JPS5943575A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPS5943575A
JPS5943575A JP57153105A JP15310582A JPS5943575A JP S5943575 A JPS5943575 A JP S5943575A JP 57153105 A JP57153105 A JP 57153105A JP 15310582 A JP15310582 A JP 15310582A JP S5943575 A JPS5943575 A JP S5943575A
Authority
JP
Japan
Prior art keywords
thin film
polycrystalline germanium
hydrogen
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57153105A
Other languages
Japanese (ja)
Inventor
Takashi Nakagiri
孝志 中桐
Yutaka Hirai
裕 平井
Yoshiyuki Osada
芳幸 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57153105A priority Critical patent/JPS5943575A/en
Priority to DE19833331601 priority patent/DE3331601A1/en
Publication of JPS5943575A publication Critical patent/JPS5943575A/en
Priority to US06/937,432 priority patent/US4740829A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a field effect thin transistor which has high performance, high reliability and high stability by composing a main part of a polycrystalline germanium semiconductor layer which contains specific amount of hydrogen. CONSTITUTION:GeH4 gas which is diluted with H2 gas and B2H6 gas which is diluted with H2 gas are used as reactive gases, a glow discharge is performed to precipitate polycrystalline germanium thin film 401, a source electrode 403 and a drain electrode 404 are then formed, an SiNH film 405 are accumulated, aluminum is deposited, thereby forming a source electrode leading electrode 408, a drain electrode leading electrode 409 and a gate electrode 410. The quantity of hydrogen which is contained in a polycrystalline germanium thin film is preferably 0.01-3at%. When hydrogen amount exceeds 3at%, effective carrier mobility mueff decreases, an output drain current decreases with time, and a threshold voltage VTH varies.

Description

【発明の詳細な説明】 本発明は、電界効果トランジスタ等の半導体素子に関(
−1更に詳しくは、多結晶ゲルマニウム薄膜半導体層で
その主要部全構成した半導体素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices such as field effect transistors.
-1 More specifically, the present invention relates to a semiconductor device whose main parts are entirely composed of a polycrystalline germanium thin film semiconductor layer.

最近、画像読取用としての、長尺化された1次元フォト
センザーや大面積化された2次元フォトセンザー等の画
像1洸取装置の走査回路部、或は液晶(以下LCと記す
)や電界発光(以下ELと記す)やエレクトロクロミー
材料(以下ECと記す)を利用した画像表示デバイスの
駆動回路部を、これ等の大型化に伴って、所定の基板北
に形成されたシリコン薄膜を素材とじて形成するという
事が提案されている。そして、従来、ソリコン薄膜とし
ては、水素−化非晶質シリコン薄膜や多結晶シリコン、
・16γ膜の検討が試みられている。面乍ら高速、高機
能の読取装置の定在回路部や画像表示装置のIqK動回
路が要請する実効キャリアー移動度(以下μeff  
と記す)ノ が50−100.、i/v−sccijJlj−7のに
文=J して、非晶質シリコン薄膜を用いた簿膜トラン
ジスタ(T I” T )ではμeffが約0.1 c
J / V ・5ei=程度と小さい為、上記回路部を
構成するには必ずしも適当と幻−云えなかった。−力、
多結晶シリコン薄膜は非晶質シリコン薄膜に比べμef
f ’d大きいが、前8己要請に応える為にはアニール
工程を必要とする為、工程が複雑になり、目、つ犬面オ
Itに亘 jつて均一な膜がイkIらitない場合もある等の問題
があった。
Recently, the scanning circuit section or liquid crystal (hereinafter referred to as LC) of image scanning devices such as elongated one-dimensional photosensors and large-area two-dimensional photosensors for image reading has been developed. As the drive circuits of image display devices using EL, electroluminescence (hereinafter referred to as EL), and electrochromic materials (hereinafter referred to as EC) become larger, silicon formed on the north side of a predetermined substrate is used. It has been proposed to form a thin film as a material. Conventionally, solicon thin films include hydrogenated amorphous silicon thin films, polycrystalline silicon thin films,
- Attempts are being made to consider 16γ membranes. Of course, the effective carrier mobility (hereinafter referred to as μeff
) is 50-100. , i/v-sccijJlj-7's statement=J, and in a film transistor (TI"T) using an amorphous silicon thin film, μeff is about 0.1 c
Since it is as small as J/V.5ei, it cannot be said that it is necessarily suitable for constructing the above circuit section. -force,
The μef of polycrystalline silicon thin films is higher than that of amorphous silicon thin films.
However, in order to meet the above requirements, an annealing process is required, which complicates the process, and it may not be possible to obtain a uniform film over the eyes and the dog's face. There were also some problems.

他方、多結晶ゲルマニウム薄膜の形成17j:従来真空
蒸着法で試みられ、該方法でaられた膜のポール移動度
(以下”Hと記す)は数百c、d / V −式と極め
て大きく、μeffも大きいことが1t11待されてい
プこ。111’L、通常多結晶ゲルマニウムj# Hk
 L’fよ高a度のアクセグター準位が彩成さフする為
、11型或はr)型半導体への制御性が悪く、多結晶ゲ
ルマニウム薄膜半導体素子は実用に供−tセられていな
かつ4−6こ几i(l:所謂真性半導体が形成されにく
い為に不純物添j用によるゲルマニウl、−f′J体へ
のドーピング効率が極めて悪い為でJちった。
On the other hand, formation of polycrystalline germanium thin film 17j: Conventionally, a vacuum evaporation method was attempted, and the pole mobility (hereinafter referred to as "H") of the film obtained by this method was extremely large, several hundreds of c, d/V-formula. It is expected that μeff will also be large. 111'L, usually polycrystalline germanium j # Hk
Because the accessor level with a higher degree than L'f is formed, controllability to 11-type or r)-type semiconductors is poor, and polycrystalline germanium thin film semiconductor devices are not in practical use. 4-6 几i(l: J was chosen because it is difficult to form a so-called intrinsic semiconductor, and the doping efficiency of germanium l and -f'J bodies by impurity addition is extremely low.

又、ゲルマニウj−荷膜には熱処理によって11型半導
体かr、 p型半・4体へ変換−1るという熱的変換(
Thcrrna77 Conversion)と呼ばれ
る現象がqlられる為、熱射13ij工稈を含むデバイ
ス作成には不適で4)つた。この様に、従来作成された
多結晶ゲルマ−、ラム薄膜を素材とした素子或i7[デ
バイスが所望の勃性及び信頼性を充分発揮できなかった
のか↓見状である。
In addition, the germanium j-charge film undergoes a thermal transformation (conversion from an 11-type semiconductor to an r, p-type half-quadruple semiconductor by heat treatment).
It is unsuitable for the production of devices including heat radiation culms because a phenomenon called ``Thcrrna77 Conversion'' occurs. In this way, it appears that the conventionally produced devices made from polycrystalline gelmer and RAM thin films did not fully exhibit the desired erectile strength and reliability.

本発明C−↓)二n12諸点に鑑み成さ′11.たもの
で、末子性能のj7iい又、信頼性に富んだ半導体素子
を提供する一1N全目的とする。又、半導体の禁制帯中
に不純物準位の極めて少ない、即ち制御すべへ不純物添
mのドーピング効率の極めて良好な多結晶グルマエウム
ノ・、ケ11ζV看−川1ノ)l、y、、、 =ト:”
i’休;)4子を4“li1具する’Af k tj的
と−Jる。ψ(・(=p(r(基+:i h F IN
成される多結晶ン′ルマ一−ン、W、・:、I−J I
fζ)半・、1体5j・月を用いて、品性Y中でイSI
I・ii (1プバ高ぐ安定1イIJ)0−い、b界効
果j(、y)、の薄膜トランジスターを提供−i 、=
、 ’、hを・「1的とす、巳。Y1別には、優れ/(
、多4・、+1晶ゲル−ン、二゛ウム半導体層を用いた
電界効星型の’j’yQル、〒トジンジスクを(1゛へ
成素子と士る入[l□[1積化半・淳体yi’ ”: 
=(ス含、 jjJ供ずど)−1Sを[1的と−Jる。
The present invention C-↓) 2n12 In view of the various points '11. The overall purpose is to provide semiconductor devices with high performance and high reliability. In addition, there are very few impurity levels in the forbidden band of the semiconductor, that is, polycrystalline aluminum with extremely good doping efficiency of impurity addition m that can be controlled. :”
i'rest;) 4 children with 4 "li1 'Af k tj target and −J. ψ(・(=p(r(base +:i h F IN
The formed polycrystalline lumen, W, .:, I-J I
fζ) half, one body 5j, moon, ISI in quality Y
Provides a thin film transistor with I・ii (1 pb high and stable 1 i IJ) 0−i, b field effect j(,y),−i,=
,',h・``1 target, Snake.Y1 is excellent/(
, multi-4, +1 crystalline gel, field-effect star-type 'j'yQ' using a dium semiconductor layer, Han Juntai yi'”:
= (including s, jjJ) -1S is [1 and -J.

ル1.つ\る11的を達成する為の不発1明の半導体層
f it 3 atco旧0%社での水素を・含イfず
ろ多結晶ゲルマニウム−j′導体1−でその主要部がf
lrj成されでいるJiを4′r1孜と−する。
Le1. The uninvented semiconductor layer to achieve the 11th goal is a polycrystalline germanium conductor 1- containing hydrogen at 3 ATCO's former 0% company, the main part of which is f.
Let Ji, which is formed by lrj, be 4'r1.

上記の様な水素酸を含有する多結晶ゲルマニウム薄膜を
1伺として作製さt′する平導体素子はその′祇気的!
j’を件が良く、経時変化もなく、fjl、つ素子の歩
゛、1′7り及びバラツギも著しく向上させる2)Eが
できる。その為、LC,l:L或d−」うC等を利用し
た表示、或(」画像デバーイス等の走査回路や駆動回路
等を安定して提供′ン−る(−とが出来る。
A flat conductor element fabricated using a polycrystalline germanium thin film containing hydrogen acid as described above is unique!
2) E can be achieved in which j' is well maintained, does not change over time, and fjl, and the step, 1'7, and variation of the elements are significantly improved. Therefore, it is possible to stably provide a display using LC, L, C, etc., or a scanning circuit, a driving circuit, etc. for an image device, etc.

本発明の多結晶ゲルマニウム薄膜を素材として作成さt
’Lる半導体素子の一例としての電界効果型の薄膜トラ
ンジスタ(TPT )は半導体層、電極層、絶縁層を用
いたトランジスタとして知られている。即ち、半導体層
に隣接したオーミックlコンタクトを持ったソース′i
L 極・ドレイン電極間に、1圧を印加し、そこを流れ
るチャンネル電流を絶縁層を介して設けたゲート電極に
かけるバイアス跪圧により変調される。
Created using the polycrystalline germanium thin film of the present invention as a material.
A field effect thin film transistor (TPT) as an example of a semiconductor element is known as a transistor using a semiconductor layer, an electrode layer, and an insulating layer. That is, the source ′i with an ohmic l contact adjacent to the semiconductor layer
One voltage is applied between the L pole and the drain electrode, and the channel current flowing therein is modulated by the bias voltage applied to the gate electrode provided through the insulating layer.

第1図にはこのようなTPTの典型的な基本構造の一例
が示される。絶縁性基板lO1上に設けら7した半導体
層102上にソース電極103、ドレイン電極104が
接して設けてあり、これ等を岐覆する様に絶縁層105
が設(弓られ、該絶縁層105 kにグート’4極10
6がある。
FIG. 1 shows an example of a typical basic structure of such a TPT. A source electrode 103 and a drain electrode 104 are provided on and in contact with a semiconductor layer 102 provided on an insulating substrate lO1, and an insulating layer 105 is provided so as to cover these.
is provided (bowed, and the insulating layer 105k has 4 poles 10
There are 6.

本発明に於ける第1図に示される構造を有するT F 
T Mこ於いては、半導体層102(徒、前述した茹性
存・有する多結晶ゲルマニウム薄膜で構成さ71、半導
体層102と2つの電極、即ち、ソース′眠極103、
ドレインiLI示104の各々との間に1・;1、第1
の【]層107、自52(7) n層108が設けらノ
15、オーミックコンタクトを)形成している。
T F having the structure shown in FIG. 1 in the present invention
In this case, a semiconductor layer 102 (composed of the above-mentioned boiled polycrystalline germanium thin film 71), a semiconductor layer 102 and two electrodes, ie, a source 'sleep electrode 103',
1.;1, the first
[ ] layer 107, self 52 (7) n layer 108 is provided (no 15, ohmic contact)).

絶縁層1051(、’、 CV D (Chemica
eVapourl)e I)OS i日on)、L I
’ CV 1.) (Low Presu re Ch
emicalVapour Deposition )
、又はPCV 1.) (P/FasmaChemic
aeVapour Deposition)等で形成さ
れるノリコンナイトライド、S+O,! A−1zos
+等の材料で構成される。
Insulating layer 1051 (,', CV D (Chemica
eVapourl) e I) OS i day on), L I
'CV 1. ) (Low Presu re Ch.
(Emical Vapor Deposition)
, or PCV 1. ) (P/FasmaChemic
Noricon nitride formed by aeVapour Deposition), S+O,! A-1zos
Consists of materials such as +.

半導体層102を構成−1−る多結晶ゲ/l/マニウム
薄膜の作成に用いる反応性気体とl−22ては、ゲルマ
ニウムを415成原子とする物質、例えばモノゲルマン
(Ge1(4)、ジゲυマン(()e2【−1,)、 
 l・リゲノ1゜マン(Ge、H,)等のゲルマンガス
があげられ、これら反応性気体は)−1,、、l〜r、
 l−Ic等のガスで稀釈し7て用いることもt−jj
来る。
The reactive gas used to create the polycrystalline Ge/l/manium thin film constituting the semiconductor layer 102 is a substance containing germanium as a 415 atom, such as monogermane (Ge1(4), digemanium). υman(()e2[-1,),
Examples include germane gases such as 1°mane (Ge, H,), and these reactive gases are )-1,,,l~r,
It can also be diluted with a gas such as l-Ic and used.
come.

’JL W ’JJ 果型’l F T ijゲグー−
′+l;、 +fi 、l (Fゲート絶縁層がある型
(下グーj・型)とゲート絶縁層上にゲート電極がある
型()Uゲート型)に分「jされ、他方、ソース、ドレ
イン電極が絶縁層ノー半導体層の界面にある型(Cop
lanar型)とソーヌドレイン′l′11極が絶縁層
と半導体層の界面と対向した半導体面一ににある型(s
tagger型)に分類さノ12、各々の組合せで4つ
の型があることがよく知られている。;窮1図で示され
た構造は上ゲ−) Copeanar壓電界効果型TF
Tと呼ばれる例を示したが、本発明に係る電界効果型T
FTばこのいずfl、でもよいことは勿論である。
'JL W 'JJ fruit type'l F T ij gegu-
′+l;, +fi,l A type in which the electrode is at the interface between an insulating layer and a semiconductor layer (Cop
lanar type) and the type (s
It is well known that there are four types for each combination. ;The structure shown in Figure 1 is the above figure.) Copeanar field effect type TF
Although an example called T is shown, the field effect type T according to the present invention
Of course, it is also possible to use FT cigarettes.

本発明に於て(d1半導体素子の主要部である半導体層
を構成する多結晶ゲルマニウム薄膜に含有する水素量の
F限を好寸しく 620.01 atomic%(以ト
−at、%と記す)にすることによって種々のトランジ
スター特性を向上させることができる。他方、多結晶ゲ
ルマニウム薄膜に含有される水素は主に多結晶ゲルマニ
ウムの結晶粒界に存在17、Ge−1■の形で結合して
いるが、含有される水素の量が多いとGe=H2,Ge
=)i3の如き結合形態や遊離の状態で水素が含1れて
いることが予想され、これ等の不安定な状態で含有され
ている水素に起因するものと思われるトランジ不発明音
等1′7)多くの′p、1険咀実から多結晶′・ノシマ
ニウムF、!i−膜に含有′J−43水−’t: j?
:tが:121↑、9に>ニットの場合Uこ於て(寸ト
ランジスター帽持性の劣イい1グiんどなく、安定して
その市外をイ4[持しイ:ネZ)ことが判明1−7プこ
In the present invention (d1), the F limit of the amount of hydrogen contained in the polycrystalline germanium thin film constituting the semiconductor layer, which is the main part of the semiconductor element, is set to 620.01 atomic% (hereinafter referred to as t-at, %). On the other hand, the hydrogen contained in the polycrystalline germanium thin film is mainly present in the grain boundaries of polycrystalline germanium17 and is bonded in the form of Ge-1. However, if the amount of hydrogen contained is large, Ge=H2, Ge
=) Hydrogen is expected to be contained in a bonded form such as i3 or in a free state, and transient noises, etc., which are thought to be caused by hydrogen contained in an unstable state such as 1. '7) Many 'p, polycrystalline 'nosimanium F, from 1 rugged fruit! i-Contained in the membrane'J-43 water-'t: j?
: If t is :121↑, 9 > knit, then U here (size transistor hat has poor holding property, 1 gu i, but stably move outside the area 4 [hold ii: ne Z ) turns out to be 1-7.

又、該ン’H少に含イ了する水素1t′Lが3 a’ 
t、 j%′をメ、鷲え−こより多くなった場合に於て
し1作成したトランジスタを連続的に動作させた場合、
1leffの減少が見らノt l十つ出カドレイン′r
江流が時間とともに減少し、スレッンヨボールド′直圧
VT)、が変化するというような経時変化が観察さ7j
でいる。
Also, 1t'L of hydrogen contained in the n'H is 3a'
If t and j%' are larger than Me and E, and the newly created transistor is operated continuously,
No decrease in 1leff was observed.
Changes over time were observed, such as the flow rate decreasing with time and the direct pressure VT) changing.
I'm here.

従って本発明に於てI:1〜半梼体素子の主要部を構成
する多結晶ゲルマニウム薄膜に含有する水素の指ζJ、
好丑しく ItよOo1〜3at、%とされ、より好適
(では0.05−2 at、%、最適にけol−1at
、%とするのが望まI〜い。
Therefore, in the present invention, I:1~ hydrogen fingers ζJ contained in the polycrystalline germanium thin film constituting the main part of the semi-hydrogen element,
It is preferable that it is 0.05-2 at, %, and optimally it is 0.05-2 at, %.
, % is preferable.

本発明シておいて層、定する多結晶ゲルマニウム薄膜中
(fこ含寸れている水素量の測定外1:O,tat。
In accordance with the present invention, the amount of hydrogen contained in the polycrystalline germanium thin film (f) is measured (1:O, tat).

%以上は通常化学分析で用いらhている水素分析計(P
erkin E1mer社製ModR−240型元素分
析計)により行った。いずれも試料は5 m gを分析
計ホルダー中に装填して、水素重量を測定し、膜中に含
まれる水素量をatomic%で算出した。
% or more, a hydrogen analyzer (P
The analysis was carried out using a ModR-240 elemental analyzer manufactured by Erkin Elmer. In each case, 5 mg of the sample was loaded into an analyzer holder, the hydrogen weight was measured, and the amount of hydrogen contained in the film was calculated in atomic%.

0.1at1%以下の微小寸分析は二次イオン質量分析
計−8,EMS−(Cameca社G Model I
 M S−3f)により行った。その分析法に於いて(
徒通常の方法を踏襲した。即ち、チャージアップ防止の
ため薄膜上に200人厚0金を蒸着し、−一一次イオン
ビームのイオンエネルキー ヲ8 f(eVトty、サ
ン’;y’ル電11i1n5 X 10  A、 スポ
ットサイズ50μm (+としエツチング面積は250
 X 250μ【nとしてCUeに対する■1 イオン
の検出強度比を求め水素含有hLをa tomi c%
で算出しプこ。
For microscopic analysis of 0.1at1% or less, secondary ion mass spectrometer-8, EMS-(Cameca G Model I
MS-3f). In the analysis method (
I followed the usual method. That is, in order to prevent charge-up, 200 gold layers are deposited on the thin film, and the ion energy of the primary ion beam is 8 f (eV), the spot size is 8 f (eV), the spot size is 50 μm (+ etching area is 250
Determine the detection intensity ratio of ■1 ions to CUe as
Calculate it.

又、本発明の効果を示す為の多結晶ゲルマニウム薄膜ト
ランジスターの経時変化の測定VC関し7て(r↓」プ
下のイ〜トな方法Gてよった。
Furthermore, in order to demonstrate the effects of the present invention, an easy method G was described below regarding the measurement of changes over time in polycrystalline germanium thin film transistors (VC).

先ず、第2図に示すh′4造の’]” F Tを作製し
、グー1−201にグー、ト電圧VGとし、て40V、
7−ス203とドレイン202の間((ドレイン電圧V
Dとして40Vを印加し2、ソース203とドレイン2
02の間に流れるドレイン電流■Dをエレクトロメータ
ー(Kci theQY 610 C工v り)ロメー
ター)VCより測定した。経時変化率は、500時間の
連続動作後のドレインf(r、流の変動量を初期ドレイ
ン電流で割ったものを100倍して%表示で表わした。
First, a h'4-structure ']''FT shown in FIG.
7- between the source 203 and the drain 202 ((drain voltage V
Apply 40V as D2, source 203 and drain 2
The drain current D flowing during the period 02 was measured using an electrometer VC. The rate of change over time was expressed as a percentage by multiplying the amount of variation in drain f(r) by the initial drain current after 500 hours of continuous operation by 100.

’L’ F T )閾値電EE (VTR) tri 
M OS −F E T(へIetag −0xide
 −Sem1conductor形に界効果)・ランジ
スタ)で通常行なわれている八へ)−〆瓦曲線における
直線部分を外挿[7横4it+であるVD ijっ1(
と交〕せした点によって定義し/と。経時変化の前と後
の■T11の値も同時に調べ、その変化量(ΔVrH)
を電圧で表示した。
'L' F T )Threshold voltage EE (VTR) tri
M OS -F ET (Ietag -Oxide
- Extrapolation of the straight line part in the tile curve [7 horizontal 4 it + VD ij 1 (
Defined by the point that intersects /. ■The value of T11 before and after the change over time was also checked at the same time, and the amount of change (ΔVrH)
is expressed as voltage.

形成する多結晶ゲルマニラl、 1l17膜半導体層(
柾含有される水素量を前記したf5N fx量に?11
1 ri)11するにはイゆ々の方法によって行なわれ
る。1c11え(41Gel(、Ge、、H,等の水素
化ゲルマニウムをグロー放電分解法(GD法)によって
析出さぜる方法、(ト)ターゲットを用1A112又は
()cH4を含むガス中でスパッターする方法(S P
法)、[■2プラズマ雰囲気で(招を1匡子ビーム等を
用いて蒸着する方法(iP法)、超高真空度のH,雰囲
気下で蒸着する方法(I−■VD法)を始め、CVD−
やLPCVD等で形成された多結晶ゲルマニウム薄膜を
1−i2プラズマ処理する方法等々によって行なうこと
が出来る。
Forming polycrystalline gel manila l, 1l17 film semiconductor layer (
Is the amount of hydrogen contained equal to the amount of f5N fx mentioned above? 11
1 ri) 11 can be done by various methods. 1c11e(41Gel(, Ge, H, etc.) is a method of depositing germanium hydride by glow discharge decomposition method (GD method), (g) sputtering using a target in a gas containing 1A112 or ()cH Method (S P
Including the method of evaporating in a plasma atmosphere (iP method) using a consonant beam, etc., the method of evaporating in an ultra-high vacuum H atmosphere (I-■VD method), CVD-
This can be carried out by a method in which a polycrystalline germanium thin film formed by LPCVD or the like is subjected to 1-i2 plasma treatment.

本発明に於て開示される様に、()J)法、SP法、1
■)法、HV D L f Iri 7J−、板−1i
 m 温+ffi カ500℃以T:(約350〜50
0℃の範囲)で本発明の目的L・で合った多結晶ゲルマ
ニウム薄膜が形成板を均一に加熱するという点や安価な
大面積基板材料分用いることが出来るという点で有利で
ある。更に、透過型の表示素子用の基板や基板側入射型
の)し電変換素子用の基板等の画像デバイスの応用にお
いて重重れている透光性のガラス基板の使用という要求
に答えるものと[〜で重要である0 ν1jち、不発IJIによれば所望の多結晶ゲルマニウ
ム薄膜をイしするのに低l′lI’A I彩:題]成蒼
−1’t’lいる′−JTが出来る為、高融点ガラス、
硬ガフス等の耐り・、へ性ガラス、及びlt1′熱14
1セラミックス、ザファイヤ、スビーネル、シリコンウ
ェハー等の他に、tlMの低融点ガラス、耐熱性グラス
チック等も使用さJ1得るもの−Fある。一般の低h)
上点ガラスを・用いたガラス基板として&、i: 、軟
化点温度が630℃の−11(゛ガラス、軟化点が78
 (1℃の鉾通硬質ガラス、す、+(化点福(r;jH
が820℃の超硬質ガラス(JIS I級超1便質ガラ
ス)、等を用いることが考えられる。
As disclosed in the present invention, ()J) method, SP method, 1
■) Law, HV D L f Iri 7J-, Board-1i
m Temperature + ffi F more than 500℃T: (approx. 350~50
A polycrystalline germanium thin film that satisfies the objective L of the present invention (within the range of 0° C.) is advantageous in that it uniformly heats the forming plate and can be used as an inexpensive large-area substrate material. Furthermore, it will meet the growing demand for the use of translucent glass substrates in the application of image devices such as substrates for transmissive display elements and substrates for transmissive (side-incident) transmissive transducer elements. 0 ν1j According to unexploded IJI, it is necessary to produce the desired polycrystalline germanium thin film with low High melting point glass,
Resistance of hard guffs, etc., hard glass, and lt1' heat 14
In addition to 1 ceramics, zaphire, vinyl, silicon wafers, etc., tlM low-melting glass, heat-resistant glass, etc. are also used. General low h)
As a glass substrate using upper point glass &, i: , -11 with a softening point temperature of 630 °C (゛Glass, with a softening point of 78 °C
(Hokotsu hard glass at 1℃,
It is conceivable to use ultra-hard glass (JIS I class super 1 quality glass) with a temperature of 820°C.

本発明の、!ilJ法に於てはいずれの基板を用いても
基板温度が軟化点より低く押えられる/こめ、基板をそ
こなうことなく、膜を作成できる利点がある。
Of the present invention! The ilJ method has the advantage that the substrate temperature can be kept below the softening point no matter which substrate is used, so that a film can be formed without damaging the substrate.

本発明の′火施例に於いては基板ガラスとして軟化点の
低い並ガラス(ソーダガラス)のうち主トI、f−ff
−ニング≠7059ガラス(コーニング社製)を出いた
が、軟化点が1500℃の石英ガラス等を基板としても
可能である。しかし、実用上からt:i並ガラスを用す
ることは安価で大面積にわたって薄膜トランジスター(
TPT)を作製する上で有利である。
In the embodiment of the present invention, the substrate glass is mainly glass I, f-ff among ordinary glass (soda glass) with a low softening point.
-ning≠7059 glass (manufactured by Corning Inc.), but it is also possible to use quartz glass or the like with a softening point of 1500° C. as the substrate. However, from a practical point of view, using t:i glass is inexpensive and allows thin film transistors (
This is advantageous in producing TPT).

以−ドに、本発明を更に詳細に説明するため((多結晶
ゲルマニウム・薄膜の形成からT F i’の作製プロ
セスと’I” F T動作結果について実施例によって
具体的に説明する。
Hereinafter, in order to explain the present invention in more detail, the process from the formation of a polycrystalline germanium thin film to the fabrication process of T F i' and the results of 'I' F T operation will be specifically explained using examples.

実施例1 本実jr1例は多結晶ゲルマニウム薄膜を基板上に形成
[−Ti1l FTを作成1〜だもので、第3図に示さ
れる様な装置を用いたものである。基板300としてl
↓、コーニング≠7059ガラスを用いた。
Example 1 In this practical example, a polycrystalline germanium thin film was formed on a substrate [-Ti1l FT was prepared from step 1] using an apparatus as shown in FIG. As the substrate 300
↓, Corning≠7059 glass was used.

先ず基板300を洗浄した後f(F/HNO,/CH,
C00i(の混合液でその表面を軽くエツチングし、乾
燥した後ペルジャー真空堆積室(以下ペルジャーと記す
)301内のアノード側に置いた基板加熱ホルダー30
2に装着した。その後、ペルジャー301を拡散ポンプ
309でバックグラウンド圧力I X I Q Tor
r以トーマで排気を行なった。も12、このとへの月二
力が、l、Niいと反応性ガスがイ1効に膜析出に寄与
しないばかりか、N1ネ中に酸素、窒素が混入し、皆し
く膜の抵抗ケ変化させるので重重り、 <ない。次に基
板ttA Ilj ’、I?3を一ヒげて基板300f
7)温度を400 ℃に保持した。又、基板温度6・を
熱電対303で監視[〜た。
First, after cleaning the substrate 300, f(F/HNO,/CH,
After lightly etching the surface with a mixed solution of C00i and drying, the substrate heating holder 30 was placed on the anode side in a Pelger vacuum deposition chamber (hereinafter referred to as Pelger) 301.
I installed it on 2. After that, the Pelger 301 is used with the diffusion pump 309 to reduce the background pressure I
Exhaust was carried out using a toma. 12. However, not only does the second force applied to this layer not only cause the reactive gases such as l, Ni and reactive gases to not contribute significantly to film deposition, but also cause oxygen and nitrogen to mix into the N1 gas, causing a change in the resistance of the film. Because it is heavy, there is no weight. Next, the substrate ttA Ilj', I? 3 to board 300f
7) Temperature was maintained at 400°C. Further, the substrate temperature 6 was monitored using a thermocouple 303.

本実施例)て於て導入する反応性気体と1〜ては、1(
2ガスでI Vopul’ne%(以下’ Vow′、
%と記す)に稀釈されたGcH,ガス(以ドGe114
(11/’−’2と記す)と1−1.。
The reactive gas introduced in this example) is 1 to 1 (
I Vopul'ne% (hereinafter 'Vow') with two gases
%) diluted in GcH, gas (denoted as Ge114
(written as 11/'-'2) and 1-1. .

ガスで1.00 voJumc ppln (以7 v
ow、ppln と記す)に稀釈されたL12H,ガス
(以ド1(2H,(100)/■1□と記す)ケ用い、
Gc)−(4(1)/ H,、をマスノロ−コントロー
ラー304を用いて60 SCqMの流清、更にJ3,
1−4. (100) /L−12をマスフローコント
ローラー :307を用いて30 SCCMの流気で合
わせてリング状ガス吹出し口315からペルジャー30
1内に尋人し、メインパルプ31(]を調整し、絶対圧
力計312i用いてペルジャー301内を0. OI 
Torrの圧力に設定[〜た。ベルジャー301内の圧
力が安定した後、カソード電極3131/C13,56
&の高周f皮乱界’t ’IK ’it東314によつ
で加え、グ「1−放′屯を開始させ7E。この11Sの
重圧ii O,6KV、電流は55mAl1もF”()
もadi。
1.00 voJumc ppln (7 v
Using L12H, gas (hereinafter written as 2H, (100)/■1□) diluted in
Gc)-(4(1)/H,) was purified using a mass flow controller 304 at 60 SCqM, and further J3,
1-4. (100) / L-12 is combined with a flow of 30 SCCM using a mass flow controller: 307, and the Pelger 30 is combined with a flow of 30 SCCM from the ring-shaped gas outlet 315.
1, adjust the main pulp 31 (), and use the absolute pressure gauge 312i to set the inside of the Pelger 301 to 0.0.
Set the pressure to Torr. After the pressure inside the bell jar 301 stabilizes, the cathode electrode 3131/C13,56
In addition to the high frequency f skin disturbance world 't 'IK 'it East 314, start the G '1-radiation 7E.The heavy pressure of this 11S ii O, 6KV, the current is 55mAl1F' ( )
Also adi.

た膜の膜厚し10.51ノでその均一性は円形リング型
吹き出し[:]を用い/こ、鳴合には120 (、tm
 ) Xl 20 (+mn )の基板の大きさに対し
て±10%内に収っていた。この時形成さnた膜中に含
有する水素のt5LはQ、 :3 a t、%であった
The thickness of the film was 10.51 mm, and its uniformity was determined using a circular ring-shaped balloon [:].
) Xl 20 (+mn) was within ±10% of the substrate size. The t5L of hydrogen contained in the film formed at this time was Q:3at%.

次に、この膜全素材として第4図に概略で示さiする工
程に従ってT PTを作成した。工程(a)に示す象v
こ、ガラス基板300上に上記の様に形成しノと多結晶
ゲルマニウム薄膜401を析出した後、水素ガスで1 
(l Ovoe、 ppmに稀釈され−301内の圧力
をO,l 2 Thrrに調整してグロー放置を行ない
燐のドープされたn1慢402を0、 i) 、5 I
Iの)すさに形成した(工程())) )。
Next, a TPT was fabricated as the entire film material according to the process shown schematically in FIG. 4. Elephant v shown in step (a)
After depositing the polycrystalline germanium thin film 401 on the glass substrate 300 as described above, it was heated with hydrogen gas.
(l Ovoe, diluted to ppm -301, adjust the pressure in -301 to O, l 2 Thrr and leave it to glow to make the phosphorous-doped n1 402 0, i), 5 I
(Step ())) ).

次に−[程(C)の様tてフォトエソf/グにより口、
層402′?!−ンースr;℃、極403の領域及びド
レインi、L4グ404の領域を除いて除去し/こ。次
にゲート絶縁膜を形成すべく、ペルジャー301内に再
び上6己の基4反がアノード1則の加熱ホルり−:30
2に装着さ瓦た。多結晶ゲルマニウムを作製する場合と
同様にペルジャー301が排気さね5、基板温度’Ps
 f250℃として純度約100写のNH3カス苓・マ
スフローコントローfly −305テ20 SCCM
 、 J12テl Ovol、96に稀釈されだ5IF
(4(以下S + H4(10) / ’−’2と記す
)をマスフローコントローラー308で5 SCCMに
各々コントロールして・薄膜し、グロー族’?t11.
を生起心せて5iNH膜405を025μの厚さに堆積
A什だ(工程(d))。
Next - [Cho (C) like photo-esophage f/gu mouth,
Layer 402'? ! -nce r; C, remove except for the region of the pole 403 and the region of the drain i and L4 region 404. Next, in order to form a gate insulating film, the upper 6 bases are again heated in the Pelger 301 according to the anode 1 rule.
The tiles were installed on 2. As in the case of producing polycrystalline germanium, the Pelger 301 is heated to the exhaust tongue 5 and the substrate temperature 'Ps.
NH3 mass flow control fly-305te20 SCCM with a purity of about 100 copies at f250℃
, J12 Tel Ovol, diluted to 96 5IF
(4 (hereinafter referred to as S+H4(10)/'-'2) are each controlled to 5 SCCM by the mass flow controller 308, formed into a thin film, and formed into a glow family'?t11.
A 5iNH film 405 is deposited to a thickness of 0.25 μm (step (d)).

次にフォトエツチング工程に、しりソース電極403及
びドレイン1(光枠404用のコンタクトホール406
−1,406−2をあけ(工程(e))、その後、5i
NH膜405全而にMを蒸着して電極膜407を形成(
工程(f) ’) した後、フォトエツチング工程によ
り電極膜407を加工してソース電極用取り出し電極4
08、ドレイン心極用取り出l〜電極409及びゲート
電極410を形成した(工a(g))。この後、1(2
雰囲気中で250℃の熱処理を行なった。
Next, a photo-etching process is performed to form the bottom source electrode 403 and the drain 1 (contact hole 406 for the light frame 404).
-1,406-2 (step (e)), then 5i
M is vapor-deposited all over the NH film 405 to form an electrode film 407 (
After step (f) '), the electrode film 407 is processed by a photoetching process to form the extraction electrode 4 for the source electrode.
08, drain core electrode 409 and gate electrode 410 were formed (Step a(g)). After this, 1(2
Heat treatment was performed at 250° C. in an atmosphere.

以Fの条件とエイ−1に従って形成されたTPT(チャ
ンネル長L−20μ、チャンネル中爪W=650 tt
 )は安定で良好な特性を示した。
TPT formed according to the following conditions and A-1 (channel length L - 20 μ, channel middle claw W = 650 tt
) showed stable and good properties.

この様に試作さ′I″したT I” TのVD−ID 
 特性曲線の例を第7図に示しだ。第7図かられかる様
にVC,=10Vの時ID= 8 X to’ Aであ
り、Vo=OVの時JD== 3 X iQ Aであり
、かつ、閾値電EEは48Vであった。又、通常M O
S −’I” I” Tデバイスで行なわれでいる■。
TI'T's VD-ID was prototyped in this way.
An example of the characteristic curve is shown in Figure 7. As can be seen from FIG. 7, when VC = 10V, ID = 8 X to' A, when Vo = OV, JD = = 3 X iQ A, and the threshold voltage EE was 48V. Also, usually M O
S-'I"I" T device is used.

−V耳 曲線の直線部から求めたμeffばl 20 
rJ / V −secと移動度の大きな、種々の、駆
動回路が形成できる良好なトランジスター特性を有する
’r ti″′rが得られた。
−V ear μeff value obtained from the straight line part of the curve 20
'r ti'''r having a high mobility of rJ/V-sec and good transistor characteristics capable of forming various drive circuits was obtained.

このT P Tの安定性を調べる為、ゲートにI)C1
扛圧でVG=40Vを印加し鯖、けi、nの変化を50
0時間1で互って連続測定をイ1なった。そのイtf果
I。
In order to investigate the stability of this T P T, I) C1 at the gate
Apply pressure of VG = 40V and change the mackerel, kei, and n by 50
At 0 hours 1, continuous measurements were made. That itf fruit I.

の変化は十〇、 l X以内と殆んとし?く、’]’ 
li” ’J’の経時変化前後の閾値111:圧の変化
Δ〜’THもなく、TF”Tの安−71性は(1メめて
J″と好た゛つた。又、経時変化後のIll FT特性
VD−ID、■G−■D々)も経時変化測定[)IIと
測定結果は変わら一4″′、lt(二[fも1206〜
イ/V−就と同一であった。
Most of the changes are within 10, lX? Ku,']'
Threshold value 111 before and after the change over time of li'''J': There was no change in pressure Δ~'TH, and the safety of TF''T was better than (J'' after 1st measurement). Ill FT characteristics VD-ID, ■G-■D) are also measured over time [) II and the measurement results are different from 14''', lt (2 [f is also 1206 ~
It was the same as I/V-ju.

本実施例で示された様に、0.3at、%の計の水素を
含む多結晶ゲルマニウム薄膜でぞの]二要部を構成した
T P Tは極めて高性能なトランジスターであること
がわかった。
As shown in this example, the TPT whose two main parts were made of a polycrystalline germanium thin film containing 0.3 at.% total hydrogen was found to be an extremely high-performance transistor. .

実施例2 実施例1と同様の手順によってI’t I=”パソー5
0W、 QcH,(1)/l(2の流量60 SCCM
 、L32H,(i 00 )/FI2の流idH30
SCCM 、圧力0.05 Torrの条件でバイコー
ルガラス基板」−に多結晶ゲルマニウム膜を作成した。
Example 2 By the same procedure as in Example 1, I't I="Paso 5
0W, QcH, (1)/l (2 flow rate 60 SCCM
, L32H, (i 00 )/FI2 flow idH30
A polycrystalline germanium film was formed on a Vycor glass substrate under SCCM and a pressure of 0.05 Torr.

基板温度は200〜700tに亘 jって50℃おきに設定し、++2厚は05μ厚となる
様に作成1−だ。そして、各々の多結、!7.ゲルマ:
ニウム膜の水素量を測定し、又こiLL12′l成1!
−2だ膜を用いて実施側1と同様の方法によって作成し
た’r r”r (試料If; ]−1−1−11)の
人為のμcffを第1表1rCうくす。
The substrate temperature was set at every 50°C over a period of 200 to 700t, and the thickness was 05μ. And each multi-connection,! 7. Germa:
The amount of hydrogen in the nitrogen film was measured, and the amount of hydrogen in the film was determined.
Table 1 shows the artificial μcff of 'r r'r (sample If; ]-1-1-11) created by the same method as in Example 1 using -2 membrane.

iT; 1 表から1′1する様に水素量3at、 %
を越えるもの又り↓(’j、 01 at、%未満のも
のはμcffが1.00+・a/ v−5cc 以−F
−C−S) ’)、L)(7)経時変化及び△V7 H
が比較的大きく又特性の安定も劣っている。
iT; 1 From the table, hydrogen amount is 3at, % as shown by 1'1
If it exceeds ↓('j, 01 at, if it is less than %, μcff is 1.00+・a/ v-5cc or more -F
-C-S) '), L) (7) Changes over time and △V7 H
is relatively large and the stability of characteristics is also poor.

/ 、/’ 7、/ 、/ / / /′− /′ 、/ 、、、、/ / 実施例3 次に実施例3を第5図によって詳細に説明する。/ , /’ 7, / ,/ / / /'- /′ ,/ ,,,,/ / Example 3 Next, Example 3 will be explained in detail with reference to FIG.

先ず本実施例1と同様に準備されたコーニング+705
9ガラス基板500 k 2 X 10−”Torri
で減圧することができる真空槽501内の基板ホルダー
502に装着し、真空槽501内の圧力が5 X 10
−”Torr以下の圧力になる−まで減圧1゜た後ヒー
ター503により基板温度を400℃に設定し7た。続
いて電子銃504をl0KVの加速電圧で動作させ、発
射される電子ビームをゲルマニウム・蒸発体505に照
射させゲルマニウム蒸発体505を蒸発させ、更にクヌ
ードセンセル509を加熱ヒーター511によって加熱
し、硼素5 ]、 Oをクヌードセンセル509から蒸
発させ、シャッター512及びシャッター507を開き
基板500に0.5μ厚の膜厚が形成される様水晶]辰
動子膜厚計506でコントロールして、多結晶ゲルマニ
ウム膜を形成した。このときの蒸着中の圧力は]、、 
2 X 10”’ Torr ’%蒸着速度りま1.0
人/ S(・Cであ゛つた。こうして(1,■ら〕]5
/こ試木」を試料3−1とする。
First, Corning +705 prepared in the same manner as in Example 1
9 glass substrate 500 k 2 X 10-”Torri
The substrate holder 502 is mounted on a substrate holder 502 in a vacuum chamber 501 that can be depressurized by
After the pressure was reduced by 1° until the pressure reached ``Torr or less'', the substrate temperature was set to 400°C using the heater 503.Then, the electron gun 504 was operated at an accelerating voltage of 10KV, and the emitted electron beam was - The evaporator 505 is irradiated to evaporate the germanium evaporator 505, and the Knudsen cell 509 is further heated by the heater 511 to evaporate boron 5] and O from the Knudsen cell 509, and the shutters 512 and 507 are heated. A polycrystalline germanium film was formed by controlling with a quartz film thickness meter 506 so that a film thickness of 0.5μ was formed on the open substrate 500.The pressure during vapor deposition at this time was...
2 X 10'' Torr '% Deposition rate Rima 1.0
Person/S
/ sample wood" is designated as sample 3-1.

次に、同様に準備され/こコーニング≠7059ガラス
基板500を)、1:板ホルダー502に固設空 し、真内槽501内の圧力か5 X lO−” Tor
r以下の圧力になる丑で減圧(〜/こイ&、高純度水素
ガス(99,9999イ)をバリアブルリークバルゾ5
08により真空槽501内に力′入17、槽内圧力を5
 X l 0−7Torr l(した後、基ui ir
y+ W k 4 (10℃(に設りビし、ゲルマニウ
ム及び硼素を試料:3−1作成の場合と同様に蒸発−さ
せ、膜形成を行なつ/。7oその時の膜形成速度は1.
0λ/武になる!2コントロールし、05μ厚の多結晶
シリコン膜全形成した。これでイ(Iられプこ試料全試
料3−2とする。
Next, a similarly prepared glass substrate 500 (Corning≠7059 glass substrate 500) was fixed in the plate holder 502, and the pressure inside the inner tank 501 was increased to 5×1O−” Tor.
Depressurize (~/koi &, high purity hydrogen gas (99,9999)) with variable leak valve 5
08, force is input into the vacuum chamber 501 by 17, and the pressure inside the chamber is increased to 5.
X l 0-7 Torr l (after that, base ui ir
y+ W k 4 (set at 10°C), germanium and boron were evaporated in the same way as in the case of preparing sample 3-1, and a film was formed.7o At that time, the film formation rate was 1.
0λ/ Become a warrior! 2 control, and a polycrystalline silicon film with a thickness of 0.05 μm was entirely formed. This completes the entire sample, which is designated as sample 3-2.

試料3−1.3−2について各々多結晶ゲルマニウムれ
り膜に含有する水入れtを測定し7、X6々の試料を用
いて実施例1と同様の方法によって作成(〜だT P 
Tの各々について測定しブこμcff sIDの経時変
化、閾値電圧の変化耽△VTHの結果全第2表に示した
The water content contained in the polycrystalline germanium film for samples 3-1 and 3-2 was measured, and samples 7 and 6 were prepared in the same manner as in Example 1.
The results of measurements for each of T and changes in μcff sID over time, changes in threshold voltage and ΔVTH are shown in Table 2.

、′1′l、2表かられかる様に多結晶ゲルマ−ウド薄
膜に含有1する水本量が試不1. :’(−1は0.0
1 at、、?イ未満と少なく、試料3−2で−、0.
5 at、%含有し7. て い グr 0、 こ(7)、、%、作・yJされブこ’l’ I−’ T
の実効ギヤリア移動Hifμeffiri試料32ブλ
;試料3−1に比べて大きく、)14 lit Ill
のご々定性も試料3−2の方が良好で、“I’ FT用
の半導体層としで好まl−、いことが”I’lJつか。
As can be seen from Table 2, the amount of water contained in the polycrystalline germanium thin film was 1. :'(-1 is 0.0
1 at...? In sample 3-2, -, 0.
Contains 5 at,%7. Tei g r 0, ko(7),,%, made, yJ, buko'l'I-' T
Effective gear movement Hifμeffiri sample 32 block λ
; Larger than sample 3-1, ) 14 lit Ill
Sample 3-2 is also better in terms of its properties, indicating that it is preferable to use it as a semiconductor layer for I'FT.

第  2  表 実施例4 次に第3図を用いてスパッター去で多結晶ゲルマニウム
薄膜を形成した実施例について詳述−、r る。
Table 2 Example 4 Next, referring to FIG. 3, an example in which a polycrystalline germanium thin film was formed by sputtering will be described in detail.

実Thj f’d  l  と [司 イ、): υこ
7%ft イ+iif  さ ノーL /3  二+ 
 −=  、/  グ≠7059ガラス基4尺300 
i二・ベル、、;′X−:301内の上部アノ−トイf
ill (1)基板加+l′、ホルダー302に密着!
−7で固定I2、−1・部カッ−・ド、ル13の箱゛8
1仇板上に二に板占対向−J゛る1・升に多結晶り゛ル
マーユウム机(1ソ1示さ11.でいない;純1!+−
99,9999r ’)をi没’lrz L *、 O
ペルジャー301内H−力が]、 X 1.0’Tor
r lこなる−」で拡散ボンプニ30 s+で排気し、
)^・板加熱ボルダ−302を加熱して基板3000表
面温J几をJl 00 ℃vc保つノて。。
Real Thj f'd l and [Tsukasa I,): υko7%ft I+iif sa no L /3 2+
-= , / gu≠7059 glass base 4 shaku 300
i2 Bell, ;'X-: Upper anno-toy f in 301
ill (1) Add +l' to the board, tightly attached to the holder 302!
Fixed at -7 I2, -1, part card, box 8 of 13
1 on the 1st board, 2nd board facing - 1st square, polycrystalline aluminum desk (1 so 1 not 11.; pure 1!+-
99,9999r') i'lrz L *, O
H-force inside Pelger 301], X 1.0'Tor
Exhaust the air with a diffusion bomb 30s+ at
)^・Heat the board heating boulder 302 to maintain the surface temperature of the substrate 3000 at Jl 00°Cvc. .

B、lI43(10(1) /Htガスをマスノロ−コ
ント[」−ラー 307によって5 SCCMの流量、
1′、史にit2ガスをマスフローコントロー ラ−3
09E Lって5 Q SCCMの流展でペルジャー3
01内1〆こ導入しメインバルブ3toraJ2ってペ
ルジャー301の内圧を0.02 Torrに設定しま
た。
B, lI43(10(1)/Ht gas flow rate of 5 SCCM by mass controller 307,
1', switch it2 gas to mass flow controller 3
09E L is 5 Q Pelger 3 in the SCCM flow
Introducing the main valve 3 toraJ2 and setting the internal pressure of the Pelger 301 to 0.02 Torr.

ペルジャー内圧が安定してから、ド部カソード亀(砥3
13に13.56川1/、の高周波電界を電源314に
よって′ia;圧2.5 KVを印加]、2カッ−ド電
極313上の多結晶ゲルマニラl、板とアノード(基板
加熱ホルダー)302間にグロー放電を生起させガラス
基数30()にp型子結晶ゲルマニウムを載積さ−すた
。この時形成された膜の膜厚は0.48μで1)つ/こ
。又、この時形成され/、−多結晶ゲルマニウム薄膜に
含有さJl、た水素計1rJ’、 1.2 a t、%
であ−っだ。
After the internal pressure of the Pelger has stabilized, turn the cathode tortoise (3)
Apply a high frequency electric field of 13.56 1/2 to 13 by the power supply 314; a pressure of 2.5 KV], polycrystalline gel manila l on the two-quad electrode 313, the plate and the anode (substrate heating holder) 302 A glow discharge was generated in between, and p-type microcrystalline germanium was loaded on the glass substrate 30 (2). The thickness of the film formed at this time was 0.48 μm. Also, the amount of hydrogen formed at this time/, - Jl, contained in the polycrystalline germanium thin film is 1rJ', 1.2 at, %
De-da-da.

得らJtだ試料を用いて実施例1と同様の方法(Ci 
っテ作91 シフ’CT F T (7) Iteff
 iZJ: 65 crd/ V ” SeCで■。の
経時変化は0.1%未満、閾値電圧の変化量△VTIl
がOVと安定で良好々トランジスター特性全示すTFT
かイ(1られ/こ。
Using the obtained Jt sample, the same method as in Example 1 (Ci
Iteff 91 Schiff'CT F T (7) Iteff
iZJ: 65 crd/V'' SeC ■. Change over time is less than 0.1%, threshold voltage change △VTIl
TFT with stable OV and good transistor characteristics
Kai (1re/ko.

実施1列5 本発明を第6し41に示すイオンブレーティング堆積・
装置を用いて作製し、た多結晶ゲルマニウム薄膜を用い
て作製(、また’[’ I” Tについて詳述する。
Implementation 1 Column 5 The present invention was carried out in the ion blasting deposition shown in No. 41.
A polycrystalline germanium thin film was fabricated using a device and a polycrystalline germanium thin film was fabricated using a polycrystalline germanium thin film.

先ず減圧I可能な堆積室6()3内に多結晶ゲルマ7−
ウムのゲルマニウム蒸発体6()6をボート607内(
/C1直さ、ゴーニング≠7059ガラス基板を支持体
611−1. 611−2に設置し、堆M ’73.6
0 :3内の圧力全豹I X 10 ”、rOrr l
tc l(る−まで排気し2だ後、ガス、Q7人管60
5ケ110に、て純度99.999%のLl、ガス金水
素分用P1.がIXHI−’’l’orr K ’l−
る様にして堆積:x 603内に導入し7A−1゜使用
したガス尋人管605に1−内径42 ilmで先のル
ープ状の部分(fζガス吹出し2[1がifj径05η
・mの孔が2(1間隔で開いているものを用い/こ。
First, polycrystalline germanium 7- is placed in a deposition chamber 6 ( ) 3 where pressure can be reduced.
germanium evaporator 6 ( ) 6 in boat 607 (
/C1 Straightness, Gorning≠7059 The glass substrate is attached to the support 611-1. Installed at 611-2, bank M '73.6
0:3 pressure total I x 10'', rOrr l
tc l (exhaust until ru-2, then gas, Q7 person pipe 60
5 pieces 110, 99.999% purity Ll, gas gold hydrogen fraction P1. is IXHI-''l'orr K'l-
Deposited in such a way that:
・Use one with 2 (m) holes at 1 interval.

次に高置l皮コイル610 (直径5 =m )に13
56船の高周波を出力150Wになる様印加し、高周波
コイル61(〕内部分に高周波プラズマヴ囲気全形成し
プこ。
Next, 13
A high frequency wave from a ship No. 56 was applied to give an output of 150 W, and a high frequency plasma wave was completely formed inside the high frequency coil 61 ().

又、支J′、II体611−1,611−2は回転させ
ながら加熱装置612を動作状、態6てしてガラス基板
を約400℃に加熱して7J、・いた。
Further, while rotating the supports J' and II bodies 611-1 and 611-2, the heating device 612 was put into operation and the glass substrate was heated to about 400 DEG C. for 7 J.

次(に、ゲルマニウム蒸発体60Gにエレクトロガン6
()8より照射し加熱しまたゲルマニウム粒子金飛林1
させた。この1羨に[7て多結晶ゲルマニウムの膜厚全
豹Q、 5μ形成シ、5、こ)1.を用いて実施例1と
同様な工5桿でT 、I” Tを作ML、た(試料5−
1)。又、多結晶ゲルマニウム薄膜の形成過程(/′C
於て水素を8人しないで膜を形成したものから試料5−
1と同様な方法でT PTを作製17だ(試料5−2)
。この様に作製した試料の各々について測定したμcr
fs ”oの経時変化、閾値電圧の変化量へVTRの結
果を第3表に示す。
Next (Next, germanium evaporator 60G and electrogun 6
(2) Irradiated and heated from 8 and germanium particles Jinfeirin 1
I let it happen. In addition to this, the total thickness of the polycrystalline germanium film is Q, 5 μm, 5, this) 1. Using the same method as in Example 1, T and I"T were made using the same method as in Example 1 (Sample 5-
1). Also, the formation process of polycrystalline germanium thin film (/'C
Sample 5- from which a film was formed without adding hydrogen.
Fabricate TPT17 using the same method as 1 (Sample 5-2)
. μcr measured for each of the samples prepared in this way
Table 3 shows the VTR results for changes over time in fs''o and the amount of change in threshold voltage.

第3表からH」る様に試料5−1ば■。の経時変化が全
くなく tteffも55.3−大きく良好−なトラン
ジスター特性を示した。
As shown in Table 3, sample 5-1 is sample 5-1. There was no change over time at all, and TTeff was 55.3, indicating excellent transistor characteristics.

第3表Table 3

【図面の簡単な説明】[Brief explanation of drawings]

第1図ひよ本発明の半導体素子の構造全説明する為の模
式的説明図、第2図は本発明の半導体素子の特性を測定
する為の回路を模式的に示(ッた説明図1.北31ズl
、第5図、71”、 6図(・−1各々本発明に係わる
半・h一体膜作製装置60例f説明する為の模式的説明
図、第4図jt1.1本少1明の半〕!y体素子を作・
Fvする為のエイフを模式的に説、明する為の工程図、
第7図+d本発明の半7.に7体素子のVn −In’
l’:’#性の一例を示す説明図である。 101  ・基板、102・・薄膜半ノ4j体層、10
3・・ソース電極、lO4・・ドレイン成極、105・
・・絶縁層、106  ・グー ト電極、1(17,1
08・【]層 出ib+i人  ギヤノン株式会社 ID −30ν亡er〔A) 15     ・ / /’/’ y、・″ / 〆 10  乙′・ −一−−−−−−−−−−−−−−−
−−/、’・/ 、、/ 1 05// //7.・−−−−−−−−−−−−−−−−−−−−
−、−、−、、、、、、−、、、、、、、、−、−、−
、−、−、、−、、−、、−e、。
FIG. 1 is a schematic explanatory diagram for explaining the entire structure of the semiconductor device of the present invention, and FIG. 2 is a schematic diagram showing a circuit for measuring the characteristics of the semiconductor device of the present invention. north 31sl
, Fig. 5, 71'', Fig. 6 (-1) Schematic explanatory diagram for explaining 60 examples of semi- and h-integral film manufacturing apparatuses according to the present invention, Fig. 4 jt1. ]!Create a y-body element.
A process diagram to schematically explain and clarify the EIF for Fv,
Figure 7+d Semi-7 of the present invention. Vn -In' of the 7-body element
It is an explanatory diagram showing an example of l':'# property. 101 - Substrate, 102... Thin film semi-4j body layer, 10
3. Source electrode, lO4.. Drain polarization, 105.
・Insulating layer, 106 ・Goot electrode, 1 (17, 1
08・[]Layer ib+i person Gyanon Co., Ltd. ID -30ν deather [A) 15 ・ / /'/' y,・″ / 〆10 Otsu'・ -1−−−−−−−−−−−− ---
--/, '・/ ,, / 1 05// //7.・−−−−−−−−−−−−−−−−−−−
−,−,−,,,,,,−,,,,,,,,−,−,−
,-,-,,-,,-,,-e,.

Claims (1)

【特許請求の範囲】[Claims] 3 atomic%丑での水素原子を含有する多結晶ゲ
ルマニウム薄膜半導体層でその主要部が構成されている
事を特徴とする半導体素子。
1. A semiconductor device characterized in that a main part thereof is constituted by a polycrystalline germanium thin film semiconductor layer containing 3 atomic% hydrogen atoms.
JP57153105A 1982-09-02 1982-09-02 Semiconductor element Pending JPS5943575A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57153105A JPS5943575A (en) 1982-09-02 1982-09-02 Semiconductor element
DE19833331601 DE3331601A1 (en) 1982-09-02 1983-09-01 SEMICONDUCTOR DEVICE
US06/937,432 US4740829A (en) 1982-09-02 1986-12-03 Semiconductor device having a thin layer comprising germanium atoms as a matrix with a restricted range of hydrogen atom concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57153105A JPS5943575A (en) 1982-09-02 1982-09-02 Semiconductor element

Publications (1)

Publication Number Publication Date
JPS5943575A true JPS5943575A (en) 1984-03-10

Family

ID=15555075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57153105A Pending JPS5943575A (en) 1982-09-02 1982-09-02 Semiconductor element

Country Status (1)

Country Link
JP (1) JPS5943575A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254662A (en) * 1984-05-14 1985-12-16 エナージー・コンバーシヨン・デバイセス・インコーポレーテツド Improved thin film field effect transistor compatible with integrated circuit and method of producing same
JPS6446936A (en) * 1987-08-17 1989-02-21 Nippon Telegraph & Telephone Growth method of thin film
JPH0823099A (en) * 1994-03-14 1996-01-23 Natl Science Council Of Roc Polycrystalline quality thin film transistor and its preparation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550663A (en) * 1978-10-07 1980-04-12 Shunpei Yamazaki Semiconductor device and method of fabricating the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550663A (en) * 1978-10-07 1980-04-12 Shunpei Yamazaki Semiconductor device and method of fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254662A (en) * 1984-05-14 1985-12-16 エナージー・コンバーシヨン・デバイセス・インコーポレーテツド Improved thin film field effect transistor compatible with integrated circuit and method of producing same
JPS6446936A (en) * 1987-08-17 1989-02-21 Nippon Telegraph & Telephone Growth method of thin film
JPH0823099A (en) * 1994-03-14 1996-01-23 Natl Science Council Of Roc Polycrystalline quality thin film transistor and its preparation

Similar Documents

Publication Publication Date Title
JPS58197775A (en) Thin film transistor
TWI434420B (en) Thin film transistors using thin film semiconductor materials
CN104584200B (en) Thin film transistor (TFT) and display device
KR100453315B1 (en) Physical vapor deposition vacuum chamber, Method of the physical vapor deposition, and Thin film device and Liquid crystal display thereby
US5965904A (en) Semiconductor device comprising silicon semiconductor layer
JPH01103825A (en) Thin film type silicon semiconductor device and manufacture thereof
JPS58199564A (en) Semiconductor element
JPH04346419A (en) Deposition film forming method
US5387542A (en) Polycrystalline silicon thin film and low temperature fabrication method thereof
JPS58123771A (en) Semiconductor element
US7863113B2 (en) Transistor for active matrix display and a method for producing said transistor
CN107104151A (en) A kind of double grid electrode metal oxide thin-film transistor and preparation method thereof
CN103236400B (en) Production method of low-temperature polysilicon thin film and production method of thin-film transistor
JPS5943575A (en) Semiconductor element
JPH0465120A (en) Formation of deposition film
JP2006140477A (en) Method of manufacturing silicon thin film
KR20060025624A (en) Crystallization method of amorphous silicon thin film
CN109103105A (en) Thin film transistor (TFT) and preparation method thereof, display device
JPS59124163A (en) Semiconductor element
JPS58123772A (en) Semiconductor element
JPS5884464A (en) Semiconductor element
JPH06104280A (en) Thin film transistor and manufacture thereof
Park et al. Gate insulator for high mobility oxide TFT
KR100770255B1 (en) Method for fabricating thin film transistor
JP3532160B2 (en) Crystalline silicon thin film