JPS5941630B2 - Waveform shaping method in three-level transmission - Google Patents

Waveform shaping method in three-level transmission

Info

Publication number
JPS5941630B2
JPS5941630B2 JP53004589A JP458978A JPS5941630B2 JP S5941630 B2 JPS5941630 B2 JP S5941630B2 JP 53004589 A JP53004589 A JP 53004589A JP 458978 A JP458978 A JP 458978A JP S5941630 B2 JPS5941630 B2 JP S5941630B2
Authority
JP
Japan
Prior art keywords
signal
black
edge
width
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53004589A
Other languages
Japanese (ja)
Other versions
JPS5497314A (en
Inventor
敏 南
芳男 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP53004589A priority Critical patent/JPS5941630B2/en
Publication of JPS5497314A publication Critical patent/JPS5497314A/en
Publication of JPS5941630B2 publication Critical patent/JPS5941630B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manipulation Of Pulses (AREA)
  • Dc Digital Transmission (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

【発明の詳細な説明】 この発明はファクシミリ等の2値信号を3値変換して伝
送する方式において、その伝送特性により生ずる3値変
換特有の歪を軽減するための波形5整形方式に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waveform 5 shaping method for reducing the distortion peculiar to 3-value conversion caused by the transmission characteristics in a method for transmitting a binary signal such as a facsimile after converting it into 3-values. be.

従来、このような3値変換を伴うファクシミリ伝送等に
おいて生じる特有の歪を改善する方式はほとんど考えら
れておらず、位相等化器により伝送特性を改善して受信
波形の劣化を小さくするこ10とのみ行われていた。
Until now, almost no methods have been considered to improve the distortion peculiar to facsimile transmissions that involve three-value conversion. This was done only with

受信画質上不自然さが残る欠点があつた。例えば第1図
A、Cに示す送信画面を走査し、これより得られた2値
信号を3値変換して伝送し、その受信信号の再生画面は
それぞれ第1図B、15Dのようになる。
The problem was that the received image quality remained unnatural. For example, the transmission screens shown in Figures 1A and 1C are scanned, and the binary signals obtained are converted into three values and transmitted, and the reproduction screens of the received signals are as shown in Figures 1B and 15D, respectively. .

第1図Aにおいて走査線11〜14と直交し、1画素幅
より細い画像11の信号のエッジIlaと、走査線と平
行した3画素以上の長い黒画像12の信号のエッジ12
aとが走査線上において一致しているような信号、或い
は黒画20像11のエッジIlbと、長い黒画像13の
エッジ13aが一致しているような2値ファクシミリ信
号を8値変換して伝送すると、その再生画像は第1図B
に示すように細い黒画像11が1丁のように太くなり、
そのエッジがずれるが、長い黒画25像のエッジはその
ままであるため、この黒信号のエッジ部12a’、13
a’がそれぞれへこむ。一方第1図Cに示すように細い
黒画像14の幅が2画素程度の場合は第1図Dに示すよ
うに再生画像の細い黒画像14’が細くなるため、長い
画像30の再生されたエッジ部12a”、13a”は突
き出る。第1図の関係を定量的に示すと第2図に示すよ
うになる。
In FIG. 1A, there is an edge Ila of the signal of the image 11 which is orthogonal to the scanning lines 11 to 14 and is narrower than one pixel width, and an edge 12 of the signal of the black image 12 which is parallel to the scanning line and is longer than three pixels.
a, or a binary facsimile signal in which the edge Ilb of the black image 20 image 11 and the edge 13a of the long black image 13 coincide with each other on the scanning line, is converted into eight values and transmitted. Then, the reproduced image is shown in Figure 1B.
As shown in the figure, the thin black image 11 becomes thick like a single line,
Although the edge shifts, the edge of the long black image 25 remains the same, so the edge portions 12a', 13 of this black signal
Each a' is depressed. On the other hand, when the width of the thin black image 14 is about 2 pixels as shown in FIG. 1C, the thin black image 14' of the reproduced image becomes thin as shown in FIG. The edge portions 12a'' and 13a'' protrude. The relationship shown in FIG. 1 is shown quantitatively in FIG. 2.

第2図の横軸は送信側の黒信号のパルス幅、縦軸はその
黒信号の受信側パルス幅と送信35側パルス幅との差分
をそれぞれ表わす。受信パルス幅が送信パルス幅より広
がる場合を正、狭まる場合を負にとつている。Tpは1
画素のパルス幅、Cりであり、送信信号は遮断周波数が
1/4Tp(Hz)の理想フイルタで帯域制限されてい
る。
In FIG. 2, the horizontal axis represents the pulse width of the black signal on the transmitting side, and the vertical axis represents the difference between the receiving side pulse width and the transmitting side pulse width of the black signal. The case where the received pulse width is wider than the transmitted pulse width is taken as positive, and the case where it is narrowed is taken as negative. Tp is 1
The pulse width of the pixel is C, and the transmission signal is band-limited by an ideal filter with a cutoff frequency of 1/4 Tp (Hz).

曲線15は3値信号が前記フイルタを通つた場合の送受
信パルス幅の差分特性であり、送信パルス幅が3Tp以
上では差分はほマOとなる。次に送信信号をサンプリン
グ周期がTp/2(この説明における一例として示す)
で標本化保持したときの送受信パルス幅の差分特性は曲
線16となり、同図斜線部は標本化ジツタである。この
曲線16よりわかるように長い黒信号の画像のエツジ(
差分が零に相当する)に対し、細線エツジの凹凸(送受
信パルス幅特性の差分値)を相対的に打消すためには、
同図点線17に示すように1サンプリング幅の黒信号エ
ツジと接する長い黒信号のエツジはTp/2だけ黒信号
を付加し、4サンプリング及び5サンプリングの黒信号
エツジと接する長い黒信号のエツジはTp/2だけ黒信
号を抑圧すればよい。この発明のように細い黒又は白画
像エツジが一致する次の走査線上の長い黒又は白画像に
対し、上記細い黒又は白画像が所定値以下の場合は長い
黒又は白画像信号のエツジに黒又は白信号を付加し、上
記細い黒又は白画像が上記所定値よりも大きい或る幅範
囲の場合は上記長い黒又は白画像信号のエツジの黒又は
白信号を除去することにより再生画像のエツジに凹凸が
生じない3値伝送の波形整形方式を提供するものである
。第3図はこの発明の一実施例であり、第4図はその各
部における波形である。
A curve 15 is the difference characteristic of the transmission and reception pulse widths when a ternary signal passes through the filter, and the difference becomes almost O when the transmission pulse width is 3Tp or more. Next, the sampling period of the transmission signal is Tp/2 (shown as an example in this explanation)
The difference characteristic of the transmission and reception pulse width when sampling and holding is shown by a curve 16, and the shaded area in the figure is the sampling jitter. As can be seen from this curve 16, the edge of the image with a long black signal (
(the difference corresponds to zero), in order to relatively cancel out the unevenness of the thin line edge (the difference value of the transmitting and receiving pulse width characteristics),
As shown by the dotted line 17 in the figure, a long black signal edge that touches a black signal edge of 1 sampling width has a black signal added by Tp/2, and a long black signal edge that touches a 4-sampling and 5-sampling black signal edge has a black signal of Tp/2. It is sufficient to suppress the black signal by Tp/2. In this invention, for a long black or white image on the next scanning line where the thin black or white image edges coincide, if the thin black or white image is less than a predetermined value, the edge of the long black or white image signal is black. Or, by adding a white signal and removing the black or white signal at the edge of the long black or white image signal when the thin black or white image has a certain width range larger than the predetermined value, the edge of the reproduced image is The present invention provides a waveform shaping method for three-level transmission that does not cause unevenness. FIG. 3 shows an embodiment of the present invention, and FIG. 4 shows waveforms at various parts thereof.

第3図は入力信号端子21よりのフアクシミリ信号のよ
うな2値信号はサンプリングクロツク信号入力端子22
からのサンプリング周期がTp/2のサンプリングクロ
ツクにて1走査線分のシフトレジスタ23に記憶される
。シフトレジスタ23の出力は出力端子24へ供給され
ると共に黒信号カウンタ25にて黒信号長が計数され、
またシフトレジスタ23の出力はインバータ26を通じ
て白信号カウント27へ供給され、白信号長が計数され
る。黒信号カウンタ25の計数値よりその黒信号長がそ
れぞれ1,4,5ビツトの弧立黒信号の場合に検出回路
28,29,31にて検出される。黒信号の両側におけ
る白信号長が例えばそれぞれ3ビツト以上の場合はその
黒信号を弧立黒信号と回路32で判定される。入力信号
中のパルス幅の長い黒信号エツジ時刻が回路33で検出
される。この回路33は例えば3ビツト以上連続する白
信号の前後における7ビツト以上の黒信号のパターンを
長い黒信号の工ツジとして検出するもので、端子21か
らの入力信号を端子22からのクロツクにて読込む10
ビツトシフトレジスタで実現できる。すなわち黒を″′
1フ、白を″′O″とすれば出力はレジスタ33の内容
が0001111111又は1111111000の時
に検出される。検出回路33より現走査における長い黒
信号のエツジが検出され、これと回路28,29,31
からの1,4,5ビツトの弧立黒信号検出出力とが回路
34,35,36にてそれぞれ検出される。前走査信号
が1ビツトの弧立黒信号の場合は回路34の出力により
現走査線の黒信号エツジに1ビツト黒信号が付加され、
前走査信号が4または5ビツトの弧立信号の場合は回路
35または36の出力によつて現走査線の黒信号エツジ
から1ビツト黒信号を抑圧する。上記動作手順によつて
第2図の曲線17の凹凸特性が得られる。第4図Aは端
子22のサンプリングクロツク信号波形、第4図Bは前
走査線における信号波形であり、黒を低レベル、白を高
レベルに設定している。
In FIG. 3, a binary signal such as a facsimile signal from an input signal terminal 21 is input to a sampling clock signal input terminal 22.
The sampling period from Tp/2 is stored in the shift register 23 for one scanning line. The output of the shift register 23 is supplied to the output terminal 24, and the black signal length is counted by the black signal counter 25.
Further, the output of the shift register 23 is supplied to a white signal counter 27 through an inverter 26, and the white signal length is counted. Based on the count value of the black signal counter 25, the detection circuits 28, 29, and 31 detect if the black signal length is an edge black signal of 1, 4, or 5 bits, respectively. If the length of the white signals on both sides of the black signal is, for example, 3 bits or more each, the circuit 32 determines that the black signal is a rising black signal. A circuit 33 detects a black signal edge time with a long pulse width in the input signal. This circuit 33 detects, for example, a pattern of a black signal of 7 bits or more before and after a white signal of 3 or more consecutive bits as a means of a long black signal. Load 10
This can be realized with a bit shift register. i.e. black
1F, if white is set to ``O'', the output is detected when the contents of the register 33 are 0001111111 or 1111111000. The edge of the long black signal in the current scan is detected by the detection circuit 33, and the edge of the long black signal in the current scan is detected by the detection circuit 33.
The 1, 4, and 5 bit edge black signal detection outputs are detected by circuits 34, 35, and 36, respectively. If the previous scanning signal is a 1-bit rising black signal, a 1-bit black signal is added to the black signal edge of the current scanning line by the output of the circuit 34.
If the previous scanning signal is a 4- or 5-bit rising signal, the output of the circuit 35 or 36 suppresses the 1-bit black signal from the black signal edge of the current scanning line. By the above operating procedure, the unevenness characteristic of the curve 17 in FIG. 2 is obtained. FIG. 4A shows the sampling clock signal waveform of the terminal 22, and FIG. 4B shows the signal waveform of the previous scanning line, with black set to a low level and white set to a high level.

同図Cは端子21からの現走査線の入力信号波形である
。走査線の始めの信号は第4図で右端である。同図Dは
同図Bの前走査線の信号波形の弧立黒信号の検出波形で
あり、黒信号37はその長さが1ビツトであり、かつそ
の直前の白信号が3ビツト以上であり、その直後に白信
号を3ビツト計数すると1ビツト弧立黒信号としてパル
ス43を出力する。同様にして弧立1ビツト黒信号38
,39、弧立4ビツト黒信号41、弧立5ビツト黒信号
42が順次パルス44,45,46,47として検出さ
れる。第3図で説明したように3ビツト以上連結する白
信号に接する7ビツト以上連結する長い黒信号48,4
9,51はそれぞれ回路33でパルス52〜57として
第4図Eに示すように順次検出される。いま第4図Bに
示す前走査線の信号がシフトレジスタ23に入つており
、第4図Bの右端の信号はシフトレジスタ23の右端に
在る。時間の進行によりシフトレジスタ23がシフトさ
れ、前走査線信号が右端から出力されると共に現走査線
信号が第4図Cの右端からシフトレジスタ23の左端に
入力され、同時に検出回路33中の10ビツトシフトレ
ジスタへも入力される。端子22にクロツク信号が9個
人力され、現走査線信号がシフトレジスタ23に第5図
Aに示すように9ビツト入力されると、シフトレジスタ
23から出力される前走査線信号をチエツクすることに
より、その1ビツト弧立黒信号37に対する検出パルス
43が回路28から得られる。そのようにして現走査線
信号のシフトレジスタ23への入力が進み、第5図Bに
示すようにシフトレジスタ23の第1ビツト目乃至第7
ビツト目がすべて黒信号″11第8ビツト目乃至第10
ビツト目がすべて白信号゛0”の状態になると、検出回
路33内のシフトレジスタも同一の状態6111111
10001となり、現走査線信号中の長い黒信号48の
前縁がパルス52として検出される。この時第4図Dに
示すようにこの黒信号48の前縁と前縁が一致している
前走査線信号中の1ビツト弧立黒信号38が3ビツト前
にパルス44として検出されている。この1ビツト弧立
黒検出回路28からのパルス44を3ビツト遅延したも
のと、検出回路33の長い黒信号の前縁検出パルス52
との一致により、回路34の出力でシフトレジスタ23
の第8ビツト目の白信号″′Oゝを黒信号“1”に変更
して、黒信号48の前縁に黒信号を1ビツト付加する(
第4図Fの58)。シフトレジスタ23に対する現走査
線信号の入力状態が第5図Cに示すようにその第1〜第
3ビツト目が白信号″O″、第4〜第10ビツト目が黒
信号“1”の状態になると検出回路33内のシフトレジ
スタは600011111113となり、長い黒信号4
8の後縁がパルス53として検出される。この時長い黒
信号48の後縁と後縁が一致した1ビツト弧立黒信号3
9がパルス45として検出され、これらパルス45,5
3の一致により、回路34の出力でシフトレジスタ23
の第3ビツト目の白信号“O”を黒信号゛1”に変更し
て黒信号48の後縁に黒信号を1ビツト付加する(第4
図Fの59)。第5図Dに示すようにシフトレジスタ2
3の第1〜第7ビツト目が″1フ、第8〜第10ビツト
目が“O”になり、長い黒信号49の前縁がパルス54
として検出される。
C in the same figure shows the input signal waveform of the current scanning line from the terminal 21. The signal at the beginning of the scan line is at the far right in FIG. D in the same figure is a detected waveform of a rising black signal in the signal waveform of the previous scanning line in B in the same figure.The length of the black signal 37 is 1 bit, and the white signal immediately before it is 3 bits or more. Immediately after that, when 3 bits of the white signal are counted, a pulse 43 is output as a 1-bit high-rise black signal. Similarly, 1-bit black signal 38
, 39, a rising 4-bit black signal 41, and a rising 5-bit black signal 42 are sequentially detected as pulses 44, 45, 46, and 47. As explained in FIG. 3, the long black signal 48, 4 connected with 7 bits or more is connected to the white signal connected with 3 bits or more.
9 and 51 are sequentially detected by the circuit 33 as pulses 52 to 57, respectively, as shown in FIG. 4E. The signal of the previous scanning line shown in FIG. 4B is now entering the shift register 23, and the signal at the right end of FIG. As time progresses, the shift register 23 is shifted, and the previous scanning line signal is output from the right end, and the current scanning line signal is input from the right end of FIG. It is also input to the bit shift register. When 9 clock signals are input to the terminal 22 and a 9-bit current scanning line signal is input to the shift register 23 as shown in FIG. 5A, the previous scanning line signal output from the shift register 23 is checked. As a result, a detection pulse 43 for the 1-bit high-rise black signal 37 is obtained from the circuit 28. In this way, input of the current scanning line signal to the shift register 23 progresses, and as shown in FIG. 5B, the first to seventh bits of the shift register 23 are input.
All bits are black signal "11 8th bit to 10th
When all the bits are in the state of white signal "0", the shift register in the detection circuit 33 is also in the same state 6111111.
10001, and the leading edge of the long black signal 48 in the current scan line signal is detected as a pulse 52. At this time, as shown in FIG. 4D, the 1-bit high-rise black signal 38 in the previous scanning line signal whose leading edge and leading edge coincide with each other is detected as a pulse 44 3 bits earlier. . The pulse 44 from the 1-bit edge black detection circuit 28 is delayed by 3 bits and the leading edge detection pulse 52 of the long black signal from the detection circuit 33.
, the output of the circuit 34 causes the shift register 23 to
Change the white signal "'O" of the 8th bit to the black signal "1" and add 1 bit of the black signal to the leading edge of the black signal 48 (
Figure 4F, 58). As shown in FIG. 5C, the input state of the current scanning line signal to the shift register 23 is such that the first to third bits are a white signal "O" and the fourth to tenth bits are a black signal "1". Then, the shift register in the detection circuit 33 becomes 600011111113, and the long black signal 4
The trailing edge of 8 is detected as pulse 53. At this time, the trailing edge of the long black signal 48 coincides with the trailing edge of the 1-bit standing black signal 3.
9 is detected as pulse 45, and these pulses 45, 5
3 match, the output of the circuit 34 is transferred to the shift register 23.
The third bit of the white signal "O" is changed to the black signal "1" and one black signal bit is added to the trailing edge of the black signal 48 (the fourth bit is
59 in Figure F). As shown in FIG. 5D, the shift register 2
3, the 1st to 7th bits become "1", the 8th to 10th bits become "O", and the leading edge of the long black signal 49 becomes the pulse 54.
Detected as .

この時同時に前走査線信号中の黒信号49の前縁と前縁
が一致している4ビツト弧立黒信号41の検出パルス4
6が回路29で得られる。これらパルス46,54の一
致により回路35の出力でシフトレジスタ23の第7ビ
ツト目の黒信号″1シを白信号″0nに変更して黒信号
49の前縁から1ビツトの黒信号を抑圧する(第4図F
の61)。第5図Dに示すようにシフトレジスタ23の
第1〜第3ビツトが白信号″0レ、第4〜第10ビツト
が黒信号“1”になると、長い黒信号51の後縁がパル
ス57として検出され、この時この黒信号51の後縁と
後縁が一致した5ビツト弧立黒信号42の検出パルス4
7が回路31から得られる。
At this time, the detection pulse 4 of the 4-bit edge black signal 41 whose leading edge coincides with the leading edge of the black signal 49 in the previous scanning line signal
6 is obtained in circuit 29. Due to the coincidence of these pulses 46 and 54, the output of the circuit 35 changes the 7th bit black signal "1" of the shift register 23 to the white signal "0n" and suppresses the 1-bit black signal from the leading edge of the black signal 49. (Figure 4 F
61). As shown in FIG. 5D, when the first to third bits of the shift register 23 become a white signal "0" and the fourth to 10th bits become a black signal "1", the trailing edge of the long black signal 51 becomes a pulse 57. At this time, the detection pulse 4 of the 5-bit rising black signal 42 whose trailing edge coincides with the trailing edge of this black signal 51
7 is obtained from circuit 31.

これらパルス47,57の一致により回路36の出力で
シフトレジスタ23の第4ビツト目の黒信号“1”を白
信号”O”として、長い黒信号51の後縁から1ビツト
の黒信号を抑圧する(第4図Fの62)。なお弧立黒信
号の検出を、シフトレジスタ23から出力される信号、
つまり長い黒信号に対し黒信号の1ビツト付加、除去を
した信号から行つているが、弧立黒信号は1ビツト、4
ビツト、5ビツト弧立信号であり、補正される長い黒信
号は7ビツト以上であるため、この長い黒信号に対し補
正がなされても、6ビツト以上の長さがあるから、シフ
トレジスタ23の出力から前走査線信号中の弧立黒信号
を正しく検出することができる。
Due to the coincidence of these pulses 47 and 57, the output of the circuit 36 turns the fourth bit of the black signal "1" of the shift register 23 into a white signal "O", suppressing the 1-bit black signal from the trailing edge of the long black signal 51. (62 in Figure 4 F). Note that the detection of the arc black signal is performed using the signal output from the shift register 23,
In other words, it is performed from a signal obtained by adding or removing 1 bit of the black signal from a long black signal, but for the rising black signal, 1 bit and 4 bits are added.
This is a 5-bit stand-up signal, and the long black signal to be corrected is 7 bits or more, so even if this long black signal is corrected, the length is 6 bits or more, so the shift register 23 is The edge black signal in the previous scanning line signal can be correctly detected from the output.

以上のようにしてパルス44,52から第1図における
走査線14の弧立1ビツトのエツジ11bと一致する長
い黒信号エツジ13aが判別され、そのエツジ13aに
第4図Fに1ビツト58が付加され、同様パルス45,
53より第1図の走査線12のエツジ12aが検出され
、1ビツト59が付加され、パルス46,54の関係か
ら第1図の走査線16のエツジ13aが検出され、1ビ
ツト61が除去され、同様にパルス47,57から第1
図の走査線15のエツジ12aが検出されて1ビツト6
2が除去される。このように波形整形された第4図Fの
出力は第3図の出力端子24より送信される。以上黒信
号の場合で説明してきたが、白信号の場合も同様な方式
により波形整形された第4図Fの出力は第3図の出力端
子24より送信される。
As described above, a long black signal edge 13a is determined from the pulses 44 and 52, which coincides with the 1-bit edge 11b of the scanning line 14 in FIG. 1, and the 1-bit edge 58 in FIG. Similarly, pulses 45,
53, the edge 12a of the scanning line 12 in FIG. 1 is detected, and 1 bit 59 is added. From the relationship between the pulses 46 and 54, the edge 13a of the scanning line 16 in FIG. 1 is detected, and the 1 bit 61 is removed. , similarly from pulses 47 and 57 to the first
Edge 12a of scanning line 15 in the figure is detected and 1 bit 6
2 is removed. The output of FIG. 4F whose waveform has been shaped in this way is transmitted from the output terminal 24 of FIG. 3. Although the case of the black signal has been explained above, in the case of the white signal as well, the output of FIG. 4F whose waveform has been shaped by the same method is transmitted from the output terminal 24 of FIG.

以上黒信号の場合で説明してきたが、白信号の場合も同
様な方式により波形整形できることは明らかである。以
上説明したようにこの発明の波形整形方式によれば3値
変換を伴うフアクシミリ伝送等において、隣接する走査
線上のパルス長の異なる黒信号のエツジ走査線上の位置
が一致しているような送信画面を伝送したとき生ずる歪
を軽減させることができ、受信画面の画質を向上させる
ことができる。
Although the case of the black signal has been explained above, it is clear that waveform shaping can be performed using a similar method in the case of the white signal as well. As explained above, according to the waveform shaping method of the present invention, in facsimile transmission involving three-value conversion, etc., a transmission screen in which the positions of black signals with different pulse lengths on adjacent scanning lines on the edge scanning line coincide with each other. It is possible to reduce the distortion that occurs when the image is transmitted, and it is possible to improve the image quality of the received screen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は3値変換を伴うフアクシミリ伝送において特有
に現われる画面の歪例であり、A,Bは入力画面、C,
Dは再生画面、第2図は第1図の歪を定量的に示すグラ
フ、第3図はこの発明による波形整形方式の一実施例を
示すプロツク図、第4図はその各部の動作波形図、第5
図は第3図の動作を説明するためのシフトレジスタ23
に人力された現走査線信号を示す図である。 21:入力端子、22:サンプリングクロツク入力端子
、23:1走査線分の記憶回路、24:出力端子、25
:黒信号カウンタ、28,29,31:1,4,5ビツ
トの弧立黒信号検出回路、32:弧立黒信号検出のため
の前後の白信号を計数制御する回路、33:長い黒信号
検出のためのレジスタ、34,35,36:黒信号1ビ
ツトを付加または抑圧する回路。
Figure 1 shows an example of screen distortion that occurs uniquely in facsimile transmission involving three-value conversion, where A and B are input screens, C,
D is a playback screen, FIG. 2 is a graph quantitatively showing the distortion in FIG. 1, FIG. 3 is a block diagram showing an embodiment of the waveform shaping method according to the present invention, and FIG. 4 is an operation waveform diagram of each part thereof. , 5th
The figure shows a shift register 23 for explaining the operation of FIG.
FIG. 3 is a diagram showing a current scanning line signal input manually. 21: Input terminal, 22: Sampling clock input terminal, 23: Memory circuit for 1 scanning line, 24: Output terminal, 25
: Black signal counter, 28, 29, 31: 1, 4, 5 bit arc rising black signal detection circuit, 32: Circuit for counting and controlling the white signals before and after arc rising black signal detection, 33: Long black signal Detection registers 34, 35, 36: Circuits that add or suppress one bit of black signal.

Claims (1)

【特許請求の範囲】[Claims] 1 2値信号波形を3値変換して伝送する方式において
、ほぼ3画素幅以上の長いパルス幅を有する黒または白
信号エッジのその走査線上の位置と、その直前の走査線
を走査して得られる上記長いパルス幅よりもパルス幅の
短かい弧立黒または白信号エッジのその走査線上の位置
とが一致している波形を検出し、その弧立黒または白信
号のパルス幅を判別し、それがほぼ1画素幅以下の時に
上記長いパルス幅を有する黒または白信号のエッジにほ
ぼ1/2画素幅の黒または白信号を付加し、上記判別し
た幅がほぼ1画素幅以上3画素幅以下の範囲の幅の時に
上記長いパルス幅を有する黒または白信号のエッジに対
しほぼ1/2画素幅の黒または白信号を除去することを
特徴とする3値伝送における波形整形方式。
1 In a method that converts a binary signal waveform into three values and transmits it, the position of a black or white signal edge with a long pulse width of approximately three pixels width or more on the scanning line and the scanning line immediately before it are scanned. Detecting a waveform in which the position of an edge of an edge black or white signal whose pulse width is shorter than the long pulse width that is detected coincides with the position on the scanning line, and determining the pulse width of the edge of the edge black or white signal; When the width is approximately 1 pixel or less, a black or white signal having approximately 1/2 pixel width is added to the edge of the black or white signal having the long pulse width, and the determined width is approximately 1 pixel width or more and 3 pixels width. A waveform shaping method in ternary transmission, characterized in that a black or white signal of approximately 1/2 pixel width is removed from an edge of the black or white signal having the long pulse width when the width is in the following range.
JP53004589A 1978-01-19 1978-01-19 Waveform shaping method in three-level transmission Expired JPS5941630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53004589A JPS5941630B2 (en) 1978-01-19 1978-01-19 Waveform shaping method in three-level transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53004589A JPS5941630B2 (en) 1978-01-19 1978-01-19 Waveform shaping method in three-level transmission

Publications (2)

Publication Number Publication Date
JPS5497314A JPS5497314A (en) 1979-08-01
JPS5941630B2 true JPS5941630B2 (en) 1984-10-08

Family

ID=11588217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53004589A Expired JPS5941630B2 (en) 1978-01-19 1978-01-19 Waveform shaping method in three-level transmission

Country Status (1)

Country Link
JP (1) JPS5941630B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832418A (en) * 1971-08-31 1973-04-28
JPS5062511A (en) * 1973-10-03 1975-05-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832418A (en) * 1971-08-31 1973-04-28
JPS5062511A (en) * 1973-10-03 1975-05-28

Also Published As

Publication number Publication date
JPS5497314A (en) 1979-08-01

Similar Documents

Publication Publication Date Title
JPS6052186A (en) Sigal rpocessing circuit
JPH03174838A (en) Clock jitter suppressing circuit
JPH0365074B2 (en)
JPS5838015B2 (en) Data communication method
US4543611A (en) Method and an apparatus for image processing
US4225888A (en) High efficiency facsimile transmission system
JPS5941630B2 (en) Waveform shaping method in three-level transmission
JPH04293359A (en) Picture reader
EP0344751A2 (en) Code violation detection circuit for use in AMI signal transmission
JPH05315998A (en) Method for reducing distortion on transmission line
JP2562093B2 (en) Ternary signal transmission method using optical transmission pulse
US3943274A (en) Demodulation system with dropout correction
JPS6123893Y2 (en)
JP2629025B2 (en) Signal processing circuit
JP2568055Y2 (en) Television signal clamping device
JPH07250106A (en) Modulating method for digital data
JP2624427B2 (en) Image discriminating device
JPH0131344B2 (en)
JPS581862B2 (en) Pulse Shingo Kenshiyutsu Cairo
JPH01158853A (en) Burst signal detecting circuit
JPS62164374A (en) Picture signal correction circuit
JPS58119272A (en) Picture signal binary coding device
JPH0810899B2 (en) Digital gradation signal thinning circuit
JPS5829914B2 (en) Single point emphasis circuit
JPS5925416A (en) Waiting circuit