JPS5947471B2 - Method for manufacturing insulated gate field effect semiconductor device - Google Patents

Method for manufacturing insulated gate field effect semiconductor device

Info

Publication number
JPS5947471B2
JPS5947471B2 JP49139096A JP13909674A JPS5947471B2 JP S5947471 B2 JPS5947471 B2 JP S5947471B2 JP 49139096 A JP49139096 A JP 49139096A JP 13909674 A JP13909674 A JP 13909674A JP S5947471 B2 JPS5947471 B2 JP S5947471B2
Authority
JP
Japan
Prior art keywords
oxidation
film
resistant
insulated gate
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49139096A
Other languages
Japanese (ja)
Other versions
JPS5164876A (en
Inventor
泰一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP49139096A priority Critical patent/JPS5947471B2/en
Publication of JPS5164876A publication Critical patent/JPS5164876A/en
Publication of JPS5947471B2 publication Critical patent/JPS5947471B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は絶縁ゲート型電界効果半導体装置の製造方法に
関し、とくにこれら半導体装置においてチャンネルスト
ッパ等の高不純物濃度領域を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an insulated gate field effect semiconductor device, and particularly to a method of forming a high impurity concentration region such as a channel stopper in these semiconductor devices.

MOS型素子等の絶縁ゲート型電界効果素子を用いる集
積回路においては素子間の電気的絶縁のためにチャンネ
ルストッパーの不純物拡散を行う場合が多く特にNチャ
ンネルMOS型集積回路においては必須の条件になつて
いる。このチャンネルストッパーは基板不純物と同じ導
電型を有する不純物を拡散して形成される。チャンネル
ストッパーとしての効果は不純物濃度が高い程よいがこ
の不純物領域がMOSトランジスターのソースもしくは
ドレインと重なる部分においてはあまり不純物濃度が高
いと接合耐圧の低下をまねくのでこの不純物濃度の範囲
もおのずと制限されてくる。そこで従来の集積回路では
チャンネルストッパー領域とソース、ドレイン領域とを
マスク上で切り離す様に配置をしていた。しかしながら
選択エッチングに使用される感光樹脂は多かれ少かれピ
ンホールが存在するので選択エッチの際所定領域外にも
ピンホール上のエッチングされる部分が生じてくる。従
つて高濃度不純物拡散をほどこす場合このピンホールで
の耐圧劣化のため従来の製造法では歩留りが低下してし
まう。したがつて実際的にはチャンネルストッパー部の
不純物濃度は耐圧に無関係に選定することができないの
が現状である。本発明は在来法に比べて高不純物濃度チ
ャンネルストッパー等の高濃度領域を安全に実現できる
方法を提供するものである。
In integrated circuits using insulated gate field effect elements such as MOS type elements, impurity diffusion of channel stoppers is often performed for electrical insulation between elements, which is an essential condition especially in N-channel MOS type integrated circuits. ing. This channel stopper is formed by diffusing impurities having the same conductivity type as the substrate impurities. The higher the impurity concentration, the better the effect as a channel stopper, but if the impurity concentration is too high in the area where this impurity region overlaps with the source or drain of the MOS transistor, the junction breakdown voltage will decrease, so the range of this impurity concentration is naturally limited. come. Therefore, in conventional integrated circuits, the channel stopper region and the source and drain regions are arranged so as to be separated on a mask. However, since the photosensitive resin used for selective etching has more or less pinholes, portions that are etched on the pinholes also occur outside the predetermined area during selective etching. Therefore, when high-concentration impurity diffusion is performed, the yield rate decreases in the conventional manufacturing method due to breakdown voltage deterioration due to the pinholes. Therefore, in reality, the impurity concentration of the channel stopper portion cannot be selected regardless of the withstand voltage. The present invention provides a method that can safely realize a high concentration region such as a high impurity concentration channel stopper compared to conventional methods.

本発明は、半導体基板上に絶縁物被膜と耐酸化性被膜と
を被着せしめる工程と、前記耐酸化性被膜上に第1のマ
スク層を選択的に設け該第1のマスク層が設けられてい
ない前記耐酸化性被膜の部分を選択的に除去してその下
の前記絶縁物被膜の部分を露呈せしめる工程と、残余せ
る前記耐酸化性被膜上および該耐酸化性被膜に隣接せる
該露呈せる絶縁物被膜の部分上に第2のマスク層を設け
、該耐酸化性被膜より離間せる該第2のマスク層の開口
下に高濃度の不純物領域を形成する工程と、前記残余せ
る耐酸化性被膜をマスクとして該耐酸化性被膜が設けら
れていない半導体基板の部分に厚い酸化膜を形成する工
程とを含むことを特徴とする絶縁ゲート型電界効果半導
体装置の製造方法である。
The present invention includes a step of depositing an insulating film and an oxidation-resistant film on a semiconductor substrate, and selectively providing a first mask layer on the oxidation-resistant film. a step of selectively removing a portion of the oxidation-resistant coating that has not been removed to expose a portion of the insulating coating thereunder; forming a high concentration impurity region under an opening in the second mask layer spaced apart from the oxidation-resistant film; This method of manufacturing an insulated gate field effect semiconductor device includes the step of forming a thick oxide film on a portion of the semiconductor substrate where the oxidation-resistant film is not provided, using the oxidation-resistant film as a mask.

本発明によれば、不純物領域は最終的に1016曜以上
の不純物濃度になるように制御することができる。
According to the present invention, the impurity region can be controlled to have an impurity concentration of 10<16> or more.

以下図面を参照して本発明の実施例を説明する2説明を
簡単にするためチヤンネルストツパ一が必須なNチヤン
ネルMOSについて述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will now be described with reference to the drawings.In order to simplify the explanation, an N-channel MOS in which a channel stopper is essential will be described.

本発明の実施例では、まず第1図Aに示すように不純物
濃度3×1015/C!!tのP型シリコン基板1上に
シリコン酸化膜2を500〜2000λそしてシリコン
窒化膜3を700〜3000X成長せしめ感光樹脂4に
よりシリコン窒化膜3のみをフツ素ガスプラズマにより
選択的に除去する。
In the embodiment of the present invention, first, as shown in FIG. 1A, the impurity concentration is 3×10 15 /C! ! A silicon oxide film 2 with a thickness of 500 to 2,000 λ and a silicon nitride film 3 of 700 to 3,000× are grown on a P-type silicon substrate 1 of t, and only the silicon nitride film 3 is selectively removed using a photosensitive resin 4 using fluorine gas plasma.

次いで第1図Bに示すように感光樹脂1をシリコン窒化
膜3おおうように選択配置しそこでシリコン酸化膜2の
露出部をフツ酸系のエツチング液によりエツチングする
。次いで第1図Cに示すようにシリコン酸化膜2とシリ
コン窒化膜3をマスクとしてp+ボロン拡散を770窒
C〜920℃の温度範囲で行いp+拡散領域5を形成す
る。ここでシリコン窒化膜3上の前記感光樹脂4および
lにピンホールがあつたとすると感光樹脂4のピンホー
ルではシリコン窒化膜3VCピンホールが出来るがシリ
コン酸化膜2にはピンホールが生じないし感光樹脂4′
(7)ピンホールではシリコン窒化膜3が全体を被覆し
ているのでシリコン酸化膜2のエツチングではピンホー
ルは形成されない。又、シリコン窒化膜3の存在しない
その側部側の感光樹脂1は第1図Bから明らかのように
その厚さは厚くなつているので貫通するピンホールは発
生しない。又、たとえここに細いピンホールが存在して
もソースドレイン領域から離れているのでその耐圧には
実質的に影響しない。従つて本方法において活性領域上
にピンホールが発生するのは感光樹脂4と4′f)ピン
ホールが重なりあり場合だけであり、これは確率的に言
つて全く生じないと言つてよい。
Next, as shown in FIG. 1B, a photosensitive resin 1 is selectively placed to cover the silicon nitride film 3, and the exposed portion of the silicon oxide film 2 is etched using a hydrofluoric acid-based etching solution. Next, as shown in FIG. 1C, using the silicon oxide film 2 and the silicon nitride film 3 as masks, p+ boron is diffused in a temperature range of 770 C to 920 DEG C. to form a p+ diffusion region 5. Here, if there is a pinhole in the photosensitive resin 4 and l on the silicon nitride film 3, the pinhole in the photosensitive resin 4 will create a pinhole in the silicon nitride film 3VC, but no pinhole will occur in the silicon oxide film 2, and the photosensitive resin 4′
(7) Since the silicon nitride film 3 covers the entire pinhole, no pinhole is formed by etching the silicon oxide film 2. Furthermore, as is clear from FIG. 1B, the thickness of the photosensitive resin 1 on the side where the silicon nitride film 3 is not present is thicker, so that no penetrating pinholes are generated. Further, even if a thin pinhole exists here, it does not substantially affect the withstand voltage since it is far from the source/drain region. Therefore, in this method, pinholes are generated on the active region only when the pinholes of the photosensitive resins 4 and 4'f) overlap, and it can be said that this does not occur at all in terms of probability.

即らp+ポロン拡散域5が所定の領域外に生ずる必配は
ない。次に第1図Dに示すように、窒化膜3をマスクと
して+P ボロン酸化を900℃〜1140℃の温度で
行い膜厚0.7〜1.4瞥μのシリコン酸化膜6を形成
しこれをマスクにしてシリコン酸化膜2及びシリコン窒
化膜3を各々フツ酸素およびリン酸系のエツチング液で
所定の時間エツチングを行い除去する。
That is, the p+ poron diffusion region 5 does not necessarily occur outside the predetermined region. Next, as shown in FIG. 1D, using the nitride film 3 as a mask, +P boron oxidation is performed at a temperature of 900° C. to 1140° C. to form a silicon oxide film 6 with a film thickness of 0.7 to 1.4 μm. Using as a mask, the silicon oxide film 2 and the silicon nitride film 3 are removed by etching for a predetermined period of time using an etching solution containing hydrogenated oxygen and phosphoric acid, respectively.

そして露呈したシリコン基板上に公知の方法で絶縁ゲー
ト型トランジスタを形成すればNチヤンネルMOS集積
回路が形成されることになる。この際形成されたソース
及びドレインのn+リン拡散域7および8はマスク合せ
された分だけp+ボロン拡散域5と分離され接合耐圧は
p+ボロン拡散域5の不純物濃度によらず基板1の不純
物濃度で決定されるのである。従つてp+ボロン拡散層
5の不純物濃度はチヤンネルストツパ一としての役割を
果たす目的のみで決められる高い値にすることができる
。以上本発明をNチヤンネルについて説明してきたがP
チヤンネルについても同様の効果を得る事ができるのは
明白である。
Then, by forming an insulated gate transistor on the exposed silicon substrate by a known method, an N-channel MOS integrated circuit will be formed. The n+ phosphorus diffusion regions 7 and 8 of the source and drain formed at this time are separated from the p+ boron diffusion region 5 by the mask alignment, and the junction breakdown voltage is independent of the impurity concentration of the p+ boron diffusion region 5 and the impurity concentration of the substrate 1. It is determined by Therefore, the impurity concentration of the p+ boron diffusion layer 5 can be set to a high value determined solely for the purpose of serving as a channel stopper. The present invention has been explained above regarding N channels, but P
It is clear that similar effects can be obtained with channels.

周本発明実施例では耐酸化性膜としてシリコン窒化膜を
使用1−たが他の材料たとえばアルミナ膜、タンタル、
モリブデンなどもエツチング液を考慮すれば使用可能で
ある。また本発明によつて形成される高不純物濃度領域
はチヤンネルストツパ一に限らず他の用途にも利用する
ことができるし、その導電型も基板の導電型と反対であ
つてもよい。さらにその形成も拡散に限らずイオン打込
などの他の手段によつてもよい。また厚い酸化膜6は設
けず通常のフイールド膜としてもよい。
In the embodiment of the present invention, a silicon nitride film is used as the oxidation-resistant film, but other materials such as alumina film, tantalum,
Molybdenum and the like can also be used if the etching solution is considered. Further, the high impurity concentration region formed according to the present invention can be used not only as a channel stopper but also for other purposes, and its conductivity type may be opposite to that of the substrate. Further, its formation is not limited to diffusion, but may also be performed by other means such as ion implantation. Further, the thick oxide film 6 may be omitted and a normal field film may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Dは本発明の実施例を示す断面図である。 図において1はシリコン基板、2はシリコン酸化膜、3
は耐酸化性被膜、4およびlは感光樹脂、5は基板と同
じ導電型を有する不純物拡散域、6は厚いシリコン酸化
膜、7および8はソース及びドレイン領載、9は配線ア
ルミニウム層である。
FIGS. 1A-1D are cross-sectional views showing an embodiment of the present invention. In the figure, 1 is a silicon substrate, 2 is a silicon oxide film, and 3 is a silicon substrate.
is an oxidation-resistant film, 4 and l are photosensitive resin, 5 is an impurity diffusion region having the same conductivity type as the substrate, 6 is a thick silicon oxide film, 7 and 8 are source and drain regions, and 9 is a wiring aluminum layer. .

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に絶縁物被膜と耐酸化性被膜とを被着
せしめる工程と、前記耐酸化性被膜上に第1のマスク層
を選択的に設け該第1のマスク層が設けられていない前
記耐酸化性被膜の部分を選択的に除去してその下の前記
絶縁物被膜の部分を露呈せしめる工程と、残余せる前記
耐酸化性被膜上および該耐酸化性被膜に隣接せる該露呈
せる絶縁物被膜の部分上に第2のマスク層を設け、該耐
酸化性被膜より離間せる該第2のマスク層の開口下に高
濃度の不純物領域を形成する工程と、前記残余せる耐酸
化性被膜をマスクとして該耐酸化性被膜が設けられてい
ない半導体基板の部分に厚い酸化膜を形成する工程とを
含むことを特徴とする絶縁ゲート型電界効果半導体装置
の製造方法。
1. A step of depositing an insulating film and an oxidation-resistant film on a semiconductor substrate, and selectively providing a first mask layer on the oxidation-resistant film, and a process in which the first mask layer is not provided. selectively removing a portion of the oxidation-resistant coating to expose the underlying portion of the insulating coating; and the exposed insulator on the remaining oxidation-resistant coating and adjacent to the oxidation-resistant coating. a step of providing a second mask layer on a portion of the coating, forming a high concentration impurity region under an opening in the second mask layer spaced apart from the oxidation-resistant coating; and removing the remaining oxidation-resistant coating. A method for manufacturing an insulated gate field effect semiconductor device, comprising the step of forming a thick oxide film as a mask on a portion of the semiconductor substrate where the oxidation-resistant film is not provided.
JP49139096A 1974-12-03 1974-12-03 Method for manufacturing insulated gate field effect semiconductor device Expired JPS5947471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49139096A JPS5947471B2 (en) 1974-12-03 1974-12-03 Method for manufacturing insulated gate field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49139096A JPS5947471B2 (en) 1974-12-03 1974-12-03 Method for manufacturing insulated gate field effect semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP59017950A Division JPS59188142A (en) 1984-02-03 1984-02-03 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5164876A JPS5164876A (en) 1976-06-04
JPS5947471B2 true JPS5947471B2 (en) 1984-11-19

Family

ID=15237390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49139096A Expired JPS5947471B2 (en) 1974-12-03 1974-12-03 Method for manufacturing insulated gate field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS5947471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500887A (en) * 1984-01-06 1986-05-08 ブランズウイツク コ−ポレ−シヨン Rapid bail release device for fishing

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162479A (en) * 1978-06-13 1979-12-24 Nec Corp Manufacture of semiconductor device
JPS5679444A (en) * 1979-12-03 1981-06-30 Toshiba Corp Semiconductor device and production thereof
JPS56135941A (en) * 1980-03-28 1981-10-23 Nec Corp Semiconductor ic device
JPS56142649A (en) * 1980-04-07 1981-11-07 Hitachi Ltd Semiconductor device
GB2084794B (en) * 1980-10-03 1984-07-25 Philips Electronic Associated Methods of manufacturing insulated gate field effect transistors
JPS5779667A (en) * 1980-11-05 1982-05-18 Fujitsu Ltd Manufacture of semiconductor device
JPS57136369A (en) * 1981-02-17 1982-08-23 Fujitsu Ltd Protective circuit element
JPS5837969A (en) * 1981-08-31 1983-03-05 Fujitsu Ltd Protection circuit element
JPH079385Y2 (en) * 1985-07-19 1995-03-06 三洋電機株式会社 Semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500887A (en) * 1984-01-06 1986-05-08 ブランズウイツク コ−ポレ−シヨン Rapid bail release device for fishing

Also Published As

Publication number Publication date
JPS5164876A (en) 1976-06-04

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US4889829A (en) Method for producing a semiconductor device having a silicon-on-insulator structure
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
JPS5947471B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPS61263261A (en) Manufacture of mos type semiconductor element
JPH0513426A (en) Semiconductor device
JPS6360549B2 (en)
JPH098135A (en) Manufacture of semiconductor device
JPH04316333A (en) Manufacture of thin-film transistor
JP3088556B2 (en) Semiconductor device manufacturing method
JPS62285468A (en) Manufacture of ldd field-effect transistor
JP2715479B2 (en) Method for manufacturing semiconductor device
JPH05129335A (en) Manufacture of vertical-type transistor
JPH0366815B2 (en)
JPS5834951B2 (en) Manufacturing method of semiconductor device
JPH0369137A (en) Manufacture of semiconductor integrated circuit
JPS63102241A (en) Semiconductor device and its manufacture
JPS6126223B2 (en)
JPH0251259B2 (en)
JPS58165370A (en) Manufacture of semiconductor device
JPS61180485A (en) Manufacture of mos semiconductor device
JPS6038874B2 (en) Method for manufacturing insulator gate field effect transistor
JPH0736441B2 (en) Method for manufacturing vertical field effect transistor
JPH04142749A (en) Manufacture of semiconductor device
JPH01238058A (en) Manufacture of high-speed bipolar transistor