JPH0445134Y2 - - Google Patents

Info

Publication number
JPH0445134Y2
JPH0445134Y2 JP17131384U JP17131384U JPH0445134Y2 JP H0445134 Y2 JPH0445134 Y2 JP H0445134Y2 JP 17131384 U JP17131384 U JP 17131384U JP 17131384 U JP17131384 U JP 17131384U JP H0445134 Y2 JPH0445134 Y2 JP H0445134Y2
Authority
JP
Japan
Prior art keywords
recording
laser beam
magneto
erasing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17131384U
Other languages
Japanese (ja)
Other versions
JPS6186829U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17131384U priority Critical patent/JPH0445134Y2/ja
Publication of JPS6186829U publication Critical patent/JPS6186829U/ja
Application granted granted Critical
Publication of JPH0445134Y2 publication Critical patent/JPH0445134Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 本考案は磁気光学効果を利用した光磁気デイス
ク装置に関する。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a magneto-optical disk device that utilizes the magneto-optic effect.

(ロ) 従来の技術 従来よりフアラデー効果や磁気カー効果等の磁
気光学効果を応用した情報の垂直磁気記録、再生
の研究が進められている。記録媒体としては、一
般にGdCo、GdFe、TbFe等のアモルフアス磁性
膜が用いられており、あらかじめ全面にわたつて
一方向に磁化させた記録媒体に半導体レーザ等の
光を照射して局部的に記録媒体温度をキユリー点
近傍まで上昇させ、且つレーザ光照射部分を含む
領域に記録媒体が磁化されている向きと逆向きの
バイアス磁気をかけて、レーザ光照射部分にまわ
りと逆向きの磁化領域を作ることにより記録が行
なわれる。記録情報の再生は、レーザ光源等より
射出された光を偏光子を通して直接偏光とした後
記録媒体に照射し、そこからの反射光、もしくは
透過光を検光子を介して光電変換素子等の光検出
器で受けることにより、記録情報による偏光面の
回転を検出して情報再生は行なわれる。
(b) Prior Art Research has been progressing on perpendicular magnetic recording and reproduction of information by applying magneto-optical effects such as the Faraday effect and the magnetic Kerr effect. Generally, an amorphous magnetic film such as GdCo, GdFe, or TbFe is used as a recording medium, and the recording medium is magnetized in one direction over its entire surface before being irradiated with light from a semiconductor laser or the like to locally magnetize the recording medium. Raise the temperature to near the Curie point, and apply bias magnetism in the opposite direction to the direction in which the recording medium is magnetized to the area including the laser beam irradiated area, to create a magnetized area in the laser beam irradiated area in the opposite direction to the surrounding area. Recording is done by this. To reproduce recorded information, light emitted from a laser light source, etc. is directly polarized through a polarizer, then irradiated onto the recording medium, and the reflected or transmitted light is passed through an analyzer to a photoelectric conversion element, etc. Information is reproduced by detecting the rotation of the plane of polarization due to the recorded information by receiving the information with a detector.

また、情報記録部分に、記録時と同様にレーザ
光等を照射して局部的に記録媒体の温度を上昇さ
せ、バイアス磁界を記録時とは逆向き、すなわち
記録媒体全体をあらかじめ磁化した向きにかけて
やるとレーザ光照射部の磁化の向きはまわりと同
じとなり、記録情報は消去されたことになる。
In addition, the temperature of the recording medium is locally raised by irradiating the information recording area with a laser beam, etc. in the same way as during recording, and a bias magnetic field is applied in the opposite direction to that during recording, that is, in the direction in which the entire recording medium has been previously magnetized. When this is done, the magnetization direction of the laser beam irradiated part becomes the same as that of the surrounding area, and the recorded information is erased.

第3図は光磁気記録再生装置の一般的な構成図
である。記録光学系では記録すべき信号に応じて
レーザ光を変調するレーザ変調器1によつて変調
された半導体レーザ2より出たレーザ光はレンズ
3によつて平行ビームとなりミラー4、偏光ビー
ムスプリツタ5、1/4波長板6を通過し、対物レ
ンズ7によつてデイスク状記録媒体8上に集光照
射(1ミクロン程度)される。デイスク状記録媒
体8はあらかじめ全面にわたつて一方向に磁化さ
れている。レーザ光が集光照射されている部分を
含む領域に、バイアス磁界用コイル9等によつ
て、記録媒体8がすでに磁化されている方向と逆
向きの磁界を与えることにより記録が行なわれ
る。
FIG. 3 is a general configuration diagram of a magneto-optical recording/reproducing apparatus. In the recording optical system, the laser beam emitted from the semiconductor laser 2 is modulated by a laser modulator 1 that modulates the laser beam according to the signal to be recorded, and is turned into a parallel beam by a lens 3, and then a mirror 4 and a polarizing beam splitter. 5. The light passes through a 1/4 wavelength plate 6 and is condensed (about 1 micron) onto a disk-shaped recording medium 8 by an objective lens 7. The entire surface of the disk-shaped recording medium 8 is magnetized in one direction in advance. Recording is performed by applying a magnetic field in the opposite direction to the direction in which the recording medium 8 is already magnetized, using the bias magnetic field coil 9 or the like, to a region including the portion where the laser beam is focused and irradiated.

反射光は再び対物レンズ7、1/4波長板6を通
過した後、偏光ビームスプリツター5で反射さ
れ、シリンドリカルレンズ10を通り光検出器1
1に到達する。この光検出器11から得られる信
号によりフオーカス制御、トラツキング制御を行
ないながら記録する。
The reflected light passes through the objective lens 7 and the 1/4 wavelength plate 6 again, is reflected by the polarizing beam splitter 5, passes through the cylindrical lens 10, and reaches the photodetector 1.
Reach 1. Recording is performed while performing focus control and tracking control using the signal obtained from this photodetector 11.

再生には記録と別の光学系が用いられる。半導
体レーザ12から出たレーザ光はレンズ13で平
行光線となりミラー14で反射された後偏光子1
5によつて直線偏光になる。ハーフミラー16を
透過したレーザ光は対物レンズ17により記録媒
体8上に焦点を結ぶ。記録媒体8からの反射光は
磁気光学効果(カー効果)によつて偏光面が記録
媒体8の磁化の向きに応じて右もしくは左に回転
する。
For playback, an optical system separate from that for recording is used. The laser beam emitted from the semiconductor laser 12 becomes a parallel beam at the lens 13 and is reflected at the mirror 14, and then passes through the polarizer 1.
5, it becomes linearly polarized light. The laser beam transmitted through the half mirror 16 is focused onto the recording medium 8 by the objective lens 17. The plane of polarization of the reflected light from the recording medium 8 rotates to the right or left depending on the direction of magnetization of the recording medium 8 due to the magneto-optic effect (Kerr effect).

偏光面の回転した反射光は再び対物レンズ17
を通つてハーフミラー16に入り、その反射光は
更にもう一つのハーフミラー18によつて2分割
され、おのおの検光子19a,19bに入射す
る。この2つの検光子19a,19bは設定角が
偏光子15の偏光面に対し、互いに逆向きに同一
角度となつている。検光子19a,19bを通過
したビーム光はレンズ20a,20bを通りおの
おの光検出器21a,21bに受光される。光検
出器21a,21bによつて光電変換された出力
を差動増幅器22に入れて演算し、“1”、“0”
に相当したデイジタル信号が出力として得られ
る。また光検出器21bより出力されたフオーカ
ス信号、トラツキング信号はフオーカスサーボ回
路23、トラツキングサーボ回路24で処理され
てフオーカスサーボ、トラツキングサーボが行な
われる。
The reflected light whose plane of polarization has been rotated passes through the objective lens 17 again.
The reflected light enters the half mirror 16 through the half mirror 16, and is further divided into two parts by another half mirror 18, and enters the respective analyzers 19a and 19b. These two analyzers 19a and 19b have set angles that are opposite to each other and the same angle with respect to the polarization plane of the polarizer 15. The light beams that have passed through the analyzers 19a and 19b pass through lenses 20a and 20b and are received by photodetectors 21a and 21b, respectively. The outputs photoelectrically converted by the photodetectors 21a and 21b are input into the differential amplifier 22 and calculated, and the outputs are "1" and "0".
A digital signal corresponding to is obtained as output. Further, the focus signal and tracking signal output from the photodetector 21b are processed by a focus servo circuit 23 and a tracking servo circuit 24 to perform focus servo and tracking servo.

デイスク8は第4図に示す様な構造となつてい
る。8aはプラスチツク透明基板、8bは磁性膜
(ハツチングで示す)、8cはSiO2による保護層
である。記録、再生のためのレーザ光30は透明
基板8a側より照射される。トラツキング制御は
レーザ光のスポツトが溝31をトレースする様に
行なわれる。従い記録は溝31の部分に行なわれ
る(31は記録トラツクである)。
The disk 8 has a structure as shown in FIG. 8a is a plastic transparent substrate, 8b is a magnetic film (indicated by hatching), and 8c is a protective layer made of SiO 2 . Laser light 30 for recording and reproduction is irradiated from the transparent substrate 8a side. Tracking control is performed so that the laser beam spot traces the groove 31. Therefore, recording is performed in the groove 31 (31 is a recording track).

一方、消去動作は、前述の様に、記録時と逆向
きの磁界をデイスク8に印加して、消去したい部
分の温度をレーザ光で上昇させることにより行な
う。この時、印加する磁界の強さは、周囲の磁化
部分の影響から、記録時の磁界よりも大きくする
必要がある。しかし、消去時の印加磁界が所定値
より大きくなると隣接トラツクのCN比が低下す
るということが知られており、消去時の印加磁界
の設定は難しい。
On the other hand, the erasing operation is performed by applying a magnetic field in the opposite direction to that during recording to the disk 8 and raising the temperature of the portion to be erased using a laser beam, as described above. At this time, the strength of the applied magnetic field needs to be greater than the magnetic field during recording due to the influence of the surrounding magnetized parts. However, it is known that when the applied magnetic field during erasing becomes larger than a predetermined value, the CN ratio of adjacent tracks decreases, and it is difficult to set the applied magnetic field during erasing.

更に、磁性膜の組成比、製作条件の差、又は、
基板の差等が原因であるキユリー点、熱伝導率、
熱容量のバラツキ、レーザ光スポツトの個々のプ
レーヤでの強度分布バラツキ、デイスクの偏心、
面振れ等により消去特性は大きな影響を受ける。
Furthermore, differences in the composition ratio of the magnetic film, manufacturing conditions, or
The Curie point, thermal conductivity, etc. caused by differences in substrates, etc.
Variations in heat capacity, variations in the intensity distribution of the laser beam spot in each player, eccentricity of the disk,
Erasing characteristics are greatly affected by surface runout and the like.

ところで、従来では消去時のレーザ光として記
録時と同じレーザ光スポツトを用いる様にしてい
た。特開昭58−83347号に記載されている様に、
消去時のトラツキングがずれると(消去時におい
ても、フオーカスサーボ、トラツキングサーボが
かけられている)、消去が完全に行なわれないお
それがある。又、上記デイスク特性のバラツキ等
によつても、記録時と同径のビームスポツトを用
いると、同様のおそれがある。
By the way, in the past, the same laser beam spot as that for recording was used as the laser beam for erasing. As described in Japanese Patent Application Laid-open No. 58-83347,
If the tracking during erasing is off (the focus servo and tracking servo are applied even during erasing), there is a risk that erasing will not be completed completely. Further, due to the above-mentioned variations in disk characteristics, etc., there is a similar risk when a beam spot having the same diameter as that used for recording is used.

そこで前述の特開昭58−83347号では、消去時
のレーザスポツト光の走査方向の巾が、記録時の
それよりも大きい構成が示されている。そしてこ
の構成を実現する手段として1)照射レーザ光の
パワーを消去時に大きくして、ビームの実質的な
スポツト径を大きくする方法、2)レーザ光のス
ポツトを楕円形状に形成して、記録時には長軸方
向を走査方向と一致せしめ、消去時にビームスポ
ツトを90度回転して長軸方向を走査方向の巾とす
ることにより、消去時のスポツトの走査方向の巾
を記録時より大きくしている。
Therefore, the above-mentioned Japanese Patent Laid-Open No. 58-83347 discloses a configuration in which the width of the laser spot light in the scanning direction during erasing is larger than that during recording. The methods for realizing this configuration are 1) increasing the power of the irradiated laser beam during erasing to increase the effective spot diameter of the beam, and 2) forming the laser beam spot into an elliptical shape during recording. By aligning the long axis direction with the scanning direction and rotating the beam spot 90 degrees during erasing to make the long axis direction the width of the scanning direction, the width of the spot in the scanning direction during erasing is made larger than during recording. .

しかしながら上記第1の方法では、スポツト中
心部分のレーザ光強度が強くなり過ぎ、デイスク
8の磁性膜8bを損傷せしめて特性が劣化するお
それがある。又、上記第2の方法では、記録時に
おいて走査方向のスポツト径が大きくなるので、
記録密度の向上を妨げる。又、光軸を回転する為
に台形プリズムを回転させる必要があるので構成
が複雑となる。
However, in the first method, the laser beam intensity at the center of the spot becomes too strong, which may damage the magnetic film 8b of the disk 8 and deteriorate its characteristics. Furthermore, in the second method, the spot diameter in the scanning direction increases during recording, so
This hinders the improvement of recording density. Furthermore, since it is necessary to rotate the trapezoidal prism in order to rotate the optical axis, the configuration becomes complicated.

(ハ) 考案が解決しようとする問題点 以上述べた如く、従来技術の構成では、デイス
ク磁性膜を損傷するおそれがあつたり、記録密度
の向上を妨げるという問題点があつた。本考案は
この点に鑑み為されたものであり、更に構成簡単
で確実に消去できる光磁気デイスク装置を提供す
るものである。
(c) Problems to be Solved by the Invention As described above, the configuration of the prior art has the problem that there is a risk of damaging the disk magnetic film and hinders improvement in recording density. The present invention has been devised in view of this point, and it is an object of the present invention to provide a magneto-optical disk device which has a simple structure and is capable of reliably erasing data.

(ニ) 問題点を解決するための手段 本考案では、消去時における光学系に、音響光
学素子を設け、光磁気デイスク上に集光されるレ
ーザ光スポツトの径を記録時よりも実質的に大き
くするものである。
(d) Means for solving the problem In the present invention, an acousto-optic element is provided in the optical system during erasing, and the diameter of the laser beam spot focused on the magneto-optical disk is substantially smaller than that during recording. It is meant to make it bigger.

(ホ) 作用 音響光学素子が光学系に設けられていることか
ら、光磁気デイスク上に集光されるレーザ光スポ
ツトの径が実質的に記録時よりも大きくすること
ができるので、消去動作が確実に行なえる。
(E) Effect Since the acousto-optic element is provided in the optical system, the diameter of the laser beam spot focused on the magneto-optical disk can be made substantially larger than that during recording, so that erasing operation is possible. You can definitely do it.

(ヘ) 実施例 以下、図面に従い、本考案の一実施例を説明す
る。第1図は実施例の光学系を示す図、第2図は
デイスク上のレーザ光スポツトを示す図、第5図
は音響光学素子の動作を示す図、第6図はデイス
ク上に集光されるレーザ光の様子を示す図であ
る。
(F) Embodiment An embodiment of the present invention will be described below with reference to the drawings. Fig. 1 shows the optical system of the embodiment, Fig. 2 shows the laser beam spot on the disk, Fig. 5 shows the operation of the acousto-optic element, and Fig. 6 shows the laser beam focused on the disk. FIG.

第1図において、2は半導体レーザ、3はコリ
メータレンズ、5は偏光ビームスプリツタ、32
は音響光学素子、7は対物レンズ、8は光磁気デ
イスクである。音響光学素子とは、音響光学効果
を利用するものであり、第5図の如く入射光33
に対して、ラマンーナス回折が生じた場合(印加
する超音波周波数が低いか、超音波の幅(相互作
用長図中L)が挾い場合)には多数次回折が生じ
る。
In FIG. 1, 2 is a semiconductor laser, 3 is a collimator lens, 5 is a polarizing beam splitter, 32
7 is an acousto-optic element, 7 is an objective lens, and 8 is a magneto-optical disk. The acousto-optic element utilizes the acousto-optic effect, and as shown in Fig. 5, the incident light 33
On the other hand, when Ramannus diffraction occurs (when the applied ultrasonic frequency is low or the width of the ultrasonic wave (L in the interaction length diagram) is narrow), multiple-order diffraction occurs.

ラマンーナス回折が生じた場合、m次の回折光
の回折角θmは、 θm=sm-1(mλ/Λ) ……(1) で与えられる。尚、λはレーザ光の波長、Λは媒
質中での超音波の波長である。超音波は振動子3
4に高周波電源35からの高周波信号を印加する
ことによつて付与される。
When Ramannus diffraction occurs, the diffraction angle θm of the m-th order diffracted light is given by θm=sm -1 (mλ/Λ) (1). Note that λ is the wavelength of the laser beam, and Λ is the wavelength of the ultrasonic wave in the medium. Ultrasonic wave is vibrator 3
4 by applying a high frequency signal from a high frequency power source 35.

次に第6図に基づき、通過光、一次回折光、−
1次回折光のデイスク8上での位置について説明
する。対物レンズ7の焦点距離をf、音響光学素
子32による回折角をθとすると、透過光40と
回折光41,42の距離dは d=ftanθ ……(2) で与えられる。すなわち、距離dは回折角θに依
存するから、音響光学素子32に印加する超音波
の周波数を制御することにより、所望の状態を得
ることができる。
Next, based on FIG. 6, the passing light, the first-order diffracted light, -
The position of the first-order diffracted light on the disk 8 will be explained. When the focal length of the objective lens 7 is f and the angle of diffraction by the acousto-optic element 32 is θ, the distance d between the transmitted light 40 and the diffracted lights 41 and 42 is given by d=ftanθ (2). That is, since the distance d depends on the diffraction angle θ, a desired state can be obtained by controlling the frequency of the ultrasound applied to the acousto-optic element 32.

例えば、第2図に示す様に、0.8μmの記録トラ
ツク巾T、1.6μmの記録トラツクピツクPの光磁
気デイスクの場合、距離dを0.4μmとすれば、消
去時のレーザ光の実質的なスポツト径を1.8μm程
度にすることができる。(透過光、回折光のスポ
ツト径は夫々1.0μmと仮定している。)f=3.9mm、
d=0.4μmの時θ=1×10-4ラジアンとなる。音
響光学素子としてタンタル酸リチウムの結晶を用
いた場合、レーザ光の波長を8300オングストロー
ムとすると、(1)式より、およそ750KHzの超音波
を印加すればよい。
For example, as shown in Fig. 2, in the case of a magneto-optical disk with a recording track width T of 0.8 μm and a recording track pick P of 1.6 μm, if the distance d is 0.4 μm, the effective spot of the laser beam during erasing is The diameter can be made approximately 1.8 μm. (The spot diameters of transmitted light and diffracted light are each assumed to be 1.0 μm.) f = 3.9 mm,
When d=0.4μm, θ=1×10 -4 radian. When a lithium tantalate crystal is used as an acousto-optic element, assuming that the wavelength of the laser beam is 8300 angstroms, it is sufficient to apply an ultrasonic wave of about 750 KHz from equation (1).

多数次回折が生じることにより、デイスク8上
に照射されるレーザ光の強度が減少する場合に
は、消去時において、半導体レーザ2のパワーを
上げればよい(供給する電流を増加する)。以上
の様に、消去時、レーザ光スポツト径が実質的に
大きくなるので、消去動作が確実となる。
If the intensity of the laser beam irradiated onto the disk 8 decreases due to the occurrence of multiple-order diffraction, the power of the semiconductor laser 2 may be increased during erasing (the supplied current may be increased). As described above, during erasing, the diameter of the laser beam spot becomes substantially large, so that the erasing operation becomes reliable.

記録時においても、第1図と同じ光学系が用い
られる。ただし、音響光学素子32に対して超音
波信号は印加されない。そこで、ラマンーナス回
折は生じず、透過光のみが対物レンズ7に印加さ
れ、従来例と同じ動作が行なわれる。
The same optical system as in FIG. 1 is used during recording as well. However, no ultrasonic signal is applied to the acousto-optic element 32. Therefore, no Ramannus diffraction occurs, and only the transmitted light is applied to the objective lens 7, and the same operation as in the conventional example is performed.

又、上記の実施例では1次回折光41,42と
透過光40のみを利用したが、2次回折光43、
−2次回折光44をも利用して(回折角θmを小
さくして)、消去時のスポツト径を実質的に大き
くしても良い。
Further, in the above embodiment, only the first-order diffracted light 41, 42 and the transmitted light 40 were used, but the second-order diffracted light 43,
The -second-order diffracted light 44 may also be used (by reducing the diffraction angle θm) to substantially increase the spot diameter during erasing.

(ト) 考案の効果 以上述べた如く、本考案によれば、従来技術の
如く、磁性膜の一部の温度が異常に上昇して磁性
膜が損傷をうけることがなく、又、記録時のスポ
ツトは従来と同じにするとができ記録密度を低下
せしめることなく、消去時のスポツト径を記録時
よりも実質的に大きくすることができるので、デ
イスクの特性ムラ、プレーヤの特性ムラ、トラツ
キングサーボエラー等があつても消去動作を確実
に行なうことができ、効果がある。
(g) Effects of the invention As described above, according to the invention, the temperature of a part of the magnetic film does not rise abnormally and damage the magnetic film unlike the conventional technology, and the magnetic film is not damaged during recording. The spot can be kept the same as before, and the spot diameter during erasing can be made substantially larger than during recording without reducing the recording density, which eliminates uneven disk characteristics, uneven player characteristics, and tracking servo. Even if an error occurs, the erasing operation can be performed reliably, which is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案実施例の光学系を示す図、第2
図はデイスク上でのレーザ光スポツトを示す図、
第3図は、光磁気デイスク装置のブロツク図、第
4図は光磁気デイスクの構造を示す図、第5図は
音響光学素子の動作を示す図、第6図はデイスク
上に焦光されるレーザ光を示す図である。 8……光磁気デイスク、9……バイアス磁界用
コイル、32……音響光学素子。
Fig. 1 is a diagram showing the optical system of the embodiment of the present invention;
The figure shows a laser beam spot on a disk.
Figure 3 is a block diagram of the magneto-optical disk device, Figure 4 is a diagram showing the structure of the magneto-optical disk, Figure 5 is a diagram showing the operation of the acousto-optic element, and Figure 6 is a diagram showing the focusing of light onto the disk. It is a figure showing a laser beam. 8... Magneto-optical disk, 9... Coil for bias magnetic field, 32... Acousto-optic element.

Claims (1)

【実用新案登録請求の範囲】 光磁気デイスクに記録用バイアス磁界を与え
て、レーザ光を照射することにより情報を記録す
る光磁気デイスク装置において、 消去時に前記記録用バイアス磁界と逆方向の消
去用バイアス磁界を付与する手段と、 消去時に高周波信号を印加されて高周波で振動
する振動子と、 消去時に該振動子によつて高周波振動せしめら
れたとき、光学的格子を形成して前記記録媒体の
記録トラツクの幅方向に前記レーザ光の回折光を
形成させる音響光学素子とを、 それぞれ設けることを特徴とする光磁気デイス
ク装置。
[Claims for Utility Model Registration] In a magneto-optical disk device that records information by applying a recording bias magnetic field to a magneto-optical disk and irradiating it with laser light, a method for erasing in a direction opposite to the recording bias magnetic field during erasing. means for applying a bias magnetic field; a vibrator that vibrates at a high frequency when a high frequency signal is applied during erasing; and a vibrator that forms an optical grating when vibrated at a high frequency by the vibrator during erasing, and A magneto-optical disk device comprising: an acousto-optic element that forms diffracted light of the laser beam in the width direction of a recording track.
JP17131384U 1984-11-12 1984-11-12 Expired JPH0445134Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17131384U JPH0445134Y2 (en) 1984-11-12 1984-11-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17131384U JPH0445134Y2 (en) 1984-11-12 1984-11-12

Publications (2)

Publication Number Publication Date
JPS6186829U JPS6186829U (en) 1986-06-06
JPH0445134Y2 true JPH0445134Y2 (en) 1992-10-23

Family

ID=30729005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17131384U Expired JPH0445134Y2 (en) 1984-11-12 1984-11-12

Country Status (1)

Country Link
JP (1) JPH0445134Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2506642B2 (en) * 1985-10-02 1996-06-12 松下電器産業株式会社 Information recording master recording method

Also Published As

Publication number Publication date
JPS6186829U (en) 1986-06-06

Similar Documents

Publication Publication Date Title
JPH0321961B2 (en)
JPH0581977B2 (en)
US6025866A (en) Superresolution optical pickup apparatus
JPH02173933A (en) Multiple recording method and multiple recording and reproducing device
JPH0445134Y2 (en)
JPS61214256A (en) Photomagnetic disc device
JPS59177735A (en) Recording and reproducing device of optical information
JPH06168477A (en) Optical recording and reproducing device and spatial optical modulator
JP2576545B2 (en) Optical head
JPS59121637A (en) Magneto-optical recording and reproducing device
JPS61206952A (en) Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device
JPS61206947A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPS61206950A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPH0467241B2 (en)
JPH0232691B2 (en)
JPS5938949A (en) Magneto-optical reproducer
JPS62128034A (en) Optical head for photomagnetic disc
JP2859519B2 (en) Optical information reproducing device
JPH04295647A (en) Overwrite optical head
JPS61278060A (en) Photothermomagnetic recording/reproducing device
JPH053666B2 (en)
JPH04271040A (en) Optical head for over-write
JPS61206949A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPS61206951A (en) Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device
JPS59168951A (en) Optical magnetic disc device