JPS5944783B2 - Method for manufacturing complementary MOS semiconductor device - Google Patents

Method for manufacturing complementary MOS semiconductor device

Info

Publication number
JPS5944783B2
JPS5944783B2 JP55076388A JP7638880A JPS5944783B2 JP S5944783 B2 JPS5944783 B2 JP S5944783B2 JP 55076388 A JP55076388 A JP 55076388A JP 7638880 A JP7638880 A JP 7638880A JP S5944783 B2 JPS5944783 B2 JP S5944783B2
Authority
JP
Japan
Prior art keywords
type
drain
source
active region
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55076388A
Other languages
Japanese (ja)
Other versions
JPS572562A (en
Inventor
実 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55076388A priority Critical patent/JPS5944783B2/en
Publication of JPS572562A publication Critical patent/JPS572562A/en
Publication of JPS5944783B2 publication Critical patent/JPS5944783B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Description

【発明の詳細な説明】 本発明はソース、ドレイン及び配線層の形成に際しての
イオン注入工程を改良した相補型MOS半導体装置の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a complementary MOS semiconductor device that improves the ion implantation process for forming source, drain, and wiring layers.

周知の如く、相補型MOS半導体装置(以下単にCMO
Sと略す)は通常、n型シリコン基板にp型ウェルを選
択的に形成した半導体基体を作製し、このn型領域にp
チャンネルMOSトランジスタを、p型領域にnチャン
ネルMOSトランジスタを夫々形成したものである。
As is well known, complementary MOS semiconductor device (hereinafter simply CMO)
(abbreviated as S) is usually made by fabricating a semiconductor substrate in which a p-type well is selectively formed on an n-type silicon substrate, and a p-well is formed in this n-type region.
A channel MOS transistor is formed in a p-type region, and an n-channel MOS transistor is formed in a p-type region.

かかるCMOSは過渡時にしか電力を消費しない、基板
効果の影響を受けにくい、雑音余裕度が入きい、広い電
源電圧の範囲で動作する等の特長を有する。ところで、
従来のCMOSは次のような方法により製造されている
Such CMOS has features such as consuming power only during transient times, being less susceptible to substrate effects, having a high noise margin, and operating over a wide power supply voltage range. by the way,
Conventional CMOS is manufactured by the following method.

まず、n型シリコン基板1にp−ウェル領域2を選択的
に形成して半導体基体3を作製し、熱酸化処理を施して
一部がゲート酸化膜となるシリコン酸化膜4を成長させ
た後、選択酸化技術により各素子領域を分離するフィー
ルド酸化膜5を成長させる。ひきつづき、各活性領域と
してn型シリコン基板1及ひp−ウェル領域2のシリコ
ン酸化膜4上に多結晶シリコンからなるゲート電極6、
、62を形成する(第1図a図示)。つづいて、n型不
純物としての砒素をイオン注入する。この時、第1図b
の如くp−ウェル領域2及びn型シリコン基板1のシリ
コン酸化膜4を通して砒素がイオン狂人されるが、n型
シリコン基板1への砒素4オン注入層にはその後の工程
で砒素より拡散度合の高いp型不純物が注入されるため
両領域に砒素が注入されても問題ない。次いC、p−ウ
ェル領域2側をレジスト膜7で被覆した後、p型の不純
物としてのボロンをシリコン酸化膜4を通してn型シリ
コン基板1vCイオン注入する(第1図c図示)。その
後、レジスト膜6を除去した後、1000℃で30〜4
0分間程度熱処理してp−ウェル領域2及びn型シリコ
ン基板1表面層の各イオン圧入層を活性化、拡散してn
型シリコン基板1にp+型のソース81、ドレイン9、
、及びp+型の配線層101を、pーウェル領域2にn
+型のソース82、ドレイン92及ひn+型の配線層1
02を、形成してCMOSを製造する(第1図d図示)
。しかしながら、上述した従来法にあつてはボロンが砒
素に比べて質量が小さく、ストツプパワ一が小さいため
、同程度の加速電圧でイオン注入しても深いピーク値を
持つ。
First, a p-well region 2 is selectively formed on an n-type silicon substrate 1 to produce a semiconductor substrate 3, and a thermal oxidation treatment is performed to grow a silicon oxide film 4, a portion of which becomes a gate oxide film. Then, a field oxide film 5 separating each element region is grown using a selective oxidation technique. Subsequently, a gate electrode 6 made of polycrystalline silicon is formed on the silicon oxide film 4 of the n-type silicon substrate 1 and the p-well region 2 as each active region.
, 62 (as shown in FIG. 1a). Subsequently, arsenic ions as an n-type impurity are implanted. At this time, Figure 1b
Arsenic is ionized through the p-well region 2 and the silicon oxide film 4 of the n-type silicon substrate 1 as shown in FIG. Since a high p-type impurity is implanted, there is no problem even if arsenic is implanted into both regions. After covering the C and p-well regions 2 with a resist film 7, boron ions as a p-type impurity are implanted into the n-type silicon substrate 1vC through the silicon oxide film 4 (as shown in FIG. 1c). After that, after removing the resist film 6,
Heat treatment is performed for approximately 0 minutes to activate and diffuse each ion implantation layer in the p-well region 2 and the surface layer of the n-type silicon substrate 1.
A p+ type source 81, a drain 9,
, and a p+ type wiring layer 101 in the p-well region 2.
+ type source 82, drain 92 and n+ type wiring layer 1
02 to manufacture CMOS (as shown in FIG. 1d)
. However, in the conventional method described above, since boron has a smaller mass and a smaller stop power than arsenic, even if ions are implanted at the same acceleration voltage, the peak value is deep.

このため、p−ウエル領域2に形成されるnチヤンネル
側のソース82、ドレイン92及び配線層102は0.
2μm程度の深さであるのに対し、pチヤンネル側のソ
ース81ドレイン91及ひ配線層101は深さが0.6
μmとかなvの差が生じる。その結果、pチヤンネルM
OSトランジスタの横方向拡散が入きく渇楓実効チヤン
ネル長が減少し、シヨートチヤノネル効果等が発生する
。このような問題点の改善策として、pチヤンネル側の
ソース、ドレイン形成のためのボロンイオン注入に}い
て、1イオン注入量を減少させる、2加速電圧を下げる
、3ソース、ドレインの酸化膜厚を厚くする等の方法が
考えられる。
Therefore, the source 82, drain 92, and wiring layer 102 on the n-channel side formed in the p-well region 2 are 0.0.
The depth is approximately 2 μm, whereas the source 81, drain 91, and wiring layer 101 on the p channel side have a depth of 0.6 μm.
There is a difference in v, such as μm. As a result, p channel M
As a result of lateral diffusion of the OS transistor, the effective channel length decreases, resulting in short channel effects and the like. Measures to improve these problems include (1) reducing the ion implantation amount, (2) lowering the acceleration voltage, and (3) increasing the oxide film thickness of the source and drain when boron ions are implanted to form the source and drain on the p-channel side. Possible methods include making it thicker.

しかしながら、1の方法では同時に形成されるp+配線
層の抵抗が高くなるため、高速動作の障害となる。2の
方法では加速電圧を下げると、イオン注入時間が大幅に
延長されることや、低加速電圧にも限界がある。
However, in method 1, the resistance of the p+ wiring layer formed at the same time becomes high, which becomes an obstacle to high-speed operation. In method 2, when the acceleration voltage is lowered, the ion implantation time is significantly extended, and there is a limit to the low acceleration voltage.

更に3の方法ではソース、ドレインの酸化膜厚を厚くす
る場合、pチヤンネル側のソース、ドレインのみを選択
的に酸化することは、工程上非常に困難であり、全面酸
化が余儀なくされ、nチヤンネル側のソース、ドレイン
上の酸化膜も当然厚くないため、砒素イオン注入の加速
電圧を高くしなければならない不都合さがある。即ち、
砒素イオンの加速電圧が100ke度になると、ゲート
電極下のゲート酸化膜、ゲート領域への砒素の抜き抜け
を招き、チャンネル長の減少によるシヨートチヤンネル
の問題が生じる。これに対し、本発明者は上記欠点を克
服すべく鋭意研究を重ねた結果、n型活性領域、つまり
pチヤンネル側のソース、ドレイン形成予定部に酸素を
選択的にイオン注入し、熱処理して他の領域に比べて厚
い酸化膜を形成することによつて、n型活性領域へのp
型不純物の選択的なイオン注入に際し、同領域のソース
、ドレインと配線層とに注入されるp型不純物量を酸化
膜の膜厚差により制御でき、ソース、ドレインの形成予
定部にはより少ないp型不純物量を、配線層の形成予定
部にはより多いp型不純物量を注入できることを究明し
た。
Furthermore, in method 3, when increasing the thickness of the oxide film on the source and drain, it is very difficult to selectively oxidize only the source and drain on the p-channel side, and the entire surface is forced to be oxidized. Naturally, the oxide films on the side sources and drains are not thick either, so there is an inconvenience that the accelerating voltage for arsenic ion implantation must be increased. That is,
When the accelerating voltage of arsenic ions reaches 100 ke degrees, arsenic escapes into the gate oxide film and gate region under the gate electrode, resulting in a short channel problem due to a decrease in channel length. In order to overcome this drawback, the inventor of the present invention has conducted extensive research to overcome the above-mentioned drawbacks, and has found that by selectively implanting oxygen ions into the n-type active region, that is, the portion where the source and drain are to be formed on the p-channel side, and performing heat treatment. By forming a thicker oxide film than other regions, p
When selectively implanting p-type impurities, the amount of p-type impurities implanted into the source, drain, and wiring layer in the same region can be controlled by the difference in the thickness of the oxide film, and less p-type impurity is implanted into the areas where the source and drain are planned to be formed. It has been found that a larger amount of p-type impurity can be implanted into the portion where the wiring layer is to be formed.

その結果、p型活性領域にもn型不純物を選択的に、イ
オン注入した後、高温熱処理を施すことによつて、pチ
ヤンネル側のソース、ドレインの深さを浅くできると同
時に、p+配線層の高濃度化、ひいては低抵抗化をでき
、nチヤンネルMOSトランジスタと同程度のチヤンネ
ル長に設定できるCMOSの製造方法を見い出した。す
なわち、本発明はp型及びn型導電性の活性領域を備え
た半導体基体に、ゲート電極並ひに該活性領域と逆導電
型のソース、ドレイン及び配線層を夫々設けた構潰の相
補型MOS半導体装置を製造するにあたり、半導体基体
の主面に酸化膜を形成した後、各活性領域の酸化膜上の
一部にゲート電極を形成する工程と、該基体のn型活性
領域のソース、ドレイン形成予定部に酸素を選択的にイ
オン注入した後、熱処理を施して該ソース、ドレイン形
成予定部の酸化膜の膜厚を増人させる工程と、前記n型
活性領域のみにp型の不純物を膜厚の異なる酸化膜を通
して選択的にイオン注入する工程と、前記半導体基体の
p型活性領域にn型の不純物を酸化膜を通して選択的に
イオン注入する工程と、各不純物のイオン注入後、熱処
理を施して各活性領域に該活性領域と逆導電型のソース
、ドレイン及び配線層を形成する工程とを具備したこと
を特徴とするものである。本発明に用いるゲート電極材
料としては、例えば多結晶シリコン、不SB物ドープ多
結晶シリコン、或いはモリブデンシリサイド、タングス
テンシリサイド、タンタルシリサイド、白金シリサイド
などの金属硅化物等を挙げることができる。
As a result, by selectively ion-implanting n-type impurities into the p-type active region and then performing high-temperature heat treatment, the depth of the source and drain on the p-channel side can be made shallow, and at the same time, the depth of the source and drain on the p+ wiring layer can be reduced. We have discovered a method for manufacturing CMOS that can increase the concentration of MOS transistors, lower the resistance, and set the channel length to the same level as that of an n-channel MOS transistor. That is, the present invention provides a complementary structure in which a gate electrode, a source, a drain, and a wiring layer of the opposite conductivity type to the active region are provided on a semiconductor substrate having p-type and n-type conductivity active regions, respectively. In manufacturing a MOS semiconductor device, after forming an oxide film on the main surface of a semiconductor substrate, a step of forming a gate electrode on a portion of the oxide film of each active region, a source of the n-type active region of the substrate, After selectively ion-implanting oxygen into the region where the drain is to be formed, heat treatment is performed to increase the thickness of the oxide film in the region where the source and drain are to be formed, and p-type impurity is added only to the n-type active region. selectively ion-implanting n-type impurities into the p-type active region of the semiconductor substrate through the oxide film, and after ion-implanting each impurity, The method is characterized by comprising a step of applying heat treatment to each active region to form a source, a drain, and a wiring layer of a conductivity type opposite to that of the active region. Examples of gate electrode materials used in the present invention include polycrystalline silicon, non-SB doped polycrystalline silicon, and metal silicides such as molybdenum silicide, tungsten silicide, tantalum silicide, and platinum silicide.

本発明におけるn型活性領域(例えばn型シリコン基板
)のソース、ドレイン形成予定部への選択的な酸素イオ
ン注入及ひ熱処理は同領域の配線層形成予定部上の酸化
膜に比べてソース、ドレイン形成予定部上の酸化膜の膜
厚を人きくして、その後のp型不純物のイオン注入に際
して該酸化膜の膜厚差を利用して不純物注入度合を変え
る役目をする。
In the present invention, the selective oxygen ion implantation and heat treatment into the source and drain formation areas of the n-type active region (for example, n-type silicon substrate) are performed in comparison to the oxide film on the wiring layer formation areas in the same area. The film thickness of the oxide film on the portion where the drain is to be formed is adjusted, and the difference in the film thickness of the oxide film is used to change the degree of impurity implantation during subsequent ion implantation of p-type impurities.

かかるイオン注入条件及び熱処理条件は形成すべきpチ
ャンネル側のソース、ドレインの深さ、配線層の抵抗等
により適宜選定すればよい。但し、本光明では上記イオ
ン注入条件、熱処理条件を変えることにより、簡便にソ
ース、ドレインの深さ及び配線層の抵抗を制御できる利
点を有する。本発明にふ一けるp型不純物としては、ボ
ロン,アンチモン等を、n型不純物としては砒素、リン
等を、挙げることができる。
Such ion implantation conditions and heat treatment conditions may be appropriately selected depending on the depth of the source and drain on the p-channel side to be formed, the resistance of the wiring layer, etc. However, the present invention has the advantage that the depths of the source and drain and the resistance of the wiring layer can be easily controlled by changing the ion implantation conditions and heat treatment conditions. Examples of p-type impurities in the present invention include boron, antimony, etc., and examples of n-type impurities include arsenic, phosphorus, etc.

次に、本発明の実施例を第2図a−dを参照して説明す
る。
Next, embodiments of the present invention will be described with reference to FIGS. 2a-d.

実施例 (1)まず、n型シリコン基板101にp−ウエル領域
102を選択的に形成して半導体基体103を作成した
後、熱酸化処理を施して該基体103李面に=部がゲー
ト絶縁膜となる厚さ100人 1のSiO2膜104を
成長させた。
Example (1) First, a p-well region 102 is selectively formed on an n-type silicon substrate 101 to create a semiconductor substrate 103, and then a thermal oxidation treatment is performed to form a gate insulating portion on the surface of the substrate 103. A SiO2 film 104 having a thickness of 100 mm was grown to form a film.

ひきつづき、選択酸化技術により各活性領域(n型シリ
コン基板101、p−ウエル領域102)を分離すると
共に、各活性領域内のソース、ドレインと配線層を分離
するフイールド酸化膜105を成長させた後、n型シリ
コン基板101及びpウエル領域102のチャンネル領
域のSiO2膜104上に多結晶シリコンからなるゲー
ト電極1061,1062を形成した。つづいて、写真
蝕刻法により半導体基体103のp−ウエ :ル領域1
02及びn型シリコン基板101の配線層形成予定部を
覆うレジストパターン107を形成し、該パターン10
7をマスクとして酸素を出力90keV,ドーズ量1×
1016/CT!lの条件でnチヤンネル側のソース、
ドレイン形成予定部にイオン注入した後、熱処理を施し
た。この時、第2図aに示す如く、n型シリコン基板の
ソース、ドレイン形成予定部には厚さ1500式の厚い
SiO2膜108が形成され、同基板101の配線層形
成予定部のSiO2膜104に比べて膜厚を増大した。
Subsequently, each active region (n-type silicon substrate 101, p-well region 102) is separated by selective oxidation technology, and a field oxide film 105 is grown to separate the source, drain, and wiring layer in each active region. , gate electrodes 1061 and 1062 made of polycrystalline silicon were formed on the n-type silicon substrate 101 and the SiO2 film 104 in the channel region of the p-well region 102. Subsequently, the p-well region 1 of the semiconductor substrate 103 is formed by photolithography.
A resist pattern 107 is formed to cover the wiring layer formation portion of the n-type silicon substrate 101 and the n-type silicon substrate 101.
7 as a mask, output oxygen at 90 keV, dose amount 1×
1016/CT! The source on the n channel side under the condition of l,
After ion implantation into the region where the drain was to be formed, heat treatment was performed. At this time, as shown in FIG. 2a, a thick SiO2 film 108 with a thickness of 1,500 mm is formed in the portions of the n-type silicon substrate where the source and drain are to be formed, and the SiO2 film 108 is formed in the portions of the same substrate 101 where the wiring layers are to be formed. The film thickness has been increased compared to .

(1;)次いで、レジストパターン107を除去し、再
度写真蝕刻法によりp−ウエル領域102を覆うレジス
トパターン109を形成した後、該パターン109をマ
スクとして露出するn型シリコン基板101にボロンを
出力40keV、ドーズ量5×1015/c−!ILの
条件にてイオン注入した。
(1;) Next, the resist pattern 107 is removed and a resist pattern 109 covering the p-well region 102 is formed again by photolithography, and then boron is applied to the exposed n-type silicon substrate 101 using the pattern 109 as a mask. 40keV, dose 5×1015/c-! Ion implantation was performed under IL conditions.

この時、第2図bに示す如くn型シリコン基板101の
ソース、ドレイン形成予定部のSiO2膜108力糟′
層形成予定部のSiO2膜104よジ厚膜が厚いことに
より、ソース、ドレイン形成予定部には浅く、かつ低濃
度のボロン注人層110,110が、配線層形成予定部
には深く、高濃度のボロンイオン注人層111が、形成
された。(1i1)次いで、レジストパターン109を
除去し、全面に砒素を出力50keV1ドーズ量5×1
015/CT!lの条件にてイオン注入した。
At this time, as shown in FIG.
Since the SiO2 film 104 is thicker than the SiO2 film 104 in the area where the layer is to be formed, shallow and low concentration boron implanted layers 110, 110 are formed in the area where the source and drain are to be formed, and deep and high concentration boron implanted layers are formed in the area where the wiring layer is to be formed. A concentrated boron ion implantation layer 111 was formed. (1i1) Next, the resist pattern 109 is removed and arsenic is applied to the entire surface at a dose of 50 keV1 at a dose of 5×1
015/CT! Ion implantation was performed under conditions of 1.

この時、第2図cに示す如くp−ウエル領域102のソ
ース、ドレイン形成予定部及び配線層形成予定部に夫々
同深さ、同濃度の砒素イオン注入層112,112,1
13が形成された。な卦、この時n型シリコン基板10
1にも砒素がイオン注入されるが、予め形成されたボロ
ンイオン注入層110,110,111は砒素に比べて
拡散係数が人きいためpチヤンネル側のソース、ドレイ
ン及ひ配線層形成には何んら影響しない。(!ψ 次い
で、各不純物イオン注入後の半導体基体103を100
0′Cで30〜40分間程度熱処理した。この時、第2
図dに示すようにn型シリコン基板101のボロンイオ
ン注入層110,110,111が電気的に活性され、
かつ拡散してp+型のソース1141、ドレイン115
1及ひp+配線層1161が、p−ウエル領域102の
砒素イオン注入層112,112,113が電気的に活
性され、かつ拡散してn+型のソース1142、ドレイ
ン1152,n+配線層1162が、形成されCMOS
が製造された。しかして、本実施例においてpチヤンネ
ルMOSトランジスタが形成されるn型シリコン基板1
01のソース、ドレイン形成予定部に同基板101の配
線層形成予定部より厚いSiO2膜108を選択的に形
成でき、ボロンイオンの注入度合を変えることが可能と
なる。
At this time, as shown in FIG. 2c, arsenic ion-implanted layers 112, 112, 1 with the same depth and the same concentration are formed in the source and drain portions of the p-well region 102 and the wiring layer formation portions, respectively.
13 were formed. At this time, the n-type silicon substrate 10
Arsenic is also ion-implanted into No. 1, but since the pre-formed boron ion-implanted layers 110, 110, and 111 have a higher diffusion coefficient than arsenic, what is needed to form the source, drain, and wiring layers on the p-channel side? It doesn't affect anything. (!ψ Next, the semiconductor substrate 103 after each impurity ion implantation is
Heat treatment was performed at 0'C for about 30 to 40 minutes. At this time, the second
As shown in FIG. d, the boron ion implantation layers 110, 110, 111 of the n-type silicon substrate 101 are electrically activated.
and diffused into p+ type source 1141 and drain 115
The arsenic ion-implanted layers 112, 112, 113 in the p- well region 102 are electrically activated and diffused to form an n+ type source 1142, drain 1152, and n+ interconnect layer 1162. Formed CMOS
was manufactured. Therefore, in this embodiment, an n-type silicon substrate 1 on which a p-channel MOS transistor is formed.
The SiO2 film 108, which is thicker than the wiring layer formation area of the same substrate 101, can be selectively formed in the source and drain formation areas of the substrate 101, making it possible to change the degree of boron ion implantation.

このため、pチヤンネルトランジスタ側のソース114
,ドレイン115,のネさをnチヤンネルトランジスタ
側のソース1142,ドレイン1152と同程度の浅い
深さ(0.2μm)に制御でき、かつ同pチヤンネルト
ランジスタのp+配線層1161を高濃度で深くできる
。その結果、pチヤンネルトランジスタのチヤンネル長
がnチヤンネルトランジスタと同程度の長さで、p+配
線層1161が20〜30Ω/Cdと低抵抗化され高速
動作が可能なCMOSを簡単に得ることができた,以上
詳述した如く、本発明によればnチヤンネルMOSトラ
ンジスタの形成に悪影響を与えず、従来法の工程を人巾
に変更することなく、浅いソース、ドレインからなるシ
ヨートチヤンネルを抑制したpチヤンネルMOSトラン
ジスタを形成できると共に、同トランジスタ側のp+配
線層の高濃度化、低抵抗化を達成でき、もつて高速度、
高密度で高信頼性の相補型MOS半導体装置を製造でき
る等顕著な効果を有する。
Therefore, the source 114 on the p-channel transistor side
, drain 115, can be controlled to a shallow depth (0.2 μm) similar to that of the source 1142 and drain 1152 on the n-channel transistor side, and the p+ wiring layer 1161 of the same p-channel transistor can be deep with high concentration. . As a result, it was possible to easily obtain a CMOS in which the channel length of the p-channel transistor was comparable to that of the n-channel transistor, the p+ interconnection layer 1161 had a low resistance of 20 to 30 Ω/Cd, and was capable of high-speed operation. As described in detail above, according to the present invention, a p-channel MOS transistor that suppresses the short channel consisting of a shallow source and drain without adversely affecting the formation of an n-channel MOS transistor and without significantly changing the process of the conventional method. In addition to forming a channel MOS transistor, it is also possible to achieve high concentration and low resistance in the p+ wiring layer on the side of the transistor, resulting in high speed and
This method has remarkable effects such as being able to manufacture high-density and highly reliable complementary MOS semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a−dは従来法によるCMOSの製造工程を示す
断面図、第2図a−dは本発明の実施例におけるCMO
Sの製造工程を示す断面図である。 101・・・n型シリコン基板、102・・・p−ウエ
ル領域、103・・・半導体基体、104,108・・
・SlO2膜、105・・・フイールド酸化膜、106
1,1062・・・ゲート電極、1141・・・p+型
ソース、1151・・・p+型ドレイン、116,・・
・p+配線層、1142・・・n+型ソース、1152
・・・n+型ドレイン、1162・・・n+配線層。
1A to 1D are cross-sectional views showing the CMOS manufacturing process according to the conventional method, and FIGS.
FIG. 3 is a cross-sectional view showing the manufacturing process of S. 101... N-type silicon substrate, 102... P-well region, 103... Semiconductor base, 104, 108...
・SlO2 film, 105...Field oxide film, 106
1,1062...gate electrode, 1141...p+ type source, 1151...p+ type drain, 116,...
・p+ wiring layer, 1142...n+ type source, 1152
...n+ type drain, 1162...n+ wiring layer.

Claims (1)

【特許請求の範囲】[Claims] 1 p型及びn型導電性の活性領域を備えた半導体基体
の各活性領域に、ゲート電極並びに該活性領域と逆導電
型のソース、ドレイン及び配線層を夫々設けた構造の相
補型MOS半導体装置を製造するにあたり、半導体基体
の主面に酸化膜を形成した後、各活性領域の酸化膜上の
一部にゲート電極を形成する工程と、該基体のn型活性
領域のソース、ドレイン形成予定部に酸素を選択的にイ
オン注入した後、熱処理を施して該ソース、ドレイン形
成予定部の酸化膜の膜厚を増大させる工程と、前記半導
体基体のn型活性領域のみにp型の不純物を膜厚の異な
る酸化膜を通して選択的にイオン注入する工程と、前記
半導体基体のp型活性領域にn型の不純物を酸化膜を通
して選択的にイオン注入する工程と、各不純物のイオン
注入後熱処理を施して各活性領域に該活性領域と逆導電
型のソース、ドレイン及び配線層を夫々形成する工程と
を具備したことを特徴とする相補型MOS半導体装置の
製造方法。
1 Complementary MOS semiconductor device having a structure in which a gate electrode and a source, drain, and interconnection layer of the opposite conductivity type to the active region are respectively provided in each active region of a semiconductor substrate having active regions of p-type and n-type conductivity. In manufacturing, after forming an oxide film on the main surface of the semiconductor substrate, there is a step of forming a gate electrode on a part of the oxide film of each active region, and a planned source and drain formation of the n-type active region of the substrate. After selectively ion-implanting oxygen into the region, heat treatment is performed to increase the thickness of the oxide film in the region where the source and drain are to be formed, and p-type impurity is added only to the n-type active region of the semiconductor substrate. A step of selectively implanting ions through oxide films having different film thicknesses, a step of selectively implanting ions of an n-type impurity into the p-type active region of the semiconductor substrate through the oxide film, and a heat treatment after ion implantation of each impurity. 1. A method of manufacturing a complementary MOS semiconductor device, comprising the steps of: forming a source, a drain, and a wiring layer of a conductivity type opposite to that of the active region in each active region.
JP55076388A 1980-06-06 1980-06-06 Method for manufacturing complementary MOS semiconductor device Expired JPS5944783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55076388A JPS5944783B2 (en) 1980-06-06 1980-06-06 Method for manufacturing complementary MOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55076388A JPS5944783B2 (en) 1980-06-06 1980-06-06 Method for manufacturing complementary MOS semiconductor device

Publications (2)

Publication Number Publication Date
JPS572562A JPS572562A (en) 1982-01-07
JPS5944783B2 true JPS5944783B2 (en) 1984-11-01

Family

ID=13603938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55076388A Expired JPS5944783B2 (en) 1980-06-06 1980-06-06 Method for manufacturing complementary MOS semiconductor device

Country Status (1)

Country Link
JP (1) JPS5944783B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69426405T2 (en) * 1993-09-21 2001-07-19 Sekisui Chemical Co Ltd Foam material made from thermoplastic and silane-modified thermoplastic and method of making the same

Also Published As

Publication number Publication date
JPS572562A (en) 1982-01-07

Similar Documents

Publication Publication Date Title
JPH0628296B2 (en) Method for manufacturing semiconductor device
JPS6379368A (en) Manufacture of high performance bicmos composition with polycrystalline silicon emitter and silicide base
JPH0555484A (en) Manufacture of semiconductor device
JP3128323B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2776350B2 (en) Method for manufacturing semiconductor integrated circuit device
US5030581A (en) Method of fabricating a semiconductor apparatus
JP2727552B2 (en) Method for manufacturing semiconductor device
JPS6360549B2 (en)
JPS5944783B2 (en) Method for manufacturing complementary MOS semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH05226593A (en) Manufacture of semiconductor device
JP2997123B2 (en) Method for manufacturing semiconductor device
JP2544806B2 (en) Method for manufacturing semiconductor device
JPS60128668A (en) Manufacture of semiconductor device
JPS63302562A (en) Manufacture of mos type semiconductor device
JPH0322708B2 (en)
JPH0481327B2 (en)
JPH06163576A (en) Manufacture of semiconductor device
JP2808620B2 (en) Method for manufacturing semiconductor device
JP3061024B2 (en) Method for manufacturing semiconductor device
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JPH0431193B2 (en)
JPH04252075A (en) Semiconductor device and manufacture thereof
JP3008579B2 (en) Method for manufacturing semiconductor device
JP2828264B2 (en) Method for manufacturing semiconductor device