JPS5943973B2 - Manufacturing method of lead frame material for Ag plating - Google Patents

Manufacturing method of lead frame material for Ag plating

Info

Publication number
JPS5943973B2
JPS5943973B2 JP7866979A JP7866979A JPS5943973B2 JP S5943973 B2 JPS5943973 B2 JP S5943973B2 JP 7866979 A JP7866979 A JP 7866979A JP 7866979 A JP7866979 A JP 7866979A JP S5943973 B2 JPS5943973 B2 JP S5943973B2
Authority
JP
Japan
Prior art keywords
plating
lead frame
manufacturing
thin plate
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7866979A
Other languages
Japanese (ja)
Other versions
JPS563653A (en
Inventor
慎夫 篠田
知幸 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gakki Co Ltd
Original Assignee
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gakki Co Ltd filed Critical Nippon Gakki Co Ltd
Priority to JP7866979A priority Critical patent/JPS5943973B2/en
Publication of JPS563653A publication Critical patent/JPS563653A/en
Publication of JPS5943973B2 publication Critical patent/JPS5943973B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 この発明はAgメッキを施して用いられるFe−Ni−
Co系合金からなるリードフレーム素材の製法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to Fe-Ni-
The present invention relates to a method for manufacturing a lead frame material made of a Co-based alloy.

周知のように半導体集積回路装置のリードフレームや各
種真空管球のリード線等として使用される封着材料とし
ては、Ni29%、Co17%、残部Feなる組成で代
表されるいわゆるコバールと称されるFe−Ni−Co
系合金が知られている。
As is well known, the sealing material used for lead frames of semiconductor integrated circuit devices and lead wires of various vacuum tubes is Fe, also known as Kovar, which has a composition of 29% Ni, 17% Co, and the balance is Fe. -Ni-Co
alloys are known.

このようなFe−Ni−Co系封着合金の合金塊からリ
ードフレームの素材例えば細幅の薄片状素材を得る方法
としては、合金塊に圧延加工等の冷間加工を施して薄板
とした後、その薄板をスリツタ加工して細幅に裁断する
方法が一般的であり、またこのようにして得られた素材
をユーザー段階においてリードフレームに加工する際に
は、打抜加工または稀にはエッチング加工により前述の
素材をリードフレームの形状に加工し、さらにその表面
にAgメッキを施すのが一般的である。しかしながら前
述のようにして得られたFe−Ni−Co合金のリード
フレームは、その表面に直接Agメッキを施した場合に
メッキ層の密着性が悪く、このため例えば半導体集積回
路装置の組立工程におけるリードフレームヘのワイヤボ
ンデング工程の加熱温度によりAgメッキ層゛フクレ’
’が生じたりメッキ層が剥離してしまう等の問題が生じ
る。
A method for obtaining a material for a lead frame, such as a thin flake material, from an alloy ingot of such a Fe-Ni-Co sealing alloy is to cold-work the alloy ingot, such as rolling, to form a thin plate. The common method is to slit the thin plate and cut it into narrow widths, and when processing the material obtained in this way into lead frames at the user stage, punching or, in rare cases, etching is used. Generally, the above-mentioned material is processed into the shape of a lead frame, and the surface thereof is further plated with Ag. However, when the surface of the Fe-Ni-Co alloy lead frame obtained as described above is directly plated with Ag, the adhesion of the plating layer is poor. The Ag plating layer ``swells'' due to the heating temperature during the wire bonding process to the lead frame.
Problems such as ' may occur or the plating layer may peel off occur.

したがつて従来はAgメッキの前処理として、Cuまた
はNi等により素材表面にストライクメッキ(短時間高
電流密度メッキ)を施す必要があり、このためメッキ工
程が複雑となつてリードフレームの製造コストが高くな
る問題があり、またこのようにストライクメッキを施し
てからAgメッキを施しても、メッキ層の密着性が確実
かつ充分に良好となるとは限らないのが実情であつた。
またリードフレームの用途によつてはストライクメッキ
を避けなければならない場合もあり、このような場合に
は密着性を良好にすることは殆ど不可能であつた。さら
にリードフレーム素材は通常0.5困以下程度の薄質な
ものであるから、前述のような素材製造工程における冷
間圧延による残留応力等によつて歪が生じ易く、特にス
リツタ加工やその後の打抜加工等において薄片状の素材
が反り返つたりして、リードフレームの素材として不適
当となることが多い欠点もある。この発明は以上の問題
を有効に解決し得るAgメッキ用リードフレーム素材の
製法を提供することを目的とするものである。
Therefore, conventionally, as a pretreatment for Ag plating, it was necessary to perform strike plating (short-time high current density plating) on the material surface with Cu or Ni, etc., which complicated the plating process and increased lead frame manufacturing costs. There is a problem in that the metallurgy becomes high, and even if Ag plating is applied after strike plating, the adhesion of the plating layer is not always reliably and sufficiently good.
Further, depending on the use of the lead frame, strike plating may have to be avoided, and in such cases it has been almost impossible to improve adhesion. Furthermore, since the lead frame material is usually thin, about 0.5 mm thick or less, it is susceptible to distortion due to residual stress caused by cold rolling in the material manufacturing process, especially during slitting and subsequent processing. Another drawback is that the flaky material often warps during punching or the like, making it unsuitable as a material for lead frames. The object of the present invention is to provide a method for manufacturing a lead frame material for Ag plating that can effectively solve the above problems.

すなわちこの発明の製法は、通常リードフレーム素材と
して使用されているNl26〜32%,COl5〜19
%、残部Feなる組成を有するFe−Ni−CO系合金
に冷間圧延を施した後、還元性雰囲気中において480
℃〜650℃の温度で25分以上熱処理することを特徴
とするものであり、このように冷間圧延後に所定の熱処
理を施すことによつて、後のリードフレーム製造工程に
おけるAgメツキの密着性を良好にし、これによりAg
メツキの前処理としてのストライクメツキを不要にし、
併せて歪を少なくしたものである。以下この発明の製法
を詳細に説明する。
That is, the manufacturing method of this invention uses 26% to 32% Nl and 5% to 19% COl, which are normally used as lead frame materials.
%, the balance being Fe. After cold rolling, the Fe-Ni-CO alloy has a composition of 480% in a reducing atmosphere.
It is characterized by heat treatment at a temperature of ℃ to 650℃ for 25 minutes or more, and by performing a prescribed heat treatment after cold rolling, the adhesion of Ag plating in the subsequent lead frame manufacturing process is improved. This makes Ag
Eliminating the need for strike plating as a pretreatment for plating,
At the same time, distortion is reduced. The manufacturing method of this invention will be explained in detail below.

この発明で対象とするFe−Ni−CO系合金は一般に
半導体集積回路装置のリードフレームとして使用されて
いる合金であれば良く、したがつてその組成範囲はNl
26〜32%,COl5〜19%、残部Feであれば良
い。
The Fe-Ni-CO alloy targeted by this invention may be any alloy that is generally used as lead frames of semiconductor integrated circuit devices, and therefore its composition range is Nl
It may be 26 to 32%, CO1 5 to 19%, and the balance Fe.

この範囲外のFe−Ni−CO系合金はリードフレーム
素材として通常使用されていないから、この発明の対象
外である。この発明の製法においては、前述のような組
成範囲の合金塊に、最終的に目的とするリードフレーム
の厚みとなるまで冷間圧延を施し、しかる後、水素気流
中等の還元性雰囲気において480℃〜650℃の温度
範囲で25分以上、望ましくは500℃以上の温度で3
0分以上熱処理する。
Fe--Ni--CO alloys outside this range are not normally used as lead frame materials and are therefore outside the scope of this invention. In the manufacturing method of the present invention, an alloy ingot having the composition range described above is cold-rolled until it reaches the final thickness of the desired lead frame, and then rolled at 480°C in a reducing atmosphere such as a hydrogen stream. ~650℃ for 25 minutes or more, preferably 500℃ or higher for 3 minutes.
Heat treatment for 0 minutes or more.

ここで480℃未満の処理温度または25分未満の処理
時間では後のAgメツキにおけるメツキ層の密着性向上
効果が充分に得られず、かつ充分な歪除去効果が得られ
ない。また650℃を越える処理温度ではもはやメツキ
層密着性が向上せず、かつ歪除去効果も向上せず、また
逆に材料が軟化変形するおそれがある。さらに処理時間
の上限は任意であるが、4時間を越えてもそれ以上各効
果は向上しないから、通常は4時間以下とすることが望
ましい。このようにして得られた素材からリードフレー
ムを作成する場合には、通常はスリツタ加工によつて細
巾に裁断し、その後打抜加工等によつてリードフレーム
形状となし、次いで表面にAgメツキを施す。
Here, if the treatment temperature is less than 480° C. or the treatment time is less than 25 minutes, a sufficient effect of improving the adhesion of the plating layer in the subsequent Ag plating cannot be obtained, and a sufficient strain removal effect cannot be obtained. Furthermore, at a processing temperature exceeding 650° C., the adhesion of the plating layer will no longer be improved, nor will the strain removal effect be improved, and on the contrary, there is a risk that the material will soften and deform. Further, although the upper limit of the treatment time is arbitrary, it is usually desirable to set it to 4 hours or less, since each effect will not be further improved even if it exceeds 4 hours. When creating a lead frame from the material obtained in this way, it is usually cut into thin pieces using a slitting process, then punched into a lead frame shape, and then the surface is plated with Ag. administer.

このAgメツキにおいては、後述する試験結果から明ら
かとなるようにNiまたはCu等のストライクメツキを
前処理として施す必要がない。次にこの発明の実施例お
よび比較例を記す。
In this Ag plating, there is no need to perform strike plating with Ni or Cu as a pretreatment, as will be clear from the test results described later. Next, examples and comparative examples of the present invention will be described.

実施例 1Ni29,C017%、残部Feなる組成の
Fe一Ni−CO合金塊を冷間圧延して板厚0.25關
の薄板材を得た。
Example 1 A Fe-Ni--CO alloy ingot having a composition of 29% Ni, 17% CO, and the balance Fe was cold-rolled to obtain a thin plate material with a thickness of about 0.25.

この薄板材を水素気流中において500℃の温度で30
分間熱処理した。実施例 2 実施例1と同様にして薄板材を得、この薄板材に水素気
流中において600℃の温度で4時間熱処理を施した。
This thin plate material was heated at a temperature of 500°C for 30 minutes in a hydrogen stream.
Heat treated for minutes. Example 2 A thin plate material was obtained in the same manner as in Example 1, and this thin plate material was heat-treated at a temperature of 600° C. for 4 hours in a hydrogen stream.

比較例 1 実比例1と同様にして薄板材を得、この薄板材に特に熱
処理を施さなかつた。
Comparative Example 1 A thin plate material was obtained in the same manner as in Actual Proportion 1, and this thin plate material was not particularly heat-treated.

比較例 2 実施例1と同様にして薄板材を得、この薄板材に水素気
流中において400℃の温度で30分間熱処理を施した
Comparative Example 2 A thin plate material was obtained in the same manner as in Example 1, and this thin plate material was heat-treated at a temperature of 400° C. for 30 minutes in a hydrogen stream.

比較例 3 実施例1と同様にして薄板材を得、この薄板材に水素気
流中において500℃の温度で10分間熱処理を施した
Comparative Example 3 A thin plate material was obtained in the same manner as in Example 1, and this thin plate material was heat-treated at a temperature of 500° C. for 10 minutes in a hydrogen stream.

比較例 4 実施例1と同様にして薄板材を得、この薄板材に水素気
流中において600℃の温度で10分間熱処理を施した
Comparative Example 4 A thin plate material was obtained in the same manner as in Example 1, and this thin plate material was heat-treated at a temperature of 600° C. for 10 minutes in a hydrogen stream.

以上の各実施例および各比較例により得られた素材から
それぞれ50mm×50鱈(厚さ0.25mn)の試験
片を各30個切取り、その内各10個の試験片について
は0.5μm厚のNiストライクメツキを施した後、3
μm厚のAgメツキを施し、また他の各10個の試験片
については0.5μm厚のCuストライクメツキを施し
た後、同様にAgメツキを施し、さらに残りの各10個
の試験片についてはストライクメツキを施さずに直接3
μm厚のAgメツキを施した。
Thirty test pieces of 50 mm x 50 cod (thickness: 0.25 mm) were cut out from the materials obtained in each of the above examples and comparative examples, and each of the ten test pieces had a thickness of 0.5 μm. After applying Ni strike plating, 3
Ag plating with a thickness of μm was applied, and Cu strike plating with a thickness of 0.5 μm was applied to each of the other 10 test pieces, and then Ag plating was applied in the same manner. 3 directly without strike plating
Ag plating with a thickness of μm was applied.

そしてこれらのAgメツキ済の各試験片についてそのま
まの状態でのAgメツキ密着性、および集積回路装置組
立作業におけるワイヤボンデイング時の加熱条件と類似
する条件で加熱(電気炉により大気中において500条
C×5分間加熱)した場合のAgメツキ密着性を20倍
の実体顕微鏡により観察した。その観察結果を次表に示
す。なお表において不良数は10個の試験片中における
密着不良が発生した試験片の数を示し、また不良内容欄
における寸法(μmφ)は発生したフクレの大きさを示
し、同じく不良内容欄における点数は各不良試験片中の
フクレ発生点数を示す。表から明らかなように、この発
明の実施例により得られた試1験片は、Agメツキの前
処理としてNiまたはCuのストライクメツキを施さな
い場合であつてもAgメツキ層のフクレや剥離が生じる
ことがなく、また通常の半導体集積回路装置組立工程に
おけるワイヤボンデイング時の加熱と同様に加熱しても
Agメツキ層のフクレや剥離が生ぜず、したがつてAg
メツキ層の密着性が著しく良好である。
The Ag plating adhesion of each of these Ag-plated test pieces was determined in their original condition, and they were heated under conditions similar to those used during wire bonding in integrated circuit device assembly work (heating at 500 C in the atmosphere using an electric furnace). The adhesion of the Ag plating after heating for 5 minutes was observed using a stereomicroscope with a magnification of 20 times. The observation results are shown in the table below. In the table, the number of defects indicates the number of test pieces in which poor adhesion occurred among the 10 test pieces, and the dimension (μmφ) in the defect details column indicates the size of the blisters that occurred, and the score in the defect details column also indicates the size of the blisters that occurred. indicates the number of blistering points in each defective test piece. As is clear from the table, the first test piece obtained according to the example of the present invention showed no blistering or peeling of the Ag plating layer even when Ni or Cu strike plating was not applied as a pretreatment for Ag plating. Furthermore, the Ag plating layer does not blister or peel even when heated in the same way as heating during wire bonding in the normal semiconductor integrated circuit device assembly process.
The adhesion of the plating layer is extremely good.

また、前述の各実施例および各比較例と同様な組成のF
e−Ni−{′o系合金を厚さ0.25m7!L、幅3
0mmのコイル状薄板に冷間圧延し、これに熱処理を加
えない場合、および水素気流中において加熱温度および
加熱時間を各種に変化させた場合の歪量変化を第1図に
示す。
In addition, F of the same composition as each of the above-mentioned examples and comparative examples was used.
e-Ni-{'o alloy with a thickness of 0.25m7! L, width 3
FIG. 1 shows the change in strain amount when a 0 mm coiled thin plate is cold rolled and no heat treatment is applied to it, and when the heating temperature and heating time are varied in a hydrogen stream.

なおここで歪量dは第2図に示すようにコイル状薄片の
圧延方向Aに対し直角な板巾方向Bの平面に対する反り
量を示す。第1図から明らかなように、480℃以上、
25分以上の熱処理を施した素材は、未処理の素材の歪
量(第1図の8印)に比較して歪が格段に減少し、50
μn1以下となつている。ここでりードフレーム材とし
て使用する場合の歪許容限界は幅30mmにつき50μ
m以下とされているから、前述の熱処理によつてその値
が充分に満足されることが明らかである。なお、前述の
如く還元性雰囲気中における所定の熱処理によりAgメ
ツキの密着性が向上する原因は、還元性雰囲気での加熱
により素材表面が清浄化されるためであると思われる。
Here, the amount of strain d indicates the amount of warpage of the coiled thin piece with respect to the plane in the width direction B perpendicular to the rolling direction A. As is clear from Figure 1, over 480℃,
The material that has been heat treated for 25 minutes or more has a significantly reduced strain compared to the amount of strain of the untreated material (marked 8 in Figure 1).
μn1 or less. The allowable strain limit when used as a lead frame material is 50μ per 30mm width.
m or less, it is clear that this value is fully satisfied by the heat treatment described above. As mentioned above, the reason why the adhesion of Ag plating is improved by the predetermined heat treatment in a reducing atmosphere is thought to be that the surface of the material is cleaned by heating in a reducing atmosphere.

前述の説明で明らかなようにこの発明によれば、リード
フレームを製造する際のAgメツキの密着性が著しく良
好となり、したがつてAgメツキの前処理としてストラ
イクメツキを施す必要がないから、メツキ工程が簡単と
なつてリードフレームの製造コストが格段に安価となり
、かつ用途によつてストライクメツキを避けなければな
らない場合でも確実にメツキ層の密着性を向上させるこ
とができ、さらに歪も除去される等、各種の効果が得ら
れるものである。
As is clear from the above description, according to the present invention, the adhesion of Ag plating when manufacturing a lead frame is significantly improved.Therefore, there is no need to perform strike plating as a pretreatment for Ag plating, so the plating can be improved. The manufacturing process becomes simpler and the manufacturing cost of the lead frame becomes much cheaper, and even if strike plating must be avoided depending on the application, the adhesion of the plating layer can be reliably improved, and distortion can also be eliminated. Various effects can be obtained, such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の製法における熱処理条件を変化させ
た場合の歪量の変化を示すグラフ、第2図は前記歪量の
測定位置を示す略解図である。
FIG. 1 is a graph showing the change in the amount of strain when the heat treatment conditions in the manufacturing method of the present invention are changed, and FIG. 2 is a schematic diagram showing the measurement position of the amount of strain.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni26〜32%(重量%、以下同じ)、Co15
〜19%、残部Feなる組成のFe−Ni−Co系合金
を冷間圧延し、その後還元性雰囲気において480〜6
50℃の温度で25分以上熱処理することを特徴とする
Agメッキ用リードフレーム素材の製法。
1 Ni26-32% (weight%, same below), Co15
A Fe-Ni-Co alloy with a composition of ~19% Fe and the balance Fe is cold rolled, and then reduced to 480 ~ 6% in a reducing atmosphere.
A method for producing a lead frame material for Ag plating, which is characterized by heat treatment at a temperature of 50°C for 25 minutes or more.
JP7866979A 1979-06-23 1979-06-23 Manufacturing method of lead frame material for Ag plating Expired JPS5943973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7866979A JPS5943973B2 (en) 1979-06-23 1979-06-23 Manufacturing method of lead frame material for Ag plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7866979A JPS5943973B2 (en) 1979-06-23 1979-06-23 Manufacturing method of lead frame material for Ag plating

Publications (2)

Publication Number Publication Date
JPS563653A JPS563653A (en) 1981-01-14
JPS5943973B2 true JPS5943973B2 (en) 1984-10-25

Family

ID=13668261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7866979A Expired JPS5943973B2 (en) 1979-06-23 1979-06-23 Manufacturing method of lead frame material for Ag plating

Country Status (1)

Country Link
JP (1) JPS5943973B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118620A (en) * 1981-01-16 1982-07-23 Sumitomo Electric Industries Connecting cap for electronic part
JPS6123800U (en) * 1984-07-18 1986-02-12 赤井電機株式会社 Pickup Cartridge
JPH0670251B2 (en) * 1985-04-25 1994-09-07 日新製鋼株式会社 Manufacturing method of alloy for glass sealing
JPS6232631A (en) * 1985-08-05 1987-02-12 Hitachi Ltd Integrated circuit package
JPH0268907A (en) * 1988-09-05 1990-03-08 Amorufuasu Denshi Device Kenkyusho:Kk Inductor
JPH0658846B2 (en) * 1988-12-21 1994-08-03 株式会社アモルファス・電子デバイス研究所 Thin film inductor

Also Published As

Publication number Publication date
JPS563653A (en) 1981-01-14

Similar Documents

Publication Publication Date Title
JP2008045204A (en) Copper alloy sheet for electrical/electronic part with excellent oxide film adhesion
JPH0641660A (en) Cu alloy steel having fine structure for electric and electronic parts
JPS5943973B2 (en) Manufacturing method of lead frame material for Ag plating
JP2000104131A (en) High strength and high conductivity copper alloy and its production
US5205878A (en) Copper-based electric and electronic parts having high strength and high electric conductivity
JP6811136B2 (en) Cu-Ni-Si based copper alloy strip and its manufacturing method
JPH03188247A (en) Production of high strength and high conductivity copper alloy excellent in bendability
JPS6260838A (en) Copper alloy for lead frame
JPH02277735A (en) Copper alloy for lead frame
JP5988794B2 (en) Copper alloy sheet and manufacturing method thereof
JPS5943972B2 (en) Manufacturing method of lead frame material for Ag plating
JPS628501B2 (en)
JP2714561B2 (en) Copper alloy with good direct bonding properties
JPH0593230A (en) Lead frame material
JPS5887229A (en) Production of plate material for reed frame
JP6762333B2 (en) Cu-Ni-Si based copper alloy strip
JPH04231418A (en) Production of lead frame material
JP3160003B2 (en) Magnetic alloy steel strip without adhesion in magnetic annealing
JP3169675B2 (en) Fe-Ni alloy for lead frame and manufacturing method
JPH1140730A (en) Lead frame member superior in uniformity of plating thickness and manufacture thereof
JPH04221039A (en) Alloy material for lead frame and its production
JPH1140731A (en) Lead frame member superior in plating adhesion and manufacture thereof
JPH04224630A (en) Manufacture of lead frame material
JPH0762504A (en) Production of copper alloy material
JPS61242052A (en) Copper alloy lead material for semiconductor device