JPS5949718B2 - Semiconductor laser device and its manufacturing method - Google Patents

Semiconductor laser device and its manufacturing method

Info

Publication number
JPS5949718B2
JPS5949718B2 JP15662178A JP15662178A JPS5949718B2 JP S5949718 B2 JPS5949718 B2 JP S5949718B2 JP 15662178 A JP15662178 A JP 15662178A JP 15662178 A JP15662178 A JP 15662178A JP S5949718 B2 JPS5949718 B2 JP S5949718B2
Authority
JP
Japan
Prior art keywords
layer
thickness
active layer
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15662178A
Other languages
Japanese (ja)
Other versions
JPS5582483A (en
Inventor
隆 杉野
国雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15662178A priority Critical patent/JPS5949718B2/en
Priority to CA327,820A priority patent/CA1127282A/en
Priority to US06/040,182 priority patent/US4296387A/en
Priority to GB7917476A priority patent/GB2038079B/en
Priority to FR7912791A priority patent/FR2426992A1/en
Priority to DE2920454A priority patent/DE2920454C2/en
Publication of JPS5582483A publication Critical patent/JPS5582483A/en
Priority to US06/266,134 priority patent/US4380861A/en
Publication of JPS5949718B2 publication Critical patent/JPS5949718B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は半導体レーザ装置およびその製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser device and a method for manufacturing the same.

安定な基本横モードで動作する半導体レーザの構造や製
造方法について様々な提案がなされている。
Various proposals have been made regarding the structure and manufacturing method of semiconductor lasers that operate in a stable fundamental transverse mode.

発振モードの安定化は活性層の接合面方向に屈折率差を
つけることによつて実現される゜その構造の一つに第1
図に示すようなリブ型光導波路になつた活性層3を有す
る半導体レーザが提案されている。この構造においては
活性層を一部厚くすることによつて活性層内を伝搬する
光の等価屈折率に差をつけ、光を厚い部分に閉じ込める
機構をもつている。このように、活性層に作り付けの屈
折率変化をもたせることにより安定な横モード発振が得
られる。この装置の製造方法は、まずn型GaAs基板
1上にn型Ga7−xAlxAsクラッド層2とGaA
s活性層3を成長させ、活性層3の一部をストライプ状
にマスクし、それ以外の活性層表面を少しエッチングし
、ストライプ部との間で活性層3の厚みに差をつける。
Stabilization of the oscillation mode is achieved by creating a refractive index difference in the direction of the junction surface of the active layer. One of the structures is the first
A semiconductor laser having an active layer 3 formed into a rib-type optical waveguide as shown in the figure has been proposed. This structure has a mechanism in which the active layer is partially thickened to create a difference in the equivalent refractive index of light propagating within the active layer, thereby confining the light to the thick portion. In this way, by providing the active layer with a built-in refractive index change, stable transverse mode oscillation can be obtained. The manufacturing method of this device is as follows: First, an n-type Ga7-xAlxAs cladding layer 2 and a GaA
s The active layer 3 is grown, a part of the active layer 3 is masked in a stripe shape, and the surface of the other active layer is slightly etched to make a difference in the thickness of the active layer 3 between the stripe part and the stripe part.

その後、活性層3の上にp型Gal−xAlxAsクラ
ッド層4、p型GaAsオーミックコンタクト形成層5
を再び成長する。その表面に5102膜6を付け、活性
層の厚くなつた部分の直上に電流注入用オーミックコン
タクト電極7を形成する。n側にもオーミック電極7’
を作製して完成する。このレーザの作製においては、活
性層表面を一旦エッチングするため2回の結晶成長工程
が必要であり、その上、活性層3のエッチングを微妙に
制御しなければならないという困難な工程上の問題をも
つている。
After that, a p-type Gal-xAlxAs cladding layer 4 and a p-type GaAs ohmic contact formation layer 5 are formed on the active layer 3.
to grow again. A 5102 film 6 is attached to the surface thereof, and an ohmic contact electrode 7 for current injection is formed directly above the thickened portion of the active layer. Ohmic electrode 7' also on the n side
Create and complete. In manufacturing this laser, two crystal growth steps are required to once etch the surface of the active layer, and in addition, the etching of the active layer 3 must be delicately controlled, which is a difficult process problem. I have it too.

また、エッチングの際、活性層3の表面を露出させるの
で、活性層3とクラッド層4の界面に非発光再結合中心
が多数導入されると考えられる。本発明は上記の作製方
法による構造とは異なり1回の結晶成長工程により、活
性層にリブ型光導波路構造をもたせ、安定な横モード発
振を実現するレーザ装置の新しい構造とその製造方法を
提供するものであり、以下図面と参照しつつ本発明を実
施例に基いて説明する。
Furthermore, since the surface of the active layer 3 is exposed during etching, it is thought that a large number of non-radiative recombination centers are introduced into the interface between the active layer 3 and the cladding layer 4. The present invention provides a new structure of a laser device and its manufacturing method, which provides a rib-type optical waveguide structure in the active layer through a single crystal growth process and realizes stable transverse mode oscillation, unlike the structure formed by the above-mentioned manufacturing method. The present invention will be described below based on embodiments with reference to the drawings.

まず第2図aに示すように基板8表面に階段状の段差T
を形成する。
First, as shown in FIG. 2a, there is a step-like step T on the surface of the substrate 8.
form.

次にその基板8土に第1層クラツド層9、第2層活性層
10、第3層クラツド層11、第4層オーミツク電極形
成層12を連続成長する(第2図b)。その表面に絶縁
膜13を付着し、基板に段差Tを付けた部分の直上に電
流注入用のストライプ状の窓16をあける。オーミツク
コンタクトのための拡散を行なつた後、電極金属膜14
を付ける。又、基板側にもオーミツク電極15を設けて
レーザ素子片に作製する(第2図c)。段差Tを付けた
基板上に結晶成長を行うと成長初期において、段差部T
の成長速度は平担部の成長速度より早いという特性があ
る。
Next, a first cladding layer 9, a second active layer 10, a third cladding layer 11, and a fourth ohmic electrode forming layer 12 are successively grown on the substrate 8 (FIG. 2b). An insulating film 13 is attached to the surface of the substrate, and a striped window 16 for current injection is formed directly above the step T on the substrate. After performing the diffusion for ohmic contact, the electrode metal film 14
Add. Also, an ohmic electrode 15 is provided on the substrate side to fabricate a laser element piece (FIG. 2c). When crystal growth is performed on a substrate with a step T, in the early stage of growth, the step T
It has a characteristic that the growth rate of the flat part is faster than that of the flat part.

特に第1層9の成長に関してはこの特性が著しい。従つ
て適当な成長条件により、第1層クラツド層9の厚さは
、段差部Tの直上では光の吸収を防げるに十分な厚さで
あり、段差部T以外の?分(以下、平担部とよぶ)では
活性層10で発光した光をすべて基板8に漏れさすこと
により基板8に吸収させることができる。GaAs−G
aAlAs系のレーザでは、第1層のn−GaO.7A
lO.3As層9の厚さが平担部で0.5μM,O.3
μM,O.2μmと変わるに従つて、光の吸収係数は各
々、100CffL−1,30軸〔1,1000?4と
変化する。また第1層9の厚さが1μm以上のときは、
基板8では光は殆ど吸収されず、吸収係数は10(17
7!−1程度である。従つて、平担部で発した光を基板
8に吸収させるには、第1層9の厚さは0.5μm以下
であり、かつ段差直上の第1層の厚さは1μm以上ある
ことが望ましい。活性層10には第2図cのように2つ
の折れ曲り17,18を有し、発振モードをその中での
み立つようにする。折れ曲り1T,18があると、折れ
曲り17,18間の活性層10及び折れ曲り17,18
より外の平担部での発振モードが異なるため、必然的に
固有のレーザモードが2つの折れ曲り17,18間に立
つことになる。かつ前述のように折れ曲り17,18間
の活性領域10の厚さは、平担部のそれより10〜20
%厚くなるので、自然と、リブ型光導波路構造ができ上
り、光は2つの折れ曲り17,18間に閉じ込められる
。ところで、基板の段差の高さを2μmとすると2つの
折れ曲り17,18間隔は5μm程度になり、発振横モ
ードはTEO,になる可能性がある。
This characteristic is particularly remarkable regarding the growth of the first layer 9. Therefore, under appropriate growth conditions, the thickness of the first cladding layer 9 is sufficient to prevent absorption of light immediately above the stepped portion T, and is thick enough to prevent absorption of light just above the stepped portion T. In the portion (hereinafter referred to as flat portion), all the light emitted from the active layer 10 can be absorbed by the substrate 8 by leaking to the substrate 8. GaAs-G
In the aAlAs-based laser, the first layer of n-GaO. 7A
lO. The thickness of the 3As layer 9 is 0.5 μM in the flat part, O. 3
μM, O. As the thickness changes from 2 μm, the light absorption coefficient changes from 100CffL−1,30 axis [1,1000 to 4, respectively. Moreover, when the thickness of the first layer 9 is 1 μm or more,
Almost no light is absorbed by the substrate 8, and the absorption coefficient is 10 (17
7! It is about -1. Therefore, in order for the substrate 8 to absorb the light emitted from the flat portion, the thickness of the first layer 9 should be 0.5 μm or less, and the thickness of the first layer directly above the step should be 1 μm or more. desirable. The active layer 10 has two bends 17 and 18 as shown in FIG. When there are bends 1T and 18, the active layer 10 between the bends 17 and 18 and the bends 17 and 18
Since the oscillation modes at the outer flat portions are different, a unique laser mode will inevitably stand between the two bends 17 and 18. Moreover, as mentioned above, the thickness of the active region 10 between the bends 17 and 18 is 10 to 20 times thicker than that of the flat part.
% thicker, a rib-type optical waveguide structure is naturally formed, and light is confined between the two bends 17 and 18. By the way, if the height of the step on the substrate is 2 μm, the interval between the two bends 17 and 18 will be about 5 μm, and the oscillation transverse mode may be TEO.

安定なTEOOモードを発振させるには、Δ亡10−3
であるので発振領域の幅が3μm以下である必要がある
。この必要条件は第2図cの構造では自動的に満足され
る。その理由は、折れ曲り17,18間隔は5μm程度
であるが、第1層9の厚さが、中心から2つの折れ曲り
17,18に向かつて連続的に減少し、従つて中心では
殆ど吸収がないが、折れ曲り部に近ずくに従つて基板で
の吸収を受け、結晶発振モードは中心付近で単一になつ
てしまう。したがつて、本発明のレーザは単一横モード
発振を安定に行えるのである。電流注入は段差部Tの直
上に設けたストライプ状電極14によつて行われる。
In order to oscillate a stable TEOO mode, ΔF10-3
Therefore, the width of the oscillation region needs to be 3 μm or less. This requirement is automatically satisfied in the structure of FIG. 2c. The reason for this is that although the distance between the bends 17 and 18 is approximately 5 μm, the thickness of the first layer 9 continuously decreases from the center toward the two bends 17 and 18, and therefore almost no absorption occurs at the center. However, as it approaches the bend, it is absorbed by the substrate, and the crystal oscillation mode becomes single near the center. Therefore, the laser of the present invention can stably perform single transverse mode oscillation. Current injection is performed by a striped electrode 14 provided directly above the stepped portion T.

第2図Cではオキサイドストライプ型の例を示している
が、この構造以外のどのようなストライプ型でも可能で
ある。ストライプ幅は電流の広がりを小さくするため、
10μm以下が望ましい。この構造を有するレーザにお
いては活性層をエツチングする必要がないため、1回の
結晶成長工程のみで容易に作製でき、かつ、リブ型光導
波路構造のレーザで生じる諸問題も解決されている。
Although FIG. 2C shows an example of an oxide stripe structure, any stripe structure other than this structure is possible. The stripe width reduces the spread of current, so
The thickness is preferably 10 μm or less. Since a laser having this structure does not require etching of the active layer, it can be easily manufactured with only one crystal growth step, and various problems that arise with lasers having a rib type optical waveguide structure are also solved.

この新しい構造を有する半導体レーザの製造方法につい
て具体例をあげて以下に説明する。実施例 n型GaAs基板上にGaAs−Gal−XA!XAs
により構成した半導体レーザについて示す。
A method for manufacturing a semiconductor laser having this new structure will be described below using a specific example. Example GaAs-Gal-XA! on an n-type GaAs substrate! XAs
A semiconductor laser constructed by is shown below.

第2図aに示すようにn型GaAs基板8の100面上
に化学エツチングにより、〈011〉 方向に高さ2μ
mの段差Tを形成する。
As shown in FIG.
A step T of m is formed.

この段差Tを付けた基板8上に成長開始温度845℃、
冷却速度0.58C/分で液相エピタキシヤル法によつ
て第1層n型Ga,−XAIxAs於0.2μm(平担
部における膜厚)、第2層ノンドープGa,−,Al,
AslOを0.1μm(平担部における膜厚)、第3層
p型Ga,−XIAlx7Asllを1.5μm1第4
層p型GaAsl2を1μm連続成長する。このとき、
段差部直上の第1層及び第2層の厚さは各々1μm及び
0.12μmとなる。引き続き成長表面にSlO2膜1
3を付け、基板の段差Tのある位置の直上に幅5μmの
ストライプ状の窓あけ16を行なう。ストライプ状に露
出した第4層p型GaAsl2にオーミツクコンタクト
用の亜鉛拡散をし、その後p型電極用金属を真空蒸着し
、合金処理を行ない、p側オーミツク電極14を形成す
る。又、基板8側にもn型電極用金属を真空蒸着し、合
金処理を行ない、n側オーミツク電極15を形成する。
このようにして作製したGaAs−Ga,−XAIxA
s半導体レーザは室温で安定な横基本モード連続発振動
作し、その横モードはしきい値の5倍の電流値でも安定
であつた。
On the substrate 8 with this step T, the growth starting temperature is 845°C.
The first layer is n-type Ga, -XAIxAs with a thickness of 0.2 μm (thickness in the flat part), and the second layer is non-doped Ga, -, Al, by a liquid phase epitaxial method at a cooling rate of 0.58 C/min.
AslO is 0.1 μm (thickness in the flat part), third layer p-type Ga, -XIAlx7Asll is 1.5 μm 1 fourth layer
A layer of p-type GaAsl2 is continuously grown to a thickness of 1 μm. At this time,
The thicknesses of the first layer and second layer immediately above the step portion are 1 μm and 0.12 μm, respectively. Subsequently, a SlO2 film 1 is formed on the growth surface.
3, and a striped window 16 with a width of 5 μm is formed directly above the position of the step T on the substrate. Zinc for ohmic contact is diffused into the fourth p-type GaAsl2 layer exposed in a striped pattern, and then metal for the p-type electrode is vacuum deposited and alloyed to form the p-side ohmic electrode 14. Further, a metal for an n-type electrode is vacuum-deposited on the substrate 8 side, and an alloying process is performed to form an n-side ohmic electrode 15.
GaAs-Ga,-XAIxA produced in this way
The s semiconductor laser operated in a continuous oscillation mode in a stable transverse fundamental mode at room temperature, and the transverse mode remained stable even at a current value five times the threshold value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はリブ型光導波路構造をもつた従来のレーザ装置
の断面図、第2図a−cは本発明の一実施例に関する製
造方法の工程断面図である。 8・・・・・・ n型GaAs基板、9・・・・・・G
al−XAlxAs層、10・・・・・・n型Ga,−
YAlyAs層、11・・・・・・ p型Gal−FA
lx’As層、12・・・・・・p型GaAs層、13
・・・・・・SiO2膜、14・・・・・・p側電極用
金属膜、15・・・・・・ n側電極用金属膜。
FIG. 1 is a cross-sectional view of a conventional laser device having a rib-type optical waveguide structure, and FIGS. 2a-2c are cross-sectional views of a manufacturing method according to an embodiment of the present invention. 8... N-type GaAs substrate, 9...G
al-XAlxAs layer, 10...n-type Ga, -
YAlyAs layer, 11... p-type Gal-FA
lx'As layer, 12...p-type GaAs layer, 13
... SiO2 film, 14 ... Metal film for p-side electrode, 15 ... Metal film for n-side electrode.

Claims (1)

【特許請求の範囲】 1 段差を有する半導体基板上に、クラッド層が、前記
段差部では光の吸収を防げる厚さで前記段差部以外の部
分では光が前記基板に吸収される厚さに形成され、前記
クラッド層上に活性層が前記段差部で傾斜するように形
成され、前記段差部と対向する位置で注入電流の制限を
行なう電流制限層が形成されるとともに、前記活性層の
厚さが前記段差部上の方が他の部分よりも厚いことを特
徴とする半導体レーザ装置。 2 半導体基板の表面に段差を形成する工程と、前記半
導体基板上にクラッド層を、前記段差部では光の吸収を
妨げる厚さに前記段差部以外の部分では光が前記基板に
吸収される厚さに形成する工程と、前記クラッド層上に
活性層を前記段差部で傾斜するように、かつ前記活性層
の厚さが前記段差部上の方が他の部分よりも厚くなるよ
うに形成する工程と、前記段差部と対向する位置で注入
電流の制限を行なう電流制限層を形成する工程とをそな
えてなることを特徴とする半導体レーザ装置の製造方法
[Scope of Claims] 1. A cladding layer is formed on a semiconductor substrate having a step to a thickness that prevents absorption of light in the step portion and a thickness that allows light to be absorbed by the substrate in portions other than the step portion. An active layer is formed on the cladding layer so as to be inclined at the stepped portion, and a current limiting layer for limiting the injection current is formed at a position facing the stepped portion, and the thickness of the active layer is is thicker above the stepped portion than at other portions. 2. A step of forming a step on the surface of the semiconductor substrate, and forming a cladding layer on the semiconductor substrate to a thickness that prevents absorption of light in the step portion and a thickness that allows light to be absorbed by the substrate in portions other than the step portion. and forming an active layer on the cladding layer so that it is inclined at the stepped portion, and the thickness of the active layer is thicker above the stepped portion than at other parts. A method for manufacturing a semiconductor laser device, comprising the steps of: forming a current limiting layer for limiting the injection current at a position facing the step portion;
JP15662178A 1978-05-22 1978-12-18 Semiconductor laser device and its manufacturing method Expired JPS5949718B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP15662178A JPS5949718B2 (en) 1978-12-18 1978-12-18 Semiconductor laser device and its manufacturing method
CA327,820A CA1127282A (en) 1978-05-22 1979-05-17 Semiconductor laser and method of making the same
US06/040,182 US4296387A (en) 1978-05-22 1979-05-18 Semiconductor laser
GB7917476A GB2038079B (en) 1978-05-22 1979-05-18 Semiconductor laser
FR7912791A FR2426992A1 (en) 1978-05-22 1979-05-18 SEMICONDUCTOR LASER AND MANUFACTURING OF THIS LASER
DE2920454A DE2920454C2 (en) 1978-05-22 1979-05-21 Semiconductor lasers and processes for their manufacture
US06/266,134 US4380861A (en) 1978-05-22 1981-05-21 Method of making a semiconductor laser by liquid phase epitaxial growths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15662178A JPS5949718B2 (en) 1978-12-18 1978-12-18 Semiconductor laser device and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5582483A JPS5582483A (en) 1980-06-21
JPS5949718B2 true JPS5949718B2 (en) 1984-12-04

Family

ID=15631707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15662178A Expired JPS5949718B2 (en) 1978-05-22 1978-12-18 Semiconductor laser device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5949718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240924U (en) * 1988-09-13 1990-03-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240924U (en) * 1988-09-13 1990-03-20

Also Published As

Publication number Publication date
JPS5582483A (en) 1980-06-21

Similar Documents

Publication Publication Date Title
JPH02205092A (en) Semiconductor device laser and its manufacture
JPS5940592A (en) Semiconductor laser element
JP3683416B2 (en) Super luminescent diode
JPS5949718B2 (en) Semiconductor laser device and its manufacturing method
JPH0231488A (en) Semiconductor laser device and its manufacture
JPH0671121B2 (en) Semiconductor laser device
JPH0376287A (en) Broad area laser
JPS5834988A (en) Manufacture of semiconductor laser
JPH1154841A (en) Semiconductor laser device and its manufacture
JPH0422033B2 (en)
JPS5925399B2 (en) Manufacturing method of semiconductor laser
JPH01132189A (en) Semiconductor laser element and manufacture thereof
JPS60137087A (en) Semiconductor laser device
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPH02240988A (en) Semiconductor laser
JPS6040719B2 (en) semiconductor laser equipment
JPS59184585A (en) Semiconductor laser of single axial mode
JPS59171187A (en) Semiconductor laser device
JPH0397286A (en) Semiconductor laser device and manufacture thereof
JPH03101286A (en) Semiconductor laser device
JPS5943839B2 (en) semiconductor laser
JPH0377675B2 (en)
JPS59200482A (en) Semiconductor laser device
JPS59222984A (en) Semiconductor laser device
JPS595688A (en) Semiconductor laser