JPS5938949A - Magneto-optical reproducer - Google Patents

Magneto-optical reproducer

Info

Publication number
JPS5938949A
JPS5938949A JP14764682A JP14764682A JPS5938949A JP S5938949 A JPS5938949 A JP S5938949A JP 14764682 A JP14764682 A JP 14764682A JP 14764682 A JP14764682 A JP 14764682A JP S5938949 A JPS5938949 A JP S5938949A
Authority
JP
Japan
Prior art keywords
light
recording medium
magneto
optical
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14764682A
Other languages
Japanese (ja)
Inventor
Toshio Niihara
敏夫 新原
Masahiro Oshima
尾島 正啓
Yoshihiro Shiroishi
芳博 城石
Hideo Fujiwara
英夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14764682A priority Critical patent/JPS5938949A/en
Publication of JPS5938949A publication Critical patent/JPS5938949A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads

Abstract

PURPOSE:To obtain a large output of reproduction, by providing an analyzer and a photodetector at both sides of a recording medium, and making use of both Kerr effect of reflected light and Faraday effect of transmitted light at a time to perform a magneto-optical reproduction. CONSTITUTION:The light sent from a laser light source 1 passes through a polarizer 2 and irradiated to a recording medium 4 after having its optical path bent by a half mirror 3. When the magnetization of the medium 4 is set upward, the polarized wave surface of the reflected light 6 turns by a Kerr revolving angle +thetaK to the polarized wave surface of the incident light 8. The light 7 transmitted through a substrate 5 turns by a Faraday revolving angle +thetaF. Then the light 6 passes through an optical detector 9 having its quenching direction turned by -thetaK and is detected by a photodetector 11. As the detector 10 has its quenching direction turned by -thetaF, no transmitted light 7 reaches a photodetector 12. Therefore, a reproduced signal having about doubled value of VR, where Vr is obtained when only the Faraday effect is used can be obtained by supplying outputs +VR and 0 which is applied with the photoelectric conversion by the detectors 11 and 12 to a differential amplifier 15.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、磁気光学記録媒体の記録情報を、光学的に再
生する磁気光学再生装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a magneto-optic reproducing device that optically reproduces recorded information on a magneto-optic recording medium.

〔従来技術〕[Prior art]

光の吸収による記録媒体の温度上昇を利用して記録を行
ういわゆる光磁気記録は、光記録の一種であり、記録媒
体として磁性薄膜を用いるために消去・書き換えが可能
である。また、光源としてレーザを用いた場合には指向
性および単色性に勝れた光が得られるため、光をその波
長程度にまで絞り込んで記録密度の大幅な向上を図るこ
とが可能である。このような理由から、新しい磁気記録
方式として光磁気記録は注目されている。
So-called magneto-optical recording, in which recording is performed using the temperature rise of a recording medium due to absorption of light, is a type of optical recording, and because it uses a magnetic thin film as the recording medium, erasing and rewriting are possible. Furthermore, when a laser is used as a light source, light with excellent directivity and monochromaticity can be obtained, so it is possible to narrow down the light to about that wavelength and significantly improve the recording density. For these reasons, magneto-optical recording is attracting attention as a new magnetic recording method.

記録された情報を再生するためには磁気光学効果が利用
されており、ファラデー効果又はカー効果と呼ばれる。
A magneto-optical effect is used to reproduce recorded information, and is called the Faraday effect or Kerr effect.

カー効果は、直線偏光が記録媒体で反射されたときに生
じる偏波面の回転現象であるが、このときの回転角、即
ちカー回転角は極めて小さい。たとえば、既存の磁気光
学記録媒体であるMnB1゜Gd−Co 、 Gd −
Fe 、 Tb −Fe 、 Gd−Tb −Fe等は
、可視光領域でのカー回転角が0.7°以下である。磁
気光学再生時の信号雑音比、つまり8/Nはカー回転角
に強く依存しておシ、カー回転角が上述のように小さい
ためアナログ情報はもちろん、tu 171.”°0″
の二値情報の再生におい壬ても充分な8/Nが得られて
いない。
The Kerr effect is a rotation phenomenon of the plane of polarization that occurs when linearly polarized light is reflected by a recording medium, but the rotation angle at this time, that is, the Kerr rotation angle, is extremely small. For example, existing magneto-optical recording media MnB1゜Gd-Co, Gd-
Fe, Tb-Fe, Gd-Tb-Fe, etc. have a Kerr rotation angle of 0.7° or less in the visible light region. The signal-to-noise ratio during magneto-optical reproduction, that is, 8/N, strongly depends on the Kerr rotation angle, and since the Kerr rotation angle is small as described above, not only analog information but also tu 171. "°0"
Even when reproducing binary information, a sufficient 8/N ratio cannot be obtained.

一方、ファラデー効果は直線偏光が記録媒体中を透過す
るときに生じる偏波面の回転現象であシ、このときの回
転角、つまシフアラデー回転角は記録媒体の膜厚に比例
する。従って、記録媒体の膜厚を厚くすれば大きなファ
ラデー回転角を得ることができる。しかし、記録媒体の
厚膜化に伴って次のような欠点を生じる。
On the other hand, the Faraday effect is a rotation phenomenon of the plane of polarization that occurs when linearly polarized light is transmitted through a recording medium, and the rotation angle at this time, that is, the shift Faraday rotation angle, is proportional to the film thickness of the recording medium. Therefore, by increasing the film thickness of the recording medium, a large Faraday rotation angle can be obtained. However, as the recording medium becomes thicker, the following drawbacks arise.

(1)記録時に必要な光エネルギーが増大するため、大
出力の光源を必要とする。
(1) Since the optical energy required during recording increases, a high output light source is required.

(2)  記録媒体中に安定に存在し得る磁化反転領域
、即ち記録ビットの最小直径が大きくなり、記録密度の
大幅な向上が難しい。
(2) The magnetization reversal region that can stably exist in the recording medium, ie, the minimum diameter of the recording bit, becomes large, making it difficult to significantly improve the recording density.

(3)  記録媒体による光の吸収量が多いため透過光
強度は非常に小さく、充分な強度の再生信号を得ること
ができない。
(3) Since the amount of light absorbed by the recording medium is large, the transmitted light intensity is very low, making it impossible to obtain a reproduced signal of sufficient intensity.

以上のような理由から、記録媒体の膜厚には制約があり
、そのためファラデー回転角はカー回転角と同程度の大
きさとなり、透過光だけを利用した磁気光学再生装置で
もやはシ充分な再生出力を望むことができない。
For the reasons mentioned above, there are restrictions on the film thickness of the recording medium, and as a result, the Faraday rotation angle becomes as large as the Kerr rotation angle, and a magneto-optical reproducing device that uses only transmitted light is no longer sufficient. The playback output cannot be desired.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、充分な再生信号出力を得るための磁気
光学再生装置を提供することに南る。
An object of the present invention is to provide a magneto-optical reproducing device for obtaining sufficient reproduction signal output.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために本発明装置では、記録媒体
の両側に検光子および受光素子を配したことを特徴とし
ており、反射光のカー効果と透過光のファラデー効果と
を同時に利用して磁気光学再生を行う。
In order to achieve the above object, the device of the present invention is characterized by disposing an analyzer and a light receiving element on both sides of the recording medium, and uses the Kerr effect of reflected light and the Faraday effect of transmitted light simultaneously to generate magnetic fields. Perform optical playback.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図により説明する。 Embodiments of the present invention will be described below with reference to FIG.

第1図において、レーザ光源1から出たレーザ光は偏光
子2を通って直線偏光となり、ハーフ・ミラー3によっ
て光路を折り曲げられて記録媒体4に照射される。その
照射された領域の磁化が上向きのとき、上記記録媒体4
からの反射光6の偏波面は入射光8の偏波面に対してカ
ー回転角+θにだけ回転する。一方、上記記録媒体4お
よび光に対して充分な透過度をもつ基板5を透過した透
過光7はファラデー回転角+θFだけ偏波面が回転する
In FIG. 1, a laser beam emitted from a laser light source 1 passes through a polarizer 2 to become linearly polarized light, and the optical path is bent by a half mirror 3 before being irradiated onto a recording medium 4. When the magnetization of the irradiated area is upward, the recording medium 4
The plane of polarization of the reflected light 6 is rotated by the Kerr rotation angle +θ with respect to the plane of polarization of the incident light 8. On the other hand, the polarization plane of the transmitted light 7 transmitted through the recording medium 4 and the substrate 5 having sufficient light transmittance is rotated by the Faraday rotation angle +θF.

反射光6は、入射光8に対する消光方位より一θにだけ
回転させた検光子9を通り、受光素子11で検出される
。また、透過光側に配置された検光子10は、入射光8
に対する消光方位より十〇、たけ回転させているため、
受光素子12には透過光7は到達しない。
The reflected light 6 passes through an analyzer 9 rotated by one θ from the extinction direction with respect to the incident light 8, and is detected by a light receiving element 11. Further, the analyzer 10 placed on the transmitted light side
Because it is rotated by 10 degrees from the extinction direction,
The transmitted light 7 does not reach the light receiving element 12.

従って、受光素子11.12により光電変換された各k
(7)出力13 (=+VR)、14 (=O)を差動
増幅器15に入力すれば、+ V !の正の出力が現れ
る。
Therefore, each k photoelectrically converted by the light receiving elements 11 and 12
(7) If outputs 13 (=+VR) and 14 (=O) are input to the differential amplifier 15, +V! A positive output appears.

逆に、磁化が下向きの領域に入射光8が照射された場合
には、反射光の偏波面は一部にだけ回転するため検光子
9の消光方位と一致し、反射光6は受光素子11にまで
達せず出力13は零となる。
Conversely, when the incident light 8 is irradiated onto a region where the magnetization is downward, the plane of polarization of the reflected light rotates only partially, so it matches the extinction direction of the analyzer 9, and the reflected light 6 is directed toward the light receiving element 11. , and the output 13 becomes zero.

しかし、透過光7は一部Fだけ偏波向が回転するためそ
の一部が検光子を通って受光素子12で検出され、出力
14 (=+V丁)を得る。このため、差動増幅器15
からは−v2の負の出力が得られる。
However, since the polarization direction of the transmitted light 7 is partly rotated by F, a part of it passes through the analyzer and is detected by the light receiving element 12, and an output 14 (=+V) is obtained. Therefore, the differential amplifier 15
gives a negative output of -v2.

以上の磁気光学再生原理を第2図に捷とめる。The above magneto-optical reproduction principle is summarized in FIG.

ここで、差動増幅器出力V+ 、V2は、各々VR。Here, the differential amplifier outputs V+ and V2 are each VR.

VT よりも大きくなるように、第2図中のkの値を1
以上に設定する。
The value of k in Figure 2 is set to 1 so that it is larger than VT.
Set above.

今、”1010”の情報が記録された記録媒体を、本発
明装置を用いて再生した場合の信号波形16を第3図に
実線で示す。ここでは、上向き磁化をfi III、下
向き磁化を0″に対応させている。
Now, a signal waveform 16 when a recording medium on which information "1010" is recorded is reproduced using the apparatus of the present invention is shown by a solid line in FIG. Here, upward magnetization corresponds to fi III, and downward magnetization corresponds to 0''.

また、従来の磁気光学再生装置のようにカー効果又はフ
ァラデー効果のみを利用した場合には、一点鎖線で示し
たような信号波形17になる。
Further, when only the Kerr effect or the Faraday effect is used as in a conventional magneto-optical reproducing device, a signal waveform 17 as shown by a dashed line is obtained.

信号波形16.17の尖頭値を比較した場合、本発明装
置ではIVll + l V2 lと大きな値が得られ
、カー効果(又はファラデー効果)のみを利用したとき
に得られる信号波形の尖頭値VR(VT)よりも、およ
そ2倍′の大きさをもつ。
When comparing the peak values of signal waveforms 16 and 17, the device of the present invention obtains a large value of IVll + l V2 l, and the peak value of the signal waveform obtained when only the Kerr effect (or Faraday effect) is used. It is approximately twice as large as the value VR(VT).

〔発明の効果〕〔Effect of the invention〕

このように、本発明によれば磁気光学再生において出力
の大きな再生信号を得ることが可能である。
As described above, according to the present invention, it is possible to obtain a reproduced signal with a large output in magneto-optical reproduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図、第2図は本発
明装置の再生原理を整理した表図、第3図は本発明装置
を用いたとき、および従来型装置を用いたときの再生信
号波形である。 1・・・レーザ光源、3・・・ハーフ・ミラー、4・・
・記録媒体、9.10・・・検光子、11.12・・・
受光素子、15・・・差動増幅器、16・・・本発明の
一実施例の陽画 1 図 オ 第 2 図 269− 第 3 図 O1Q
Fig. 1 is an explanatory diagram showing one embodiment of the present invention, Fig. 2 is a table illustrating the regeneration principle of the inventive device, and Fig. 3 is a diagram illustrating a case in which the inventive device is used and a conventional device. This is the reproduced signal waveform at the time. 1... Laser light source, 3... Half mirror, 4...
・Recording medium, 9.10...Analyzer, 11.12...
Light receiving element, 15...Differential amplifier, 16...Positive image of one embodiment of the present invention 1 Figure O 2 Figure 269- 3 Figure O1Q

Claims (1)

【特許請求の範囲】[Claims] 基板上に設けられた磁気光学記録媒体上に記録された情
報を磁気光学効果を利用して再生する゛光学的再生装置
において、情報再生時に記録媒体に照射された光の反射
光および透過光を同時に利用することを特徴とする磁気
光学再生装置。
In an optical reproducing device that reproduces information recorded on a magneto-optical recording medium provided on a substrate using the magneto-optic effect, the reflected light and transmitted light of the light irradiated onto the recording medium during information reproduction are A magneto-optical reproducing device characterized in that it can be used simultaneously.
JP14764682A 1982-08-27 1982-08-27 Magneto-optical reproducer Pending JPS5938949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14764682A JPS5938949A (en) 1982-08-27 1982-08-27 Magneto-optical reproducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14764682A JPS5938949A (en) 1982-08-27 1982-08-27 Magneto-optical reproducer

Publications (1)

Publication Number Publication Date
JPS5938949A true JPS5938949A (en) 1984-03-03

Family

ID=15435042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14764682A Pending JPS5938949A (en) 1982-08-27 1982-08-27 Magneto-optical reproducer

Country Status (1)

Country Link
JP (1) JPS5938949A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562070A (en) * 1978-11-01 1980-05-10 Sumitomo Chem Co Ltd Production of 1-(o-chlorophenylbisphenylmethyl)imidazole
FR2597643A1 (en) * 1985-11-08 1987-10-23 Seiko Epson Corp MAGNETO-OPTICAL SIGNAL READING SYSTEM
JPS63229646A (en) * 1987-03-19 1988-09-26 Matsushita Electric Ind Co Ltd Magneto-optical disk recording and reproducing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562070A (en) * 1978-11-01 1980-05-10 Sumitomo Chem Co Ltd Production of 1-(o-chlorophenylbisphenylmethyl)imidazole
FR2597643A1 (en) * 1985-11-08 1987-10-23 Seiko Epson Corp MAGNETO-OPTICAL SIGNAL READING SYSTEM
JPS63229646A (en) * 1987-03-19 1988-09-26 Matsushita Electric Ind Co Ltd Magneto-optical disk recording and reproducing device

Similar Documents

Publication Publication Date Title
WO1980001016A1 (en) Magneto-optical anisotropy detecting device
JPS5945646A (en) Optical information reproducer
JPH07101523B2 (en) Magneto-optical signal reproducing device
JPS59203259A (en) Optical magnetic disc device
JPH0363139B2 (en)
JPS5938949A (en) Magneto-optical reproducer
JPH0115932B2 (en)
US5759657A (en) Optical recording medium and device for reproducing the same
JPS59121637A (en) Magneto-optical recording and reproducing device
JPH0445134Y2 (en)
JPS61206947A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPS57169946A (en) Magnetic recorder and reproducer
JPS59157856A (en) Reproduction structure for photomagnetic information recorder
JPH053666B2 (en)
JPS60157745A (en) Photomagnetic recorder
JPH028380B2 (en)
JP2574915B2 (en) Optical device for reproducing magneto-optical recording media
JPS61206952A (en) Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device
JPH0246546A (en) Magneto-optical recording and reproducing system and device used therefor
JP2716988B2 (en) Magnetic field modulation overwrite type magneto-optical disk drive
JPS61206950A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPH0542741B2 (en)
JPS60201547A (en) Magnetooptic reproducing device in common use for recording
JPS61165845A (en) Optical reproducer
JPS59168955A (en) Reproducing structure of optical magnetic information recording device