchange site, SAPO-5, -11, -17, -40, MAP
O (Mg) -5, -11, -36, MnAPO-5,-
11, CoAPO-5, -36, FAPO (Fe) -3
4, ZAPO (Zn) -34, etc. are known (the-number is the same identification number as AlPO of the corresponding structure).

【0022】メタロシリケートとは結晶性の酸化珪素中
の珪素の部分が金属で置換された物質で、非常に均一な
細孔を持ち、金属で置換された分だけ電荷のバランスが
崩れ、イオン交換サイトが存在する。メタロシリケート
としては、具体的にはゼオライトとして知られる結晶性
アルミノシリケートが多く用いられる。ゼオライトとし
てはA型、X型、Y型、L型、ペンタシル型(ZSM−
5、ZSM−11など)、モルデナイト、フェリエライ
トなどが一般的に使用できる。他のメタロシリケートと
しては、鉄シリケート、ニッケルシリケートなどを使用
することができる。
Metallosilicate is a substance in which the silicon portion of crystalline silicon oxide is replaced with a metal, has extremely uniform pores, and the charge balance is lost by the amount of the metal replaced, so that ion exchange is performed. Site exists. As the metallosilicate, specifically, a crystalline aluminosilicate known as zeolite is often used. As zeolites, A type, X type, Y type, L type, pentasil type (ZSM-
5, ZSM-11, etc.), mordenite, ferrierite and the like can be generally used. As other metallosilicates, iron silicate, nickel silicate and the like can be used.

【0023】層状粘土化合物としてはスメクタイト系粘
土が知られ、具体的にはモンモリロナイト、サポナイ
ト、ヘクトライト、ノントロナイトなどが用いられる。
これらの粘土化合物もイオン交換サイトを持ち、通常ナ
トリウムなどのアルカリ金属イオンがこのサイトを占め
ており、塩基性を呈することが多い。
As the layered clay compound, smectite clay is known, and specifically, montmorillonite, saponite, hectorite, nontronite and the like are used.
These clay compounds also have an ion exchange site, and usually an alkali metal ion such as sodium occupies this site, and often exhibits basicity.

【0024】混練法以外の調製法では触媒原料は可溶性
の塩(硝酸塩、ハロゲン化物、ヘテロポリ酸塩など)を
用いる。
In preparation methods other than the kneading method, a soluble salt (nitrate, halide, heteropolyacid salt, etc.) is used as a catalyst raw material.

【0025】担持率は担体の表面積および希土類元素の
種類によっても変化するが、通常1〜50重量%の範囲
が用いられる。
The loading ratio varies depending on the surface area of the carrier and the type of the rare earth element, but is usually in the range of 1 to 50% by weight.

【0026】イオン交換法で担持した場合は、高温処理
せずに用いることもできるが、通常は300〜700℃
の範囲で高温処理して触媒とする。高温処理は通常空気
中で行うが、特に酸化処理を必要としない場合は、窒素
などの不活性ガス雰囲気下や真空中で触媒原料の熱分解
を行うこともできる。
When supported by an ion exchange method, it can be used without high-temperature treatment.
The catalyst is subjected to a high temperature treatment in the range described above. The high-temperature treatment is usually performed in the air, but when the oxidation treatment is not particularly required, the catalyst material can be thermally decomposed in an atmosphere of an inert gas such as nitrogen or in a vacuum.

【0027】架橋処理した粘土触媒とはいわゆるピラー
ドクレイであり、スメクタイト系に属する層状粘土のシ
リケート層間に、比較的嵩の大きな金属酸化物が入り込
んで架橋構造を形成しており、このピラーによりシリケ
ート層間隔が広がっているものである。
The crosslinked clay catalyst is a so-called pillared clay. A relatively bulky metal oxide enters between the silicate layers of the layered clay belonging to the smectite system to form a crosslinked structure. The spacing is widening.

【0028】ピラー源としては陽イオン性酸化物のゾ
ル、陽イオン性の水酸化物あるいはこれらの混合物があ
る。陽イオン性酸化物ゾルとしては具体的にはチタンテ
トライソプロポオキサイドを塩酸水溶液で加水分解させ
て生じたチタニアゾルなどがある。陽イオン性水酸化物
としては、(Al2(OH)nCl6-n(ただしnは
約3、mは10以下である)で示されるポリ塩化アルミ
ニウムを水に溶解して部分的に加水分解した多核の水酸
化アルミニウム; Al, Cr, Bi, Feの各塩化
物、硝酸塩、硫酸塩の水溶液を撹拌しながら少量ずつア
ルカリを加えて加水分解して得た多核の水酸化アルミニ
ウム、水酸化クロム、水酸化ビスマス、水酸化鉄; オ
キシ塩化ジルコニルを水に溶解して得た多核の水酸化ジ
ルコニウムなどがある。
The pillar source may be a cationic oxide sol, a cationic hydroxide, or a mixture thereof. Specific examples of the cationic oxide sol include titania sol produced by hydrolyzing titanium tetraisopropoxide with an aqueous hydrochloric acid solution. As the cationic hydroxide, a polyaluminum chloride represented by (Al 2 (OH) n Cl 6-n ) m (where n is about 3 and m is 10 or less) is dissolved in water and partially Polynuclear aluminum hydroxide obtained by hydrolyzing an aqueous solution of each of chlorides, nitrates, and sulfates of Al, Cr, Bi, and Fe by adding a small amount of an alkali while stirring the solution; Chromium hydroxide, bismuth hydroxide, iron hydroxide; polynuclear zirconium hydroxide obtained by dissolving zirconyl oxychloride in water;

【0029】マイクロポーラスクリスタルとは非常に均
一な細孔を持った結晶体で、希土類元素の担体として先
に述べた、メタロシリケート、SAPO、MeAPO等
が挙げられる。
The microporous crystal is a crystal having very uniform pores, and examples of the rare earth element carrier include the above-mentioned metallosilicate, SAPO, MeAPO and the like.

【0030】使用する細孔形成剤としては触媒性能に悪
影響を及ぼさず、高温処理によって除去可能な物質が使
用できる。たとえば硝酸アンモニウム・酢酸アンモニウ
ムなどの各種アンモニウム塩、修酸・尿素などの有機化
合物、各種ポリマー・繊維などの非水溶性有機化合物な
どが挙げられる。細孔の生成効率、成型のしやすさなど
の面から非水溶性有機化合物が好適に使用でき、その非
水溶性有機化合物としてはある程度吸湿性が有り、微細
な粉体になっており数百度の高温処理処理で燃焼除去可
能であればよく、特に結晶性セルロースが取扱性の面で
好ましい。
As the pore-forming agent to be used, a substance which does not adversely affect the catalytic performance and can be removed by high-temperature treatment can be used. Examples thereof include various ammonium salts such as ammonium nitrate and ammonium acetate, organic compounds such as oxalic acid and urea, and water-insoluble organic compounds such as various polymers and fibers. A water-insoluble organic compound can be preferably used in terms of pore generation efficiency, ease of molding, and the like, and as the water-insoluble organic compound has a certain degree of hygroscopicity, it is a fine powder and is several hundred degrees. It is only necessary to be able to be removed by combustion in the high-temperature treatment, and crystalline cellulose is particularly preferable in terms of handleability.

【0031】結晶性セルロースとしては、ろ紙を粉砕し
た粉末や、パルプを粉砕した粉体などが用いられる。
As the crystalline cellulose, a powder obtained by pulverizing filter paper or a powder obtained by pulverizing pulp is used.

【0032】結晶性セルロースなどの有機物の細孔形成
剤を用いるときは、単なる加熱処理では分解除去できな
いので、酸素を含む気体中(空気を用いるのが便利であ
る)で燃焼除去する。
When an organic pore-forming agent such as crystalline cellulose is used, it cannot be decomposed and removed by a simple heat treatment, so that it is burnt and removed in a gas containing oxygen (use of air is convenient).

【0033】触媒の細孔容積は0.2cm3/g未満で
は選択性、活性が低く、1cm3/g以上では触媒の強
度が低下するため実用的でない。
If the pore volume of the catalyst is less than 0.2 cm 3 / g, selectivity and activity are low, and if it is 1 cm 3 / g or more, the strength of the catalyst is lowered, which is not practical.

【0034】調製された触媒は固定床で用いるため圧縮
成型したり、あるいはバインダーを用いたりして平均粒
径0.3mm以上に成型して反応に供する。球状でない
場合の平均粒径の定義は種々あるが、ここでは同じ外表
面積を持つ球の直径として定義する。
The prepared catalyst is subjected to compression molding for use in a fixed bed, or molding to have an average particle diameter of 0.3 mm or more by using a binder, and then subjecting it to a reaction. There are various definitions of the average particle size in the case of not being spherical, but here, it is defined as the diameter of a sphere having the same outer surface area.

【0035】該触媒が、本反応に有効な理由は完全には
明かでないが、考えられる作用を以下に述べる。
Although the reason why the catalyst is effective in the present reaction is not completely clear, the possible actions are described below.

【0036】触媒粒径が大きくなるにつれて、活性が低
下したりまた本反応のような逐次反応の選択性が低下し
たりする現象は、触媒粒子内の拡散抵抗が無視できなく
なり触媒内部が十分利用されないために起こると考えら
れる。拡散抵抗を減らすためには、触媒の細孔率を大き
くし迷宮度を小さくすることが有効であると考えられ
る。細孔容積を増加させることはこれに効果があると考
えられる。
The phenomenon that the activity decreases or the selectivity of the sequential reaction such as the present reaction decreases as the catalyst particle size increases is such that the diffusion resistance in the catalyst particles cannot be ignored and the inside of the catalyst is sufficiently utilized. It is thought to happen because it is not. In order to reduce the diffusion resistance, it is considered effective to increase the porosity of the catalyst and reduce the degree of labyrinth. Increasing the pore volume is believed to be effective.

【0037】本発明に係わる原料のアルキレンオキシド
は2〜4個の炭素原子を有する前記一般式(I)
The starting material alkylene oxide according to the present invention has the general formula (I) having 2 to 4 carbon atoms.

【0038】[0038]

【化9】 (式中、R1 、R2 、R3 およびR4 は各々独立して水
素原子、メチル基またはエチル基を表す。)で示される
アルキレンオキシドであり、エチレンオキシド、プロピ
レンオキシド等が例示される。これらの原料に対応して
一般式(II)
Embedded image (Wherein, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a methyl group or an ethyl group), and examples thereof include ethylene oxide and propylene oxide. The general formula (II) corresponding to these raw materials

【0039】[0039]

【化10】 (式中、R1 、R2 、R3 およびR4 は一般式(I)と
同じものである。)で示されるアルカノールアミンが得
られる。具体例としては、エタノールアミン、プロパノ
ールアミン等が例示される。
Embedded image (Wherein R 1 , R 2 , R 3 and R 4 are the same as those in the general formula (I)). Specific examples include ethanolamine and propanolamine.

【0040】反応は液相状態で行わなければならないの
で、反応圧力は反応器内の最高温度における反応液の蒸
気圧より高く保つ必要がある。
Since the reaction must be carried out in a liquid phase, the reaction pressure must be kept higher than the vapor pressure of the reaction solution at the highest temperature in the reactor.

【0041】通常、モノアルカノールアミン類の製造
は、50〜300℃の温度範囲で実施する事が出来る。
好ましい範囲は、80〜200℃である。操作圧力は1
〜20MPaである。
Usually, the production of monoalkanolamines can be carried out in a temperature range of 50 to 300 ° C.
A preferred range is 80-200 ° C. Operating pressure is 1
2020 MPa.

【0042】アンモニアとアルキレンオキシドとのモル
比は1:1〜40:1の範囲が好ましい。
The molar ratio of ammonia to alkylene oxide is preferably in the range of 1: 1 to 40: 1.

【0043】また、上述の条件下、毎時空間速度(LH
SV)が4〜15又はそれ以上の条件がアルキレンオキ
シドの定量的な転化にとりわけ有利であることが分かっ
た。
Under the above conditions, the hourly space velocity (LH
Conditions with an SV) of 4 to 15 or more have proven to be particularly advantageous for the quantitative conversion of alkylene oxides.

【0044】[0044]

【発明の効果】本発明は、以下に記載されるような効果
を奏する。
The present invention has the following effects.

【0045】まず、本発明に係わる触媒は、モノアルカ
ノールアミン生成の選択性が高いため、他の固体触媒よ
りも低いアンモニアとアルキレンオキシドの比率でも同
等のアルカノールアミン類の生成比率となるので、未反
応のアンモニアの回収コストが小さくなる。同時に供給
原料の総量が減少するので反応系、回収系の装置を小さ
くすることができ、設備費が小さくなる。
First, the catalyst according to the present invention has a high selectivity for producing monoalkanolamines. Therefore, even if the ratio of ammonia to alkylene oxide is lower than that of other solid catalysts, the production ratio of alkanolamines is the same. The cost of recovering ammonia for the reaction is reduced. At the same time, since the total amount of the feedstock is reduced, the size of the reaction system and the recovery system can be reduced, and the equipment cost is reduced.

【0046】さらに、触媒層の圧力損失を小さくできる
ので、原料供給のための動力を節約でき、またポンプ、
反応器の耐圧を下げることができ設備費が更に小さくな
る。
Further, since the pressure loss of the catalyst layer can be reduced, the power for supplying the raw material can be saved, and the pump,
The pressure resistance of the reactor can be reduced, and the equipment cost can be further reduced.

【0047】[0047]

【実施例】以下に続く実施例は、主としてエチレンオキ
シドとアンモニアからのエタノールアミン類の製造の例
を示す。該実施例は、説明の目的に意図されるものであ
り、それにより本発明が限定されるものではない。
The examples which follow show examples of the production of ethanolamines mainly from ethylene oxide and ammonia. The examples are intended for illustrative purposes and do not limit the invention.

【0048】また、LHSV、エチレンオキシドの転化
率及びモノエタノールアミンの選択率は次のように定義
する。なお、エタノールアミン類以外の生成物はできて
おらず、従ってエチレンオキシドの転化率(モル%)
は、エチレンオキシド基準の(モノ、ジ、トリ)エタノ
ールアミンの総合収率(モル%)に等しい。
The LHSV, the conversion of ethylene oxide and the selectivity of monoethanolamine are defined as follows. No products other than ethanolamines were formed, and thus the conversion of ethylene oxide (mol%)
Is equal to the overall yield (mol%) of (mono, di, tri) ethanolamine based on ethylene oxide.

【0049】[0049]

【数1】 (Equation 1)

【0050】[0050]

【数2】 (Equation 2)

【0051】[0051]

【数3】 なお、細孔容積は水銀圧入法によって求めた。(Equation 3) The pore volume was determined by a mercury intrusion method.

【0052】[触媒調製例] 触媒原料粉体a 希土類元素としてランタン、担体としてモンモリロナイ
トを用いた例である。0.05モル/dm3の硝酸ラン
タン水溶液100dm3にモンモリロナイト2kgを撹
拌しながら添加し、室温で1日撹拌を行い、ろ過後、1
00dm3の純水で洗浄した。このケーキを100℃で
1日乾燥後、200メッシュ以下に粉砕して触媒原料粉
体aを得た。
[Catalyst Preparation Example] Catalyst raw material powder a This is an example using lanthanum as a rare earth element and montmorillonite as a carrier. Was added with stirring montmorillonite 2kg lanthanum nitrate aqueous solution 100 dm 3 of 0.05 mol / dm 3, stirring is carried out for 1 day at room temperature, filtered, 1
It was washed with 00 dm 3 of pure water. The cake was dried at 100 ° C. for 1 day, and pulverized to 200 mesh or less to obtain a catalyst raw material powder a.

【0053】触媒A 触媒原料粉体a100gにアビセル(旭化成工業株式会
社製結晶性セルロース)30gおよび水を触媒原料粉体
とアビセルの重量の合計と同じ重量を添加し、混練し、
押出成型機により直径0.5mmの、長さ2〜5mmペ
レツトに成型し、100℃で1日乾燥した。相当粒径は
1〜1.6mmとなった。
Catalyst A 30 g of Avicel (crystalline cellulose manufactured by Asahi Kasei Kogyo Co., Ltd.) and water were added to 100 g of the catalyst raw material powder a at the same weight as the total weight of the catalyst raw material powder and Avicel, and kneaded.
The mixture was formed into a pellet having a diameter of 0.5 mm and a length of 2 to 5 mm by an extruder, and dried at 100 ° C. for one day. The equivalent particle size was 1 to 1.6 mm.

【0054】細孔径 10nm〜10μmの細孔容積は
0.26cm3/gであった。
The pore volume at a pore diameter of 10 nm to 10 μm was 0.26 cm 3 / g.

【0055】触媒B 用いるアビセルの量を60gとする以外は触媒Aと同様
に触媒を調製した。
Catalyst B A catalyst was prepared in the same manner as Catalyst A, except that the amount of Avicel used was changed to 60 g.

【0056】細孔径 10nm〜10μmの細孔容積は
0.4cm3/gであった。
The pore volume at a pore diameter of 10 nm to 10 μm was 0.4 cm 3 / g.

【0057】触媒C 用いるアビセルの量を100gとする以外は触媒Aと同
様に触媒を調製した。
Catalyst C A catalyst was prepared in the same manner as Catalyst A, except that the amount of Avicel used was 100 g.

【0058】細孔径 10nm〜10μmの細孔容積は
0.7cm3 /gであった。
The pore volume at a pore diameter of 10 nm to 10 μm was 0.7 cm 3 / g.

【0059】触媒D 触媒原料粉体a100gに、ろ紙粉末30gを添加混合
して混練したこと以外は触媒Aと同様に触媒を調製し
た。
Catalyst D A catalyst was prepared in the same manner as the catalyst A, except that 30 g of filter paper powder was added to 100 g of the catalyst raw material powder a, mixed and kneaded.

【0060】細孔径 10nm〜10μmの細孔容積は
0.3cm3 /gであった。
The pore volume at a pore diameter of 10 nm to 10 μm was 0.3 cm 3 / g.

【0061】触媒E 触媒原料粉体a100gに硝酸アンモニウム150gを
添加混合して混練したこと以外は触媒Aと同様に触媒を
調製した。
Catalyst E A catalyst was prepared in the same manner as the catalyst A, except that 150 g of ammonium nitrate was added to 100 g of the catalyst raw material powder a and mixed and kneaded.

【0062】細孔径 10nm〜10μmの細孔容積は
0.32cm3/gであった。
The pore volume at a pore diameter of 10 nm to 10 μm was 0.32 cm 3 / g.

【0063】触媒F 架橋処理粘土の例でジルコニアをピラーとしたモンモリ
ロナイト触媒である。0.4モル/dm3 のオキシ塩化
ジルコニウム水溶液30dm3 を60℃で48時間熟成
した。モンモリロナイト900gを蒸留水30dm3
よく分散させた後、熟成させておいたオキシ塩化ジルコ
ニウム水溶液を滴下しながらよく撹拌した。滴下終了後
そのまま撹拌しながら、65℃で3時間加熱した。加熱
終了後ジルコニウムイオンが検出されなくなるまで蒸留
水で洗浄し、60℃の熱風乾燥機で乾燥した。これを2
00メッシュ以下に粉砕し、この100gとアビセル6
0gに再度純水を160g添加しニーダーで混練後、押
出成型機で直径0.5mm長さ2〜10mmの円筒状に
成型した。これを空気流通下450℃で高温処理し触媒
とした。
Catalyst F A montmorillonite catalyst using zirconia as a pillar in the example of the crosslinked clay. 0.4 mol / dm 3 of aqueous solution of zirconium oxychloride 30Dm 3 was aged for 48 hours at 60 ° C.. After 900 g of montmorillonite was well dispersed in 30 dm 3 of distilled water, aged aqueous zirconium oxychloride was added dropwise and stirred well. After completion of the dropwise addition, the mixture was heated at 65 ° C. for 3 hours while stirring as it was. After the completion of the heating, the substrate was washed with distilled water until no zirconium ions were detected, and dried with a hot air drier at 60 ° C. This is 2
100 g and Avicel 6
After adding 160 g of pure water again to 0 g and kneading with a kneader, the mixture was molded into a cylindrical shape having a diameter of 0.5 mm and a length of 2 to 10 mm by an extruder. This was treated at a high temperature of 450 ° C. in a stream of air to obtain a catalyst.

【0064】細孔径 10nm〜10μmの細孔容積は
0.38cm3/gであった。
The pore volume at a pore diameter of 10 nm to 10 μm was 0.38 cm 3 / g.

【0065】触媒G マイクロポーラスクリスタルとして鉄シリケートを用い
た例である。
Catalyst G This is an example using iron silicate as a microporous crystal.

【0066】ペンタシル型鉄シリケート(XRDによる
解析では結晶構造はMFI型、Fe/Si原子比=1/
25、アンモニウムイオンでイオン交換)20gに10
重量%のモンモリロナイトをバインダーとして加え、ア
ビセルを12g添加し、少量の水を用いて乳鉢でよく混
練した。120℃で12時間乾燥後、空気流通下500
℃で高温処理したのち、0.7〜1mmに破砕して触媒
とした。
Pentasil type iron silicate (XRD analysis shows that the crystal structure is MFI type, Fe / Si atomic ratio = 1 /
25, ion exchange with ammonium ion) 10 to 20 g
By weight, montmorillonite was added as a binder, 12 g of Avicel was added, and the mixture was kneaded well in a mortar using a small amount of water. After drying at 120 ° C. for 12 hours, 500
After high temperature treatment at ℃, it was crushed to 0.7 to 1 mm to obtain a catalyst.

【0067】細孔径 10nm〜10μmの細孔容積は
0.35cm3/gであった。
The pore volume at a pore diameter of 10 nm to 10 μm was 0.35 cm 3 / g.

【0068】比較触媒H 触媒原料粉体a100gに再度純水を粉体と同量添加
し、ニーダーで混練したのち押出成型機で直径0.5m
m、長さ2〜5mmのペレツトに成型し、100℃で1
日乾燥した。その後、500℃で5時間空気中で高温処
理し、触媒とした。相当粒径は1〜1.6mmとなっ
た。
Comparative Catalyst H Pure water was again added to 100 g of the catalyst raw material powder a in the same amount as the powder, and the mixture was kneaded with a kneader and then extruded with a diameter of 0.5 m using an extruder.
m, molded into a pellet with a length of 2-5 mm.
Sun dried. Then, it was subjected to high temperature treatment in air at 500 ° C. for 5 hours to obtain a catalyst. The equivalent particle size was 1 to 1.6 mm.

【0069】細孔径 10nm〜10μmの細孔容積は
0.1cm3/gであった。
The pore volume at a pore diameter of 10 nm to 10 μm was 0.1 cm 3 / g.

【0070】比較触媒I 混練する際アビセルを添加しないことおよび使用する純
水を100gとしたこと以外は触媒と同様に調製し
た。
Comparative Catalyst I A catalyst was prepared in the same manner as the catalyst F , except that Avicel was not added during kneading, and pure water used was changed to 100 g.

【0071】細孔径 10nm〜10μmの細孔容積は
0.11cm3/gであった。
The pore volume of the pore diameter of 10 nm to 10 μm was 0.11 cm 3 / g.

【0072】比較触媒J 混練する際アビセルを添加しないこと以外は触媒Gと同
様に調製した。
Comparative Catalyst J A catalyst was prepared in the same manner as the catalyst G, except that Avicel was not added during kneading.

【0073】細孔径 10nm〜10μmの細孔容積は
0.09cm3 /gであった。
The pore volume at a pore diameter of 10 nm to 10 μm was 0.09 cm 3 / g.

【0074】[アルカノールアミン製造例] 実施例1 内容積5.5cm3 のステンレススチール管製反応器
(内径10.7mm)に触媒Aを充填した。反応容器内
に一定速度でアンモニアおよびエチレンオキシドを高圧
ポンプを用いて上昇法で送りこみ、反応容器はオイルバ
ス中で加熱した。圧は14MPaに維持した。反応液を
捕集し、ガスクロマトグラフにより分析した。反応条件
および結果を表1に示す。
[Production Example of Alkanolamine] Example 1 A reactor made of a stainless steel tube (inner diameter: 10.7 mm) having an inner volume of 5.5 cm 3 was charged with the catalyst A. Ammonia and ethylene oxide were fed into the reaction vessel at a constant rate using a high-pressure pump by an ascending method, and the reaction vessel was heated in an oil bath. The pressure was maintained at 14 MPa. The reaction solution was collected and analyzed by gas chromatography. Table 1 shows the reaction conditions and results.

【0075】実施例2〜5 触媒をB、C、DおよびEに変えた以外は実施例1と同
様の手順で反応を行った。反応条件および結果を表1に
示す。
Examples 2 to 5 The reaction was carried out in the same manner as in Example 1 except that the catalyst was changed to B, C, D and E. Table 1 shows the reaction conditions and results.

【0076】比較例1 触媒をHに変えた以外は実施例1と同様の手順で反応を
行った。
Comparative Example 1 A reaction was carried out in the same manner as in Example 1 except that the catalyst was changed to H.

【0077】これらの比較例は、触媒粒径が大きくなっ
た場合に、10nm〜10μmの細孔容積が小さいと、
触媒活性、選択性が低下することを示す例である。触媒
活性が低下しているため反応温度を対応する実施例より
高くして反応を行っている。反応条件および結果を表1
に示す。
These comparative examples show that when the particle size of the catalyst is large, the pore volume of 10 nm to 10 μm is small,
It is an example showing that catalyst activity and selectivity are reduced. The reaction is carried out at a higher reaction temperature than in the corresponding example because the catalytic activity has decreased. Table 1 shows the reaction conditions and results.
Shown in

【0078】実施例6 触媒をFに変えた以外は実施例1と同様の手順で反応を
行った。反応条件および結果を表2に示す。
Example 6 A reaction was carried out in the same manner as in Example 1 except that the catalyst was changed to F. Table 2 shows the reaction conditions and results.

【0079】比較例2 触媒をIに変えた以外は実施例1と同様の手順で反応を
行った。反応条件および結果を表2に示す。
Comparative Example 2 A reaction was carried out in the same manner as in Example 1 except that the catalyst was changed to I. Table 2 shows the reaction conditions and results.

【0080】実施例7 触媒をGに変えた以外は実施例1と同様の手順で反応を
行った。反応条件および結果を表3に示す。
Example 7 A reaction was carried out in the same manner as in Example 1 except that the catalyst was changed to G. Table 3 shows the reaction conditions and results.

【0081】比較例3 触媒をJに変えた以外は実施例1と同様の手順で反応を
行った。反応条件および結果を表3に示す。
Comparative Example 3 A reaction was carried out in the same manner as in Example 1 except that the catalyst was changed to J. Table 3 shows the reaction conditions and results.

【0082】実施例1〜5と比較例1が、実施例6と比
較例2が、実施例7と比較例3がそれぞれ対応してい
る。
Examples 1 to 5 correspond to Comparative Example 1, Example 6 corresponds to Comparative Example 2, and Example 7 corresponds to Comparative Example 3.

【0083】[0083]

【表1】 [Table 1]

【0084】[0084]

【表2】 [Table 2]

【0085】[0085]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C07C 215/08 B01J 21/16 C07C 213/04 C07B 61/00 300──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C07C 215/08 B01J 21/16 C07C 213/04 C07B 61/00 300

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2〜4個の炭素原子を有する一般式
(I) 【化1】 (式中、R1 、R2 、R3 およびR4 は各々独立して水
素原子、メチル基またはエチル基を表す。)で示される
アルキレンオキシドとアンモニアを、液相で、平均触媒
粒径が0.3mm以上で、細孔径10nm以上10μm
以下の細孔の容積が0.2〜1cm3/gである無機固体
触媒の存在下、反応させることを特徴とする一般式(I
I) 【化2】 (式中、R1 、R2 、R3 およびR4 は一般式(I)と
同じものである。)で示されるアルカノールアミンの製
造法。
1. A compound of the general formula (I) having 2 to 4 carbon atoms (Wherein R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a methyl group or an ethyl group.) 0.3 mm or more, pore diameter 10 nm or more and 10 μm
The reaction is carried out in the presence of an inorganic solid catalyst having the following pore volume of 0.2 to 1 cm 3 / g.
I) (Wherein R 1 , R 2 , R 3 and R 4 are the same as those in the general formula (I)).
【請求項2】 2〜4個の炭素原子を有する一般式
(I) 【化3】 (式中、R1 、R2 、R3 およびR4 は各々独立して水
素原子、メチル基またはエチル基を表す。)で示される
アルキレンオキシドとアンモニアを反応させることによ
って一般式(II) 【化4】 (式中、R1 、R2 、R3 およびR4 は一般式(I)と
同じものである。)で示されるアルカノールアミンを製
造するに際して使用する触媒であって、平均触媒粒径が
0.3mm以上で、細孔径10nm以上10μm以下の
細孔の容積が0.2〜1cm3/gであることを特徴と
するアルカノールアミン製造用無機固体触媒。
2. A compound of the general formula (I) having 2 to 4 carbon atoms. (Wherein R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a methyl group or an ethyl group), and reacting the alkylene oxide represented by the general formula (II) Formula 4 (Wherein, R 1 , R 2 , R 3 and R 4 are the same as those in the general formula (I)), wherein the catalyst has an average catalyst particle size of 0. An inorganic solid catalyst for producing an alkanolamine, wherein the volume of pores having a diameter of 0.3 mm or more and a pore diameter of 10 nm to 10 μm is 0.2 to 1 cm 3 / g.
【請求項3】 触媒原料に20〜200重量%の細孔形
成剤を混合して成型したのち、高温処理によって細孔形
成剤を燃焼除去し細孔径10nm以上10μm以下の細
孔の容積を0.2〜1cm3/gにすることを特徴とする
アルカノールアミン製造用触媒の調製法。
3. A catalyst raw material is mixed with 20 to 200% by weight of a pore forming agent and molded, and then the pore forming agent is burned off by high-temperature treatment to reduce the volume of pores having a pore diameter of 10 nm or more and 10 μm or less. A method for preparing a catalyst for alkanolamine production, characterized in that the concentration is 0.2 to 1 cm 3 / g.
JP5295993A 1993-11-02 1993-11-02 Process for producing alkanolamine, catalyst used therefor, and process for preparing catalyst Expired - Fee Related JP2793485B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP5295993A JP2793485B2 (en) 1993-11-02 1993-11-02 Process for producing alkanolamine, catalyst used therefor, and process for preparing catalyst
EP94117083A EP0652207B1 (en) 1993-11-02 1994-10-28 Process for preparation of alkanolamine, catalyst used in the process and process for preparation of the catalyst
DE69409463T DE69409463T2 (en) 1993-11-02 1994-10-28 Process for the preparation of alkanolamine, catalyst for this process and process for the preparation of the catalyst
CA002134720A CA2134720A1 (en) 1993-11-02 1994-10-31 Process for preparation for alkanolamine, catalyst used in the process and process for preparation of the catalyst
CN94118671A CN1077882C (en) 1993-11-02 1994-11-02 Process for preparation for alkanolamine, catalyst used in process for preparation of catalyst
US08/333,329 US5599999A (en) 1993-11-02 1994-11-02 Process for preparation for alkanolamine, catalyst used in the process and process for preparation of the catalyst
KR1019940028653A KR100189786B1 (en) 1993-11-02 1994-11-02 Process for preparation for alkanolamine, catalyst used in the process and process for preparation of the catalyst
US08/704,244 US5880058A (en) 1993-11-02 1996-08-28 Rare earth supported catalyst useful for preparation of alkanolamines and process for preparing same
CN00117896A CN1302689A (en) 1993-11-02 2000-05-31 Catalyst for preparing alkanolamine and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5295993A JP2793485B2 (en) 1993-11-02 1993-11-02 Process for producing alkanolamine, catalyst used therefor, and process for preparing catalyst

Publications (2)

Publication Number Publication Date
JPH07126228A JPH07126228A (en) 1995-05-16
JP2793485B2 true JP2793485B2 (en) 1998-09-03

Family

ID=17827750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5295993A Expired - Fee Related JP2793485B2 (en) 1993-11-02 1993-11-02 Process for producing alkanolamine, catalyst used therefor, and process for preparing catalyst

Country Status (1)

Country Link
JP (1) JP2793485B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736190B2 (en) * 2001-01-18 2011-07-27 三菱瓦斯化学株式会社 Molecular sieve tablet molding
JP3653572B2 (en) * 2001-09-06 2005-05-25 福井県 Method for producing porous photocatalyst
JP5072252B2 (en) * 2006-04-06 2012-11-14 三菱重工業株式会社 Method and apparatus for producing mono-lower alkyl monoalkanolamine
JP5072251B2 (en) * 2006-04-06 2012-11-14 三菱重工業株式会社 Method and apparatus for producing mono-lower alkyl monoalkanolamine
JP5046544B2 (en) * 2006-04-06 2012-10-10 三菱重工業株式会社 Method and apparatus for producing mono-lower alkyl monoalkanolamine
WO2013095875A1 (en) * 2011-12-21 2013-06-27 Dow Global Technologies Llc Improved process for making ethoxylated amine compounds
CN104710124B (en) * 2015-02-03 2017-06-06 辽宁鑫隆科技有限公司 Cement grinding aid and its method are prepared using industrial waste acid and ammonium salt
EP3431463B1 (en) 2016-03-18 2020-09-16 Nippon Shokubai Co., Ltd. Method for producing alkanolamines

Also Published As

Publication number Publication date
JPH07126228A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
KR100189786B1 (en) Process for preparation for alkanolamine, catalyst used in the process and process for preparation of the catalyst
JP3154984B2 (en) Method for producing dialkanolamine and catalyst used therefor
JP2631803B2 (en) Method for producing dialkyl carbonate
JP2793485B2 (en) Process for producing alkanolamine, catalyst used therefor, and process for preparing catalyst
JP2001151740A (en) Method for producing alkanolamine and its device
US4605766A (en) Alkylation process
JP3811205B2 (en) Production method of dimethylamine
JP2771465B2 (en) Process for producing alkanolamine and catalyst used therein
JPH0733718A (en) Production of alkanolamine by amination of alkylene oxide
CN1194816C (en) Method for preparing piperazine and trivinyl-diamine molecular sieve catalyst
JP3838886B2 (en) Method for producing dialkanolamine, catalyst for producing dialkanolamine and method for producing the same
JP2001321673A (en) Molded microporous material catalyst for manufacturing dialkanol amine
SK29898A3 (en) Catalyst mixture based on amorphous partially dehydrated zirconnium hydroxide and process for its manufacture and use thereof
CN115041221B (en) NaY-containing molecular sieve composition of tertiary amine catalyst for continuously synthesizing polyurethane and preparation method thereof
JP2001129397A (en) Carbonate esterification catalyst and method for preparing cyclic carbonate
JP2001064242A (en) Production of dialkanolamine and catalyst used therefor
JP3830329B2 (en) Method for regenerating catalyst for alkanolamine production
JPH10316417A (en) Production of titanium-containing beta-zeolite
JPH022876A (en) Compound oxide catalyst and production of alkyleneamines with same
JPH1190238A (en) Preparation of catalyst for manufacture alkanolamine
JP2000167400A (en) Preparation of carbonylation catalyst and acid ester
JPH07328435A (en) Catalyst for production of carbamate and production of carbamate using that catalyst
JPH0649000A (en) Production of monoalkanolamine by animation of alkylene oxide
CN110270378A (en) The immobilized palladium catalyst CaPOP3@Pd of porous polymer and preparation method and application of triazine radical connection cup [4] aromatic hydrocarbons
JPH09208559A (en) Production of cyclic n-vinyl compound

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees