JPH07126228A - Production of alkanolamine and catalyst used therefor and preparation of catalyst - Google Patents
Production of alkanolamine and catalyst used therefor and preparation of catalystInfo
- Publication number
- JPH07126228A JPH07126228A JP5295993A JP29599393A JPH07126228A JP H07126228 A JPH07126228 A JP H07126228A JP 5295993 A JP5295993 A JP 5295993A JP 29599393 A JP29599393 A JP 29599393A JP H07126228 A JPH07126228 A JP H07126228A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- formula
- ammonia
- alkanolamine
- pore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 91
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000002360 preparation method Methods 0.000 title description 3
- 239000011148 porous material Substances 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 13
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims abstract description 8
- 239000011949 solid catalyst Substances 0.000 claims abstract description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims abstract description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 6
- 229910003480 inorganic solid Inorganic materials 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 37
- 239000002994 raw material Substances 0.000 claims description 16
- 125000002947 alkylene group Chemical group 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 13
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 47
- 229910021529 ammonia Inorganic materials 0.000 abstract description 23
- 239000004927 clay Substances 0.000 abstract description 13
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 13
- 239000013078 crystal Substances 0.000 abstract description 6
- 239000001913 cellulose Substances 0.000 abstract description 5
- 229920002678 cellulose Polymers 0.000 abstract description 5
- 238000000465 moulding Methods 0.000 abstract description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000005342 ion exchange Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 8
- -1 industrially Chemical compound 0.000 description 7
- 238000004898 kneading Methods 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 6
- 239000003456 ion exchange resin Substances 0.000 description 6
- 229920003303 ion-exchange polymer Polymers 0.000 description 6
- 229910052901 montmorillonite Inorganic materials 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 4
- 241000269350 Anura Species 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 150000002169 ethanolamines Chemical class 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910001410 inorganic ion Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 2
- 229910017119 AlPO Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 239000011964 heteropoly acid Chemical class 0.000 description 2
- 239000002815 homogeneous catalyst Substances 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910021647 smectite Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical class [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229940049676 bismuth hydroxide Drugs 0.000 description 1
- TZSXPYWRDWEXHG-UHFFFAOYSA-K bismuth;trihydroxide Chemical compound [OH-].[OH-].[OH-].[Bi+3] TZSXPYWRDWEXHG-UHFFFAOYSA-K 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- RCJVRSBWZCNNQT-UHFFFAOYSA-N dichloridooxygen Chemical compound ClOCl RCJVRSBWZCNNQT-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 150000002602 lanthanoids Chemical group 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000273 nontronite Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、固体触媒を用いて、ア
ルキレンオキシドをアンモニアでアミノ化してアルカー
ノールアミン類を製造する場合に、特にすべての活性水
素にアルキレンオキシドの付加した生成物を抑え、モノ
アルカノールアミンを選択的に、しかも生産性良く製造
する方法に関する。特に、工業的にエチレンオキシドを
アンモニアでアミノ化するエタノールアミン類の製造に
おいて有用である。BACKGROUND OF THE INVENTION The present invention is particularly useful for suppressing the product of addition of alkylene oxide to all active hydrogen when a alkylene oxide is aminated with ammonia to produce alkanolamines using a solid catalyst. , A monoalkanolamine selectively and with high productivity. In particular, it is useful in the production of ethanolamines which industrially aminates ethylene oxide with ammonia.
【0002】[0002]
【従来の技術】アルキレンオキシドをアンモニアでアミ
ノ化してアルカノールアミン類を製造する方法として
は、工業的にはエチレンオキシドとアンモニア水(20
〜40重量%のアンモニア濃度)とを反応させてエタノ
ールアミン類を製造する方法が行われている。この方法
では、モノエタノールアミン以外にジエタノールアミン
やトリエタノールアミンが副生するが、これらの中でト
リエタノールアミンの需要が減退しているので、トリエ
タノールアミンの生成を抑えることが求められている。
そのため、通常、アンモニアとエチレンオキシドとのモ
ル比を3〜5程度とアンモニア大過剰にして反応を行う
が、それでもトリエタノールアミンの選択率は10〜2
0重量%ないしそれ以上であリ、モノエタノールアミン
の選択率も50重量%以下である。2. Description of the Related Art As a method for producing alkanolamines by aminating alkylene oxide with ammonia, industrially, ethylene oxide and aqueous ammonia (20
(Ammonia concentration of about 40% by weight) is used to produce ethanolamines. In this method, in addition to monoethanolamine, diethanolamine and triethanolamine are by-produced, but the demand for triethanolamine is declining among these, so it is necessary to suppress the production of triethanolamine.
Therefore, the reaction is usually carried out with a large excess of ammonia such that the molar ratio of ammonia and ethylene oxide is about 3 to 5, but the selectivity of triethanolamine is still 10 to 2
It is 0% by weight or more and the selectivity of monoethanolamine is 50% by weight or less.
【0003】一方、水が存在しない系ではアルキレンオ
キシドとアンモニアとは、ほとんど反応しない。従っ
て、このような反応には、触媒の存在が不可欠であり、
例えば、有機酸類、無機酸類、アンモニウム塩などの均
一系の触媒が提案されている(スエーデン国特許第15
8167号)。均一系の触媒では触媒の分離に難点があ
り、また性能も十分ではなかった。この均一系の酸触媒
を固定化する試みとして、スルホン酸基を樹脂に固定し
たイオン交換樹脂が提案された(特公昭49−4772
8号)。この触媒は比較的活性および選択性がよく工業
的に実施されている。しかし、イオン交換樹脂では最高
使用温度が低いという問題がある。通常市販されている
イオン交換樹脂の使用できる最高温度は120℃程度と
かなり低く(「イオン交換−理論と応用への手引き−」
黒田六朗・渋川雅美共訳、1981年丸善株式会社発
行、34ページ参照)、従ってアンモニアとエチレンオ
キシドとのモル比を低くして反応すると、反応熱のため
触媒層の温度が耐熱温度を超えてしまい、長期間このよ
うな温度条件で使用すると触媒が劣化してしまう問題が
ある。このためアンモニアとエチレンオキシドとのモル
比を20〜25程度以下にする事は困難である。そこで
耐熱性が低いというイオン交換樹脂の欠点を克服するた
め、熱安定性に優れる無機の触媒が検討されてきた。米
国特許第4438281号では一般的によく用いられる
シリカアルミナが活性を示すことが開示されている。イ
ンダストリアル・アンド・エンジニアリングケミストリ
ー、プロダクトリサーチ・アンド・デベロップメント、
1986年、25巻、424−430頁にはイオン交換
樹脂と、各種ゼオライト触媒が比較検討されているが、
選択性の面ではイオン交換樹脂に勝るものではなかっ
た。また特開平2−225446号公報では、酸活性化
粘土触媒が開示されている。これらの触媒でもモノエタ
ノールアミンの収率が60重量%以上もの高いものもあ
る。しかし、いずれもモノアルカノールアミンへの選択
率が十分ではないので、アンモニアとエチレンオキシド
とのモル比を20〜30倍以上にして反応を行ってお
り、アンモニアを回収し循環使用するための設備費が大
きくて実用上困難が多い。On the other hand, in a system in which water does not exist, alkylene oxide and ammonia hardly react. Therefore, the presence of a catalyst is essential for such reactions,
For example, a homogeneous catalyst of organic acids, inorganic acids, ammonium salts, etc. has been proposed (Patent No. 15 of Sweden).
8167). The homogeneous catalyst had a difficulty in separating the catalyst, and the performance was not sufficient. As an attempt to immobilize this homogeneous acid catalyst, an ion exchange resin in which a sulfonic acid group is immobilized on a resin has been proposed (Japanese Patent Publication No. 49-4772).
No. 8). This catalyst is relatively active and selective and is industrially practiced. However, the ion-exchange resin has a problem that the maximum operating temperature is low. The maximum temperature that can be used with commercially available ion-exchange resins is as low as about 120 ° C (see "Ion-exchange-theory and application guide-").
(Translated by Rokuro Kuroda and Masami Shibukawa, published by Maruzen Co., Ltd. in 1981, page 34) Therefore, if the reaction is carried out at a low molar ratio of ammonia and ethylene oxide, the temperature of the catalyst layer will exceed the heat resistant temperature due to the heat of reaction. However, there is a problem that the catalyst deteriorates when used under such temperature conditions for a long time. Therefore, it is difficult to set the molar ratio of ammonia and ethylene oxide to about 20 to 25 or less. Therefore, in order to overcome the drawback of the ion exchange resin that the heat resistance is low, an inorganic catalyst having excellent thermal stability has been investigated. U.S. Pat. No. 4,438,281 discloses that commonly used silica alumina is active. Industrial and Engineering Chemistry, Product Research and Development,
In 1986, Vol. 25, pp. 424-430, ion exchange resins and various zeolite catalysts are comparatively examined.
In terms of selectivity, it was not superior to the ion exchange resin. Further, JP-A-2-225446 discloses an acid activated clay catalyst. Even with these catalysts, the yield of monoethanolamine may be as high as 60% by weight or more. However, since the selectivity to monoalkanolamine is not sufficient in any case, the reaction is carried out with the molar ratio of ammonia and ethylene oxide being 20 to 30 times or more, and the equipment cost for recovering and recycling ammonia is required. It is large and practically difficult.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は、アン
モニアとアルキレンオキシドとのモル比を実用上有利に
なるモル比まで低くでき、かつ、そのモル比でもモノア
ルカノールアミンを選択性良く製造する工業的な方法と
それに用いる触媒の調製法を提供することにある。An object of the present invention is to reduce the molar ratio of ammonia and alkylene oxide to a practically advantageous molar ratio, and to produce a monoalkanolamine with good selectivity even at that molar ratio. An object of the present invention is to provide an industrial method and a method for preparing a catalyst used therein.
【0005】本発明者らは鋭意研究を重ねた結果、アン
モニアもしくはアミンとアルキレンオキシドからアルカ
ノールアミン類を液相中で合成するに当たり、優れた性
能を発揮する触媒を見いだした(特願平4−20208
1号、特願平5−203038号)。しかしこれらの触
媒は極めて小さな粒径の触媒における評価で、このまま
触媒を1〜5m程度の反応器に充填すると、圧力損失が
3〜50MPaにもなって実用上大きな問題になる。触
媒層の圧力損失を実用的な水準まで下げるために0.3
mm以上の粒径に成型する必要がある。このような粒径に
成型すると触媒性能が低下する問題が生ずる。As a result of intensive studies, the present inventors have found a catalyst exhibiting excellent performance in synthesizing alkanolamines from ammonia or amine and alkylene oxide in the liquid phase (Japanese Patent Application No. 4- 20208
No. 1, Japanese Patent Application No. 5-203038). However, these catalysts are evaluated in the case of a catalyst having an extremely small particle size, and if the catalyst is charged into the reactor of about 1 to 5 m as it is, the pressure loss becomes 3 to 50 MPa, which is a serious problem in practice. 0.3 in order to reduce the pressure loss of the catalyst layer to a practical level.
It is necessary to mold to a particle size of mm or more. Molding into such a particle size causes a problem that the catalytic performance is deteriorated.
【0006】[0006]
【課題を解決するための手段】本発明者らは前記課題を
解決すべく鋭意研究を重ねた結果、細孔径10nm以上
10μm以下の細孔の容積が0.2〜1cm3 /gであ
る触媒を用いることによって前記課題を解決できること
を見出し、またこのような触媒を調製する方法として、
乾燥後の触媒原料重量にたいして20〜200重量%の
細孔形成剤を触媒原料に混入して成型したのち、高温処
理によって除去する方法を見いだし、本発明を完成する
に到った。Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that the volume of pores having a pore diameter of 10 nm or more and 10 μm or less is 0.2 to 1 cm 3 / g. It was found that the above problems can be solved by using, and as a method for preparing such a catalyst,
The present invention has been completed by finding a method in which 20 to 200% by weight of the weight of the catalyst raw material after drying is mixed with the catalyst raw material and molded, and then removed by high temperature treatment.
【0007】すなわち本発明によれば、2〜4個の炭素
原子を有する一般式(I)Thus, according to the invention, the general formula (I) having 2 to 4 carbon atoms
【0008】[0008]
【化5】 (式中、R1 、R2 、R3 およびR4 は各々独立して水
素原子、メチル基またはエチル基を表す。)で示される
アルキレンオキシドとアンモニアを、液相で、平均触媒
粒径が0.3mm以上で、細孔径10nm以上10μm
以下の細孔の容積が0.2〜1cm3/gである無機固体
触媒の存在下、反応させることを特徴とする一般式(I
I)[Chemical 5] (In the formula, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a methyl group or an ethyl group.), An alkylene oxide represented by the formula: 0.3 mm or more, pore diameter 10 nm or more 10 μm
The following formula (I) is characterized in that the reaction is carried out in the presence of an inorganic solid catalyst having a pore volume of 0.2 to 1 cm 3 / g.
I)
【0009】[0009]
【化6】 (式中、R1 、R2 、R3 およびR4 は一般式(I)と
同じものである。)で示されるアルカノールアミンの製
造法および、2〜4個の炭素原子を有する一般式(I)[Chemical 6] (In the formula, R 1 , R 2 , R 3 and R 4 are the same as those in the general formula (I).) And a general formula having 2 to 4 carbon atoms ( I)
【0010】[0010]
【化7】 (式中、R1 、R2 、R3 およびR4 は各々独立して水
素原子、メチル基またはエチル基を表す。)で示される
アルキレンオキシドとアンモニアを反応させることによ
って一般式(II)[Chemical 7] (In the formula, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a methyl group or an ethyl group.) By reacting an alkylene oxide represented by the general formula (II)
【0011】[0011]
【化8】 (式中、R1 、R2 、R3 およびR4 は一般式(I)と
同じものである。)で示されるアルカノールアミンを製
造するに際して使用する触媒であって、平均触媒粒径が
0.3mm以上で、細孔径10nm以上10μm以下の
細孔の容積が0.2〜1cm3 /gであることを特徴と
するアルカノールアミン製造用無機固体触媒ならびに、
触媒原料に細孔形成剤を混合して成型したのち、高温処
理によって細孔形成剤を除去し細孔径10nm以上10
μm以下の細孔の容積を0.2〜1cm3/gにすること
を特徴とするノアルカノールアミン製造用触媒の調製法
に関するものである。[Chemical 8] (In the formula, R 1 , R 2 , R 3 and R 4 are the same as those in the general formula (I).) A catalyst used for producing an alkanolamine having an average catalyst particle size of 0. Inorganic solid catalyst for alkanolamine production, wherein the volume of pores having a pore diameter of 10 nm or more and 10 μm or less is 0.2 to 1 cm 3 / g, and
After the catalyst raw material was mixed with the pore-forming agent and molded, the pore-forming agent was removed by high temperature treatment to obtain a pore diameter of 10 nm or more.
The present invention relates to a method for preparing a catalyst for producing a noalkanolamine, which is characterized in that the volume of pores of μm or less is 0.2 to 1 cm 3 / g.
【0012】本発明に係る触媒は、従来知られている固
体酸触媒よりもモノアルカノールアミンの選択性が優
れ、触媒の耐熱性も高いので、アルキレンオキシドに対
するアンモニアのモル比を低くすることも可能であり、
触媒層の圧力損失を小さくすることが可能であるので工
業的に優位に実施することができる。Since the catalyst according to the present invention is superior in monoalkanolamine selectivity to the heretofore known solid acid catalysts and has high heat resistance, the molar ratio of ammonia to alkylene oxide can be lowered. And
Since it is possible to reduce the pressure loss of the catalyst layer, it can be industrially favored.
【0013】以下、本発明を詳しく説明する。The present invention will be described in detail below.
【0014】本発明に係る触媒の活性成分としては、公
知の固体触媒成分を使用することが可能であるが、本来
の触媒性能が優れていなければ細孔容積を増加させる効
果がほとんど現れないため、希土類元素を無機質耐火性
担体に担持した触媒や、架橋処理した粘土化合物、ある
いは細孔径が0.45〜0.7nmのマイクロポーラス
クリスタル類が好ましい。As the active component of the catalyst according to the present invention, a known solid catalyst component can be used, but if the original catalytic performance is not excellent, the effect of increasing the pore volume hardly appears. A catalyst in which a rare earth element is supported on an inorganic refractory carrier, a crosslinked clay compound, or microporous crystals having a pore size of 0.45 to 0.7 nm is preferable.
【0015】希土類元素担持型触媒では、希土類元素と
して周期律表のランタノイド族(ランタン、セリウム、
プラセオジム、ネオジム、サマリム、ユーロピウム、ガ
ドリニウム、テルビウム、ジスプロシウム、ホルミウ
ム、エルビウム、ツリウム、イッテルビウム、ルテチ
ム)、スカンジウム、イットリウムが用いられる。In the rare earth element-supported catalyst, the rare earth element is a lanthanoid group of the periodic table (lanthanum, cerium,
Praseodymium, neodymium, samarim, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium), scandium and yttrium are used.
【0016】希土類元素原料としては、熱処理によって
調製後に、反応液に不溶性となる物であればよく、特に
硝酸塩、硫酸塩、炭酸塩、酢酸塩、シュウ酸塩、ヘテロ
ポリ酸塩、リン酸塩、ハロゲン化物、酸化物、水酸化物
などを用いることができる。本発明の触媒の担体として
は比表面積が1〜500m2 /gで、無機質耐火性であ
ればよく、公知の種々の担体たとえば天然物(珪藻土、
軽石、粘土など)、単独酸化物(シリカ、アルミナ、チ
タニア、ジルコニアなど)、複合酸化物(シリカアルミ
ナ、チタニアシリカ、ジルコニアシリカ、ペロブスカイ
トなど)、無機耐火物(炭化珪素、窒化ケイ素、グラフ
ァイトなど)、無機のイオン交換体(SAPO、MeA
PO、メタロシリケート、層状粘土化合物など)が使用
できる。The raw material for the rare earth element may be any that is insoluble in the reaction solution after being prepared by heat treatment, and in particular nitrates, sulfates, carbonates, acetates, oxalates, heteropolyacid salts, phosphates, Halides, oxides, hydroxides and the like can be used. As the carrier of the catalyst of the present invention, a specific surface area of 1 to 500 m 2 / g and inorganic fire resistance may be used, and various known carriers such as natural products (diatomaceous earth,
Pumice, clay, etc.), single oxides (silica, alumina, titania, zirconia, etc.), complex oxides (silica alumina, titania silica, zirconia silica, perovskites, etc.), inorganic refractories (silicon carbide, silicon nitride, graphite, etc.) , Inorganic ion exchangers (SAPO, MeA
PO, metallosilicate, layered clay compound, etc.) can be used.
【0017】担持方法はイオン交換法、含浸法、混練法
などを用いることができる。As a supporting method, an ion exchange method, an impregnation method, a kneading method or the like can be used.
【0018】含浸法とは、成型した担体を可溶性の希土
類元素溶液に投入し、加熱して溶媒を除去して担持する
方法である。The impregnation method is a method in which a molded carrier is put into a soluble rare earth element solution and heated to remove the solvent and carry it.
【0019】混練法とは、担体粉末に担持する希土類元
素化合物を加え、少量の溶媒を用い混練機で十分混練し
て得られたケーキを成型する方法である。The kneading method is a method of molding a cake obtained by adding a rare earth element compound supported on a carrier powder and sufficiently kneading with a kneader using a small amount of solvent.
【0020】イオン交換法とは担体を可溶性希土類元素
溶液に投入し、イオン交換体の交換サイトにあるアルカ
リ金属イオンなどを希土類元素でイオン交換した後、溶
液と分離して担持する方法である。希土類元素を担体上
に均一に担持するためにはイオン交換法が便利である。
イオン交換法では担体には無機のイオン交換体を用い
る。無機のイオン交換体としてはたとえばSAPO、M
eAPO、メタロシリケート、層状粘土化合物などが挙
げられる。The ion exchange method is a method in which a carrier is added to a soluble rare earth element solution, alkali metal ions and the like at the exchange site of the ion exchanger are ion-exchanged with the rare earth element, and then the carrier is separated and carried. The ion exchange method is convenient for uniformly loading the rare earth element on the carrier.
In the ion exchange method, an inorganic ion exchanger is used as a carrier. Examples of inorganic ion exchangers include SAPO and M
Examples include eAPO, metallosilicate, and layered clay compound.
【0021】SAPOは結晶性リン酸アルミニウム(A
lPO)のリンの一部を珪素で置換あるいは一対のアル
ミニウムとリンを2個の珪素で置換した物質である。M
eAPOは同じくAlPOのアルミニウムを珪素以外の
金属元素(Co,Mg,Mn,Zn,,Feなど)で置
換した物質である。それぞれイオン交換サイトを持って
おり、SAPO−5,−11,−17,−40、MAP
O(Mg)−5,−11,−36、MnAPO−5,−
11、CoAPO−5,−36、FAPO(Fe)−3
4、ZAPO(Zn)−34などが知られている(−番
号は対応する構造のAlPOと同じ識別番号である)。SAPO is crystalline aluminum phosphate (A
1PO) is a substance in which a part of phosphorus is replaced with silicon or a pair of aluminum and phosphorus is replaced with two silicons. M
Similarly, eAPO is a substance obtained by substituting aluminum of AlPO with a metal element (Co, Mg, Mn, Zn, Fe, etc.) other than silicon. Each has its own ion exchange site, SAPO-5, -11, -17, -40, MAP
O (Mg) -5, -11, -36, MnAPO-5,-
11, CoAPO-5, -36, FAPO (Fe) -3
4, ZAPO (Zn) -34, etc. are known (the-number is the same identification number as AlPO of the corresponding structure).
【0022】メタロシリケートとは結晶性の酸化珪素中
の珪素の部分が金属で置換された物質で、非常に均一な
細孔を持ち、金属で置換された分だけ電荷のバランスが
崩れ、イオン交換サイトが存在する。メタロシリケート
としては、具体的にはゼオライトとして知られる結晶性
アルミノシリケートが多く用いられる。ゼオライトとし
てはA型、X型、Y型、L型、ペンタシル型(ZSM−
5、ZSM−11など)、モルデナイト、フェリエライ
トなどが一般的に使用できる。他のメタロシリケートと
しては、鉄シリケート、ニッケルシリケートなどを使用
することができる。The metallosilicate is a substance in which the silicon portion in crystalline silicon oxide is replaced with a metal and has very uniform pores, and the charge balance is lost due to the replacement with the metal, resulting in ion exchange. The site exists. As the metallosilicate, specifically, a crystalline aluminosilicate known as zeolite is often used. As zeolite, A type, X type, Y type, L type, pentasil type (ZSM-
5, ZSM-11), mordenite, ferrierite, etc. can generally be used. As other metallosilicates, iron silicates, nickel silicates and the like can be used.
【0023】層状粘土化合物としてはスメクタイト系粘
土が知られ、具体的にはモンモリロナイト、サポナイ
ト、ヘクトライト、ノントロナイトなどが用いられる。
これらの粘土化合物もイオン交換サイトを持ち、通常ナ
トリウムなどのアルカリ金属イオンがこのサイトを占め
ており、塩基性を呈することが多い。Smectite clay is known as the layered clay compound, and specifically, montmorillonite, saponite, hectorite, nontronite and the like are used.
These clay compounds also have an ion exchange site, and alkali metal ions such as sodium usually occupy this site, and they often exhibit basicity.
【0024】混練法以外の調製法では触媒原料は可溶性
の塩(硝酸塩、ハロゲン化物、ヘテロポリ酸塩など)を
用いる。In preparation methods other than the kneading method, a soluble salt (nitrate, halide, heteropolyacid salt, etc.) is used as the catalyst raw material.
【0025】担持率は担体の表面積および希土類元素の
種類によっても変化するが、通常1〜50重量%の範囲
が用いられる。The loading ratio varies depending on the surface area of the carrier and the type of rare earth element, but is usually in the range of 1 to 50% by weight.
【0026】イオン交換法で担持した場合は、高温処理
せずに用いることもできるが、通常は300〜700℃
の範囲で高温処理して触媒とする。高温処理は通常空気
中で行うが、特に酸化処理を必要としない場合は、窒素
などの不活性ガス雰囲気下や真空中で触媒原料の熱分解
を行うこともできる。When loaded by the ion exchange method, it can be used without high temperature treatment, but it is usually 300 to 700 ° C.
High temperature treatment in the range of to obtain a catalyst. The high temperature treatment is usually carried out in the air, but when the oxidation treatment is not particularly required, the catalyst raw material can be thermally decomposed in an atmosphere of an inert gas such as nitrogen or in a vacuum.
【0027】架橋処理した粘土触媒とはいわゆるピラー
ドクレイであり、スメクタイト系に属する層状粘土のシ
リケート層間に、比較的嵩の大きな金属酸化物が入り込
んで架橋構造を形成しており、このピラーによりシリケ
ート層間隔が広がっているものである。The crosslinked clay catalyst is a so-called pillared clay, in which a relatively bulky metal oxide enters between silicate layers of a layered clay belonging to the smectite system to form a crosslinked structure, and the pillar forms a silicate layer. The distance is wide.
【0028】ピラー源としては陽イオン性酸化物のゾ
ル、陽イオン性の水酸化物あるいはこれらの混合物があ
る。陽イオン性酸化物ゾルとしては具体的にはチタンテ
トライソプロポオキサイドを塩酸水溶液で加水分解させ
て生じたチタニアゾルなどがある。陽イオン性水酸化物
としては、(Al2(OH)nCl6-n)m(ただしnは
約3、mは10以下である)で示されるポリ塩化アルミ
ニウムを水に溶解して部分的に加水分解した多核の水酸
化アルミニウム; Al, Cr, Bi, Feの各塩化
物、硝酸塩、硫酸塩の水溶液を撹拌しながら少量ずつア
ルカリを加えて加水分解して得た多核の水酸化アルミニ
ウム、水酸化クロム、水酸化ビスマス、水酸化鉄; オ
キシ塩化ジルコニルを水に溶解して得た多核の水酸化ジ
ルコニウムなどがある。The pillar source may be a sol of a cationic oxide, a cationic hydroxide or a mixture thereof. Specific examples of the cationic oxide sol include titania sol produced by hydrolyzing titanium tetraisopropoxide with an aqueous hydrochloric acid solution. As the cationic hydroxide, polyaluminum chloride represented by (Al 2 (OH) n Cl 6-n ) m (where n is about 3 and m is 10 or less) is partially dissolved in water. Polynuclear aluminum hydroxide hydrolyzed into aluminum; polynuclear aluminum hydroxide obtained by hydrolyzing Al, Cr, Bi, Fe chlorides, nitrates, and sulfates aqueous solutions by adding alkali little by little while stirring, Chromium hydroxide, bismuth hydroxide, iron hydroxide; and polynuclear zirconium hydroxide obtained by dissolving zirconyl oxychloride in water.
【0029】マイクロポーラスクリスタルとは非常に均
一な細孔を持った結晶体で、希土類元素の担体として先
に述べた、メタロシリケート、SAPO、MeAPO等
が挙げられる。The microporous crystal is a crystal having very uniform pores, and examples thereof include the metallosilicate, SAPO, MeAPO, and the like described above as the carrier for the rare earth element.
【0030】使用する細孔形成剤としては触媒性能に悪
影響を及ぼさず、高温処理によって除去可能な物質が使
用できる。たとえば硝酸アンモニウム・酢酸アンモニウ
ムなどの各種アンモニウム塩、修酸・尿素などの有機化
合物、各種ポリマー・繊維などの非水溶性有機化合物な
どが挙げられる。細孔の生成効率、成型のしやすさなど
の面から非水溶性有機化合物が好適に使用でき、その非
水溶性有機化合物としてはある程度吸湿性が有り、微細
な粉体になっており数百度の高温処理処理で燃焼除去可
能であればよく、特に結晶性セルロースが取扱性の面で
好ましい。As the pore-forming agent to be used, a substance which does not adversely affect the catalytic performance and can be removed by high temperature treatment can be used. Examples thereof include various ammonium salts such as ammonium nitrate and ammonium acetate, organic compounds such as oxalic acid and urea, and water-insoluble organic compounds such as various polymers and fibers. A water-insoluble organic compound can be preferably used in terms of pore generation efficiency and ease of molding. It suffices that it can be burned and removed by the high-temperature treatment of 1., and crystalline cellulose is particularly preferable in terms of handleability.
【0031】結晶性セルロースとしては、ろ紙を粉砕し
た粉末や、パルプを粉砕した粉体などが用いられる。As the crystalline cellulose, powder obtained by crushing filter paper, powder obtained by crushing pulp, or the like is used.
【0032】結晶性セルロースなどの有機物の細孔形成
剤を用いるときは、単なる加熱処理では分解除去できな
いので、酸素を含む気体中(空気を用いるのが便利であ
る)で燃焼除去する。When an organic pore-forming agent such as crystalline cellulose is used, it cannot be decomposed and removed by a simple heat treatment, so that it is burned and removed in a gas containing oxygen (it is convenient to use air).
【0033】触媒の細孔容積は0.2cm3/g未満で
は選択性、活性が低く、1cm3/g以上では触媒の強
度が低下するため実用的でない。When the pore volume of the catalyst is less than 0.2 cm 3 / g, the selectivity and activity are low, and when it is 1 cm 3 / g or more, the strength of the catalyst decreases, which is not practical.
【0034】調製された触媒は固定床で用いるため圧縮
成型したり、あるいはバインダーを用いたりして平均粒
径0.3mm以上に成型して反応に供する。球状でない
場合の平均粒径の定義は種々あるが、ここでは同じ外表
面積を持つ球の直径として定義する。Since the prepared catalyst is used in a fixed bed, it is compression-molded, or a binder is used to mold it to an average particle size of 0.3 mm or more and then to use it in the reaction. There are various definitions of the average particle diameter in the case of non-spherical shape, but here, it is defined as the diameter of a sphere having the same outer surface area.
【0035】該触媒が、本反応に有効な理由は完全には
明かでないが、考えられる作用を以下に述べる。Although the reason why the catalyst is effective for the present reaction is not completely clear, possible actions are described below.
【0036】触媒粒径が大きくなるにつれて、活性が低
下したりまた本反応のような逐次反応の選択性が低下し
たりする現象は、触媒粒子内の拡散抵抗が無視できなく
なり触媒内部が十分利用されないために起こると考えら
れる。拡散抵抗を減らすためには、触媒の細孔率を大き
くし迷宮度を小さくすることが有効であると考えられ
る。細孔容積を増加させることはこれに効果があると考
えられる。The phenomenon that the activity decreases and the selectivity of the sequential reaction such as this reaction decreases as the particle size of the catalyst increases, the diffusion resistance in the catalyst particles cannot be ignored and the inside of the catalyst is sufficiently utilized. It is thought that it happens because it is not done. In order to reduce the diffusion resistance, it is considered effective to increase the catalyst porosity and decrease the labyrinth degree. Increasing the pore volume is believed to have an effect on this.
【0037】本発明に係わる原料のアルキレンオキシド
は2〜4個の炭素原子を有する前記一般式(I)The starting alkylene oxide according to the present invention has the above general formula (I) having 2 to 4 carbon atoms.
【0038】[0038]
【化9】 (式中、R1 、R2 、R3 およびR4 は各々独立して水
素原子、メチル基またはエチル基を表す。)で示される
アルキレンオキシドであり、エチレンオキシド、プロピ
レンオキシド等が例示される。これらの原料に対応して
一般式(II)[Chemical 9] (In the formula, each of R 1 , R 2 , R 3 and R 4 independently represents a hydrogen atom, a methyl group or an ethyl group.), And examples thereof include ethylene oxide and propylene oxide. General formula (II) corresponding to these raw materials
【0039】[0039]
【化10】 (式中、R1 、R2 、R3 およびR4 は一般式(I)と
同じものである。)で示されるアルカノールアミンが得
られる。具体例としては、エタノールアミン、プロパノ
ールアミン等が例示される。[Chemical 10] (In the formula, R 1 , R 2 , R 3 and R 4 are the same as those in the general formula (I)) to obtain an alkanolamine. Specific examples thereof include ethanolamine and propanolamine.
【0040】反応は液相状態で行わなければならないの
で、反応圧力は反応器内の最高温度における反応液の蒸
気圧より高く保つ必要がある。Since the reaction must be carried out in the liquid phase, the reaction pressure must be kept higher than the vapor pressure of the reaction liquid at the maximum temperature in the reactor.
【0041】通常、モノアルカノールアミン類の製造
は、50〜300℃の温度範囲で実施する事が出来る。
好ましい範囲は、80〜200℃である。操作圧力は1
〜20MPaである。Usually, the production of monoalkanolamines can be carried out in the temperature range of 50 to 300 ° C.
A preferred range is 80 to 200 ° C. Operating pressure is 1
Is about 20 MPa.
【0042】アンモニアとアルキレンオキシドとのモル
比は1:1〜40:1の範囲が好ましい。The molar ratio of ammonia to alkylene oxide is preferably in the range of 1: 1 to 40: 1.
【0043】また、上述の条件下、毎時空間速度(LH
SV)が4〜15又はそれ以上の条件がアルキレンオキ
シドの定量的な転化にとりわけ有利であることが分かっ
た。Under the above conditions, the hourly space velocity (LH
It has been found that conditions where the SV) is from 4 to 15 or higher are particularly advantageous for the quantitative conversion of alkylene oxides.
【0044】[0044]
【発明の効果】本発明は、以下に記載されるような効果
を奏する。The present invention has the following effects.
【0045】まず、本発明に係わる触媒は、モノアルカ
ノールアミン生成の選択性が高いため、他の固体触媒よ
りも低いアンモニアとアルキレンオキシドの比率でも同
等のアルカノールアミン類の生成比率となるので、未反
応のアンモニアの回収コストが小さくなる。同時に供給
原料の総量が減少するので反応系、回収系の装置を小さ
くすることができ、設備費が小さくなる。First, since the catalyst according to the present invention has a high selectivity for the production of monoalkanolamines, the production ratio of alkanolamines is the same even if the ratio of ammonia and alkylene oxide is lower than those of other solid catalysts. The cost of recovering ammonia for the reaction is reduced. At the same time, since the total amount of the feed materials is reduced, the reaction system and the recovery system can be downsized, and the equipment cost can be reduced.
【0046】さらに、触媒層の圧力損失を小さくできる
ので、原料供給のための動力を節約でき、またポンプ、
反応器の耐圧を下げることができ設備費が更に小さくな
る。Further, since the pressure loss of the catalyst layer can be reduced, the power for supplying the raw materials can be saved, and the pump,
The pressure resistance of the reactor can be lowered, and the equipment cost can be further reduced.
【0047】[0047]
【実施例】以下に続く実施例は、主としてエチレンオキ
シドとアンモニアからのエタノールアミン類の製造の例
を示す。該実施例は、説明の目的に意図されるものであ
り、それにより本発明が限定されるものではない。EXAMPLES The examples which follow show examples of the production of ethanolamines mainly from ethylene oxide and ammonia. The examples are intended for purposes of illustration and are not intended to limit the invention.
【0048】また、LHSV、エチレンオキシドの転化
率及びモノエタノールアミンの選択率は次のように定義
する。なお、エタノールアミン類以外の生成物はできて
おらず、従ってエチレンオキシドの転化率(モル%)
は、エチレンオキシド基準の(モノ、ジ、トリ)エタノ
ールアミンの総合収率(モル%)に等しい。The LHSV, ethylene oxide conversion and monoethanolamine selectivity are defined as follows. Products other than ethanolamines were not produced, so the conversion of ethylene oxide (mol%)
Is equal to the overall yield (mol%) of (mono, di, tri) ethanolamine based on ethylene oxide.
【0049】[0049]
【数1】 [Equation 1]
【0050】[0050]
【数2】 [Equation 2]
【0051】[0051]
【数3】 なお、細孔容積は水銀圧入法によって求めた。[Equation 3] The pore volume was determined by the mercury penetration method.
【0052】[触媒調製例] 触媒原料粉体a 希土類元素としてランタン、担体としてモンモリロナイ
トを用いた例である。0.05モル/dm3の硝酸ラン
タン水溶液100dm3にモンモリロナイト2kgを撹
拌しながら添加し、室温で1日撹拌を行い、ろ過後、1
00dm3の純水で洗浄した。このケーキを100℃で
1日乾燥後、200メッシュ以下に粉砕して触媒原料粉
体aを得た。[Catalyst preparation example] Catalyst raw material powder a This is an example in which lanthanum is used as a rare earth element and montmorillonite is used as a carrier. Was added with stirring montmorillonite 2kg lanthanum nitrate aqueous solution 100 dm 3 of 0.05 mol / dm 3, stirring is carried out for 1 day at room temperature, filtered, 1
It was washed with pure water of 00 dm 3 . This cake was dried at 100 ° C. for 1 day and then pulverized to 200 mesh or less to obtain a catalyst raw material powder a.
【0053】触媒A 触媒原料粉体a100gにアビセル(旭化成工業株式会
社製結晶性セルロース)30gおよび水を触媒原料粉体
とアビセルの重量の合計と同じ重量を添加し、混練し、
押出成型機により直径0.5mmの、長さ2〜5mmペ
レツトに成型し、100℃で1日乾燥した。相当粒径は
1〜1.6mmとなった。Catalyst A To 100 g of the catalyst raw material powder a, 30 g of Avicel (Crystalline Cellulose manufactured by Asahi Chemical Industry Co., Ltd.) and water were added and kneaded in the same weight as the total weight of the catalyst raw material powder and Avicel.
It was molded into a pellet having a diameter of 0.5 mm and a length of 2 to 5 mm by an extruder and dried at 100 ° C. for 1 day. The equivalent particle size was 1 to 1.6 mm.
【0054】細孔径 10nm〜10μmの細孔容積は
0.26cm3/gであった。The volume of pores having a pore diameter of 10 nm to 10 μm was 0.26 cm 3 / g.
【0055】触媒B 用いるアビセルの量を60gとする以外は触媒Aと同様
に触媒を調製した。Catalyst B A catalyst was prepared in the same manner as catalyst A except that the amount of Avicel used was 60 g.
【0056】細孔径 10nm〜10μmの細孔容積は
0.4cm3/gであった。The volume of pores having a pore diameter of 10 nm to 10 μm was 0.4 cm 3 / g.
【0057】触媒C 用いるアビセルの量を100gとする以外は触媒Aと同
様に触媒を調製した。Catalyst C A catalyst was prepared in the same manner as catalyst A except that the amount of Avicel used was 100 g.
【0058】細孔径 10nm〜10μmの細孔容積は
0.7cm3 /gであった。The volume of pores having a pore diameter of 10 nm to 10 μm was 0.7 cm 3 / g.
【0059】触媒D 触媒原料粉体a100gに、ろ紙粉末30gを添加混合
して混練したこと以外は触媒Aと同様に触媒を調製し
た。Catalyst D A catalyst was prepared in the same manner as catalyst A except that 30 g of filter paper powder was added and mixed with 100 g of catalyst raw material powder a.
【0060】細孔径 10nm〜10μmの細孔容積は
0.3cm3 /gであった。The volume of pores having a pore diameter of 10 nm to 10 μm was 0.3 cm 3 / g.
【0061】触媒E 触媒原料粉体a100gに硝酸アンモニウム150gを
添加混合して混練したこと以外は触媒Aと同様に触媒を
調製した。Catalyst E A catalyst was prepared in the same manner as the catalyst A except that 150 g of ammonium nitrate was added to 100 g of the catalyst raw material powder a and mixed and kneaded.
【0062】細孔径 10nm〜10μmの細孔容積は
0.32cm3/gであった。The volume of pores having a pore diameter of 10 nm to 10 μm was 0.32 cm 3 / g.
【0063】触媒F 架橋処理粘土の例でジルコニアをピラーとしたモンモリ
ロナイト触媒である。0.4モル/dm3 のオキシ塩化
ジルコニウム水溶液30dm3 を60℃で48時間熟成
した。モンモリロナイト900gを蒸留水30dm3 に
よく分散させた後、熟成させておいたオキシ塩化ジルコ
ニウム水溶液を滴下しながらよく撹拌した。滴下終了後
そのまま撹拌しながら、65℃で3時間加熱した。加熱
終了後ジルコニウムイオンが検出されなくなるまで蒸留
水で洗浄し、60℃の熱風乾燥機で乾燥した。これを2
00メッシュ以下に粉砕し、この100gとアビセル6
0gに再度純水を160g添加しニーダーで混練後、押
出成型機で直径0.5mm長さ2〜10mmの円筒状に
成型した。これを空気流通下450℃で高温処理し触媒
とした。Catalyst F An example of a crosslinked clay is a montmorillonite catalyst using zirconia as pillars. 0.4 mol / dm 3 of aqueous solution of zirconium oxychloride 30Dm 3 was aged for 48 hours at 60 ° C.. After thoroughly dispersing 900 g of montmorillonite in 30 dm 3 of distilled water, the aged zirconium oxychloride aqueous solution was added dropwise and well stirred. After completion of dropping, the mixture was heated at 65 ° C. for 3 hours while stirring as it was. After the heating, it was washed with distilled water until no zirconium ions were detected, and dried with a hot air dryer at 60 ° C. This 2
Milled to less than 00 mesh, 100 g of this and Avicel 6
After adding 160 g of pure water again to 0 g and kneading with a kneader, it was molded into a cylindrical shape having a diameter of 0.5 mm and a length of 2 to 10 mm by an extruder. This was subjected to a high temperature treatment at 450 ° C under air flow to obtain a catalyst.
【0064】細孔径 10nm〜10μmの細孔容積は
0.38cm3/gであった。The volume of pores having a pore diameter of 10 nm to 10 μm was 0.38 cm 3 / g.
【0065】触媒G マイクロポーラスクリスタルとして鉄シリケートを用い
た例である。Catalyst G This is an example of using iron silicate as a microporous crystal.
【0066】ペンタシル型鉄シリケート(XRDによる
解析では結晶構造はMFI型、Fe/Si原子比=1/
25、アンモニウムイオンでイオン交換)20gに10
重量%のモンモリロナイトをバインダーとして加え、ア
ビセルを12g添加し、少量の水を用いて乳鉢でよく混
練した。120℃で12時間乾燥後、空気流通下500
℃で高温処理したのち、0.7〜1mmに破砕して触媒
とした。Pentacyl-type iron silicate (XRD analysis shows that the crystal structure is MFI type, Fe / Si atomic ratio = 1 /
25, ion exchange with ammonium ion) 10 to 20 g
Weight% montmorillonite was added as a binder, 12 g of Avicel was added, and a small amount of water was used and kneaded well in a mortar. After drying at 120 ° C for 12 hours, under air flow 500
After high temperature treatment at ℃, it was crushed to 0.7 to 1 mm to obtain a catalyst.
【0067】細孔径 10nm〜10μmの細孔容積は
0.35cm3/gであった。The pore volume with a pore diameter of 10 nm to 10 μm was 0.35 cm 3 / g.
【0068】比較触媒H 触媒原料粉体a100gに再度純水を粉体と同量添加
し、ニーダーで混練したのち押出成型機で直径0.5m
m、長さ2〜5mmのペレツトに成型し、100℃で1
日乾燥した。その後、500℃で5時間空気中で高温処
理し、触媒とした。相当粒径は1〜1.6mmとなっ
た。Comparative Catalyst H To 100 g of the catalyst raw material powder a, pure water was added again in the same amount as the powder, and the mixture was kneaded with a kneader and then the diameter was 0.5 m with an extruder.
m, molded into pellets of 2 to 5 mm in length, and 1 at 100 ° C
Day dried. After that, high temperature treatment was performed in air at 500 ° C. for 5 hours to obtain a catalyst. The equivalent particle size was 1 to 1.6 mm.
【0069】細孔径 10nm〜10μmの細孔容積は
0.1cm3/gであった。The pore volume with a pore diameter of 10 nm to 10 μm was 0.1 cm 3 / g.
【0070】比較触媒I 混練する際アビセルを添加しないことおよび使用する純
水を100gとしたこと以外は触媒Gと同様に調製し
た。Comparative catalyst I Prepared in the same manner as catalyst G except that Avicel was not added during kneading and pure water used was 100 g.
【0071】細孔径 10nm〜10μmの細孔容積は
0.11cm3/gであった。The volume of pores having a pore diameter of 10 nm to 10 μm was 0.11 cm 3 / g.
【0072】比較触媒J 混練する際アビセルを添加しないこと以外は触媒Gと同
様に調製した。Comparative Catalyst J Prepared in the same manner as Catalyst G except that Avicel was not added during kneading.
【0073】細孔径 10nm〜10μmの細孔容積は
0.09cm3 /gであった。The pore volume with a pore diameter of 10 nm to 10 μm was 0.09 cm 3 / g.
【0074】[アルカノールアミン製造例] 実施例1 内容積5.5cm3 のステンレススチール管製反応器
(内径10.7mm)に触媒Aを充填した。反応容器内
に一定速度でアンモニアおよびエチレンオキシドを高圧
ポンプを用いて上昇法で送りこみ、反応容器はオイルバ
ス中で加熱した。圧は14MPaに維持した。反応液を
捕集し、ガスクロマトグラフにより分析した。反応条件
および結果を表1に示す。[Production Example of Alkanolamine] Example 1 Catalyst A was filled in a reactor (inner diameter: 10.7 mm) made of a stainless steel tube having an inner volume of 5.5 cm 3 . Ammonia and ethylene oxide were fed into the reaction vessel at a constant rate by an ascending method using a high pressure pump, and the reaction vessel was heated in an oil bath. The pressure was maintained at 14 MPa. The reaction solution was collected and analyzed by gas chromatography. The reaction conditions and results are shown in Table 1.
【0075】実施例2〜5 触媒をB、C、DおよびEに変えた以外は実施例1と同
様の手順で反応を行った。反応条件および結果を表1に
示す。Examples 2 to 5 The reaction was carried out in the same procedure as in Example 1 except that the catalysts were changed to B, C, D and E. The reaction conditions and results are shown in Table 1.
【0076】比較例1 触媒をHに変えた以外は実施例1と同様の手順で反応を
行った。Comparative Example 1 The reaction was carried out by the same procedure as in Example 1 except that the catalyst was changed to H.
【0077】これらの比較例は、触媒粒径が大きくなっ
た場合に、10nm〜10μmの細孔容積が小さいと、
触媒活性、選択性が低下することを示す例である。触媒
活性が低下しているため反応温度を対応する実施例より
高くして反応を行っている。反応条件および結果を表1
に示す。In these comparative examples, when the catalyst particle size becomes large and the pore volume of 10 nm to 10 μm is small,
This is an example showing that catalytic activity and selectivity are lowered. Since the catalytic activity is lowered, the reaction is carried out at a higher reaction temperature than the corresponding examples. The reaction conditions and results are shown in Table 1.
Shown in.
【0078】実施例6 触媒をFに変えた以外は実施例1と同様の手順で反応を
行った。反応条件および結果を表2に示す。Example 6 The reaction was carried out in the same procedure as in Example 1 except that the catalyst was changed to F. The reaction conditions and results are shown in Table 2.
【0079】比較例2 触媒をIに変えた以外は実施例1と同様の手順で反応を
行った。反応条件および結果を表2に示す。Comparative Example 2 The reaction was carried out in the same procedure as in Example 1 except that the catalyst was changed to I. The reaction conditions and results are shown in Table 2.
【0080】実施例7 触媒をGに変えた以外は実施例1と同様の手順で反応を
行った。反応条件および結果を表3に示す。Example 7 The reaction was carried out by the same procedure as in Example 1 except that the catalyst was changed to G. The reaction conditions and results are shown in Table 3.
【0081】比較例3 触媒をJに変えた以外は実施例1と同様の手順で反応を
行った。反応条件および結果を表3に示す。Comparative Example 3 The reaction was carried out in the same procedure as in Example 1 except that the catalyst was changed to J. The reaction conditions and results are shown in Table 3.
【0082】実施例1〜5と比較例1が、実施例6と比
較例2が、実施例7と比較例3がそれぞれ対応してい
る。Examples 1 to 5 correspond to Comparative Example 1, Example 6 corresponds to Comparative Example 2, and Example 7 corresponds to Comparative Example 3.
【0083】[0083]
【表1】 [Table 1]
【0084】[0084]
【表2】 [Table 2]
【0085】[0085]
【表3】 [Table 3]
Claims (3)
(I) 【化1】 (式中、R1 、R2 、R3 およびR4 は各々独立して水
素原子、メチル基またはエチル基を表す。)で示される
アルキレンオキシドとアンモニアを、液相で、平均触媒
粒径が0.3mm以上で、細孔径10nm以上10μm
以下の細孔の容積が0.2〜1cm3/gである無機固体
触媒の存在下、反応させることを特徴とする一般式(I
I) 【化2】 (式中、R1 、R2 、R3 およびR4 は一般式(I)と
同じものである。)で示されるアルカノールアミンの製
造法。1. A compound of the general formula (I) having 2 to 4 carbon atoms: (In the formula, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a methyl group or an ethyl group.), An alkylene oxide represented by the formula: 0.3 mm or more, pore diameter 10 nm or more 10 μm
The following formula (I) is characterized in that the reaction is carried out in the presence of an inorganic solid catalyst having a pore volume of 0.2 to 1 cm 3 / g.
I) [Chemical formula 2] (In the formula, R 1 , R 2 , R 3 and R 4 are the same as those in the general formula (I).) A method for producing an alkanolamine.
(I) 【化3】 (式中、R1 、R2 、R3 およびR4 は各々独立して水
素原子、メチル基またはエチル基を表す。)で示される
アルキレンオキシドとアンモニアを反応させることによ
って一般式(II) 【化4】 (式中、R1 、R2 、R3 およびR4 は一般式(I)と
同じものである。)で示されるアルカノールアミンを製
造するに際して使用する触媒であって、平均触媒粒径が
0.3mm以上で、細孔径10nm以上10μm以下の
細孔の容積が0.2〜1cm3/gであることを特徴と
するアルカノールアミン製造用無機固体触媒。2. General formula (I) having 2 to 4 carbon atoms: (In the formula, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a methyl group or an ethyl group.) By reacting an alkylene oxide represented by the general formula (II): Chemical 4] (In the formula, R 1 , R 2 , R 3 and R 4 are the same as those in the general formula (I).) A catalyst used for producing an alkanolamine having an average catalyst particle size of 0. An inorganic solid catalyst for producing an alkanolamine, wherein the volume of pores having a pore diameter of 10 nm or more and 10 μm or less is 0.2 to 1 cm 3 / g and is 0.3 mm or more.
成剤を混合して成型したのち、高温処理によって細孔形
成剤を燃焼除去し細孔径10nm以上10μm以下の細
孔の容積を0.2〜1cm3/gにすることを特徴とする
アルカノールアミン製造用触媒の調製法。3. A catalyst raw material is mixed with 20 to 200% by weight of a pore-forming agent, and the mixture is molded. Then, the pore-forming agent is burned and removed by high-temperature treatment to reduce the volume of pores having a diameter of 10 nm to 10 μm to 0. A method for preparing a catalyst for producing an alkanolamine, characterized in that the content is 0.2-1 cm 3 / g.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5295993A JP2793485B2 (en) | 1993-11-02 | 1993-11-02 | Process for producing alkanolamine, catalyst used therefor, and process for preparing catalyst |
EP94117083A EP0652207B1 (en) | 1993-11-02 | 1994-10-28 | Process for preparation of alkanolamine, catalyst used in the process and process for preparation of the catalyst |
DE69409463T DE69409463T2 (en) | 1993-11-02 | 1994-10-28 | Process for the preparation of alkanolamine, catalyst for this process and process for the preparation of the catalyst |
CA002134720A CA2134720A1 (en) | 1993-11-02 | 1994-10-31 | Process for preparation for alkanolamine, catalyst used in the process and process for preparation of the catalyst |
KR1019940028653A KR100189786B1 (en) | 1993-11-02 | 1994-11-02 | Process for preparation for alkanolamine, catalyst used in the process and process for preparation of the catalyst |
US08/333,329 US5599999A (en) | 1993-11-02 | 1994-11-02 | Process for preparation for alkanolamine, catalyst used in the process and process for preparation of the catalyst |
CN94118671A CN1077882C (en) | 1993-11-02 | 1994-11-02 | Process for preparation for alkanolamine, catalyst used in process for preparation of catalyst |
US08/704,244 US5880058A (en) | 1993-11-02 | 1996-08-28 | Rare earth supported catalyst useful for preparation of alkanolamines and process for preparing same |
CN00117896A CN1302689A (en) | 1993-11-02 | 2000-05-31 | Catalyst for preparing alkanolamine and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5295993A JP2793485B2 (en) | 1993-11-02 | 1993-11-02 | Process for producing alkanolamine, catalyst used therefor, and process for preparing catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07126228A true JPH07126228A (en) | 1995-05-16 |
JP2793485B2 JP2793485B2 (en) | 1998-09-03 |
Family
ID=17827750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5295993A Expired - Fee Related JP2793485B2 (en) | 1993-11-02 | 1993-11-02 | Process for producing alkanolamine, catalyst used therefor, and process for preparing catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2793485B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002210374A (en) * | 2001-01-18 | 2002-07-30 | Mitsubishi Gas Chem Co Inc | Molecular sieve tablet |
JP2003071281A (en) * | 2001-09-06 | 2003-03-11 | Fukui Prefecture | Porous photocatalyst and method for manufacturing the same |
JP2007277159A (en) * | 2006-04-06 | 2007-10-25 | Mitsubishi Heavy Ind Ltd | Method and apparatus for producing mono lower alkyl monoalkanol amine |
JP2007277161A (en) * | 2006-04-06 | 2007-10-25 | Mitsubishi Heavy Ind Ltd | Method and apparatus for producing mono lower alkyl monoalkanol amine |
JP2007277160A (en) * | 2006-04-06 | 2007-10-25 | Mitsubishi Heavy Ind Ltd | Method and apparatus for producing mono lower alkyl monoalkanol amine |
JP2015506350A (en) * | 2011-12-21 | 2015-03-02 | ダウ グローバル テクノロジーズ エルエルシー | Improved manufacturing process for ethoxylated amine compounds |
CN104710124A (en) * | 2015-02-03 | 2015-06-17 | 辽宁鑫隆科技有限公司 | Cement grinding aid prepared by utilizing industrial waste acid and ammonium salt and method thereof |
WO2017159814A1 (en) * | 2016-03-18 | 2017-09-21 | 株式会社日本触媒 | Method for producing alkanolamines |
-
1993
- 1993-11-02 JP JP5295993A patent/JP2793485B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002210374A (en) * | 2001-01-18 | 2002-07-30 | Mitsubishi Gas Chem Co Inc | Molecular sieve tablet |
JP4736190B2 (en) * | 2001-01-18 | 2011-07-27 | 三菱瓦斯化学株式会社 | Molecular sieve tablet molding |
JP2003071281A (en) * | 2001-09-06 | 2003-03-11 | Fukui Prefecture | Porous photocatalyst and method for manufacturing the same |
JP2007277159A (en) * | 2006-04-06 | 2007-10-25 | Mitsubishi Heavy Ind Ltd | Method and apparatus for producing mono lower alkyl monoalkanol amine |
JP2007277161A (en) * | 2006-04-06 | 2007-10-25 | Mitsubishi Heavy Ind Ltd | Method and apparatus for producing mono lower alkyl monoalkanol amine |
JP2007277160A (en) * | 2006-04-06 | 2007-10-25 | Mitsubishi Heavy Ind Ltd | Method and apparatus for producing mono lower alkyl monoalkanol amine |
JP2015506350A (en) * | 2011-12-21 | 2015-03-02 | ダウ グローバル テクノロジーズ エルエルシー | Improved manufacturing process for ethoxylated amine compounds |
CN104710124A (en) * | 2015-02-03 | 2015-06-17 | 辽宁鑫隆科技有限公司 | Cement grinding aid prepared by utilizing industrial waste acid and ammonium salt and method thereof |
WO2017159814A1 (en) * | 2016-03-18 | 2017-09-21 | 株式会社日本触媒 | Method for producing alkanolamines |
US10538483B2 (en) | 2016-03-18 | 2020-01-21 | Nippon Shokubai Co., Ltd. | Process for producing alkanolamine |
Also Published As
Publication number | Publication date |
---|---|
JP2793485B2 (en) | 1998-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100189786B1 (en) | Process for preparation for alkanolamine, catalyst used in the process and process for preparation of the catalyst | |
JP2631803B2 (en) | Method for producing dialkyl carbonate | |
JP3154984B2 (en) | Method for producing dialkanolamine and catalyst used therefor | |
JPH02225446A (en) | Preparation of alkanolamines by amination of alkylene oxides on acid-activated clay | |
JP2793485B2 (en) | Process for producing alkanolamine, catalyst used therefor, and process for preparing catalyst | |
JP3442348B2 (en) | Binderless crystalline aluminosilicate molded body, method for producing the same and use thereof | |
JP2001151740A (en) | Method for producing alkanolamine and its device | |
US4605766A (en) | Alkylation process | |
JP3811205B2 (en) | Production method of dimethylamine | |
KR20050019530A (en) | Metal-incorporated nanoporous materials, Metal-VSB-5 molecular sieve and their preparation methods | |
JP2771465B2 (en) | Process for producing alkanolamine and catalyst used therein | |
JPH0733718A (en) | Production of alkanolamine by amination of alkylene oxide | |
CN1194816C (en) | Method for preparing piperazine and trivinyl-diamine molecular sieve catalyst | |
JP3838886B2 (en) | Method for producing dialkanolamine, catalyst for producing dialkanolamine and method for producing the same | |
JP2001321673A (en) | Molded microporous material catalyst for manufacturing dialkanol amine | |
JPH06239806A (en) | Production of dialkyl carbonate | |
JP3830329B2 (en) | Method for regenerating catalyst for alkanolamine production | |
JP2001064242A (en) | Production of dialkanolamine and catalyst used therefor | |
JPH0226607B2 (en) | ||
JP2996914B2 (en) | Method for producing alkanolamine | |
JP2001327866A (en) | Catalyst for alkylene oxide addition reaction | |
JPH09208559A (en) | Production of cyclic n-vinyl compound | |
JPH07328435A (en) | Catalyst for production of carbamate and production of carbamate using that catalyst | |
JP2000167400A (en) | Preparation of carbonylation catalyst and acid ester | |
JPH09249619A (en) | Production of methylamines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |