JPH0232691B2 - - Google Patents

Info

Publication number
JPH0232691B2
JPH0232691B2 JP56119154A JP11915481A JPH0232691B2 JP H0232691 B2 JPH0232691 B2 JP H0232691B2 JP 56119154 A JP56119154 A JP 56119154A JP 11915481 A JP11915481 A JP 11915481A JP H0232691 B2 JPH0232691 B2 JP H0232691B2
Authority
JP
Japan
Prior art keywords
optical
waveguide
light beam
light
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56119154A
Other languages
Japanese (ja)
Other versions
JPS5823337A (en
Inventor
Mamoru Myawaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56119154A priority Critical patent/JPS5823337A/en
Publication of JPS5823337A publication Critical patent/JPS5823337A/en
Publication of JPH0232691B2 publication Critical patent/JPH0232691B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

【発明の詳細な説明】 本発明は、集積光学構造体を用いて記録媒体中
の記録パターンを光学的に再生する記録情報再生
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a recorded information reproducing apparatus that optically reproduces recorded patterns in a recording medium using an integrated optical structure.

従来から記録媒体上の記録パターンを再生する
方式は、種々知られている。第1図は記録パター
ンを光学的に再生する従来の光学系を示すもので
あり、光源1、レンズ2a,2b,2c、ハーフ
ミラー3、光検出器4から構成されている。光源
1から射出された光束は、レンズ2aにより平行
光束となり、レンズ2bによつて記録媒体5上に
集光する。記録媒体5からの反射光は、記録媒体
5上の情報又は信号により変調されている。この
反射光はハーフミラー3により入射光路と分離さ
れ、レンズ2cを介して光検出器4に集光され、
記録媒体5上の情報は電気信号として出力される
ことになる。ここで記録媒体5上に信号が金属薄
膜のピツトや凹凸状で形成されている場合、反射
光は信号により明暗の変調を受ける。記録媒体5
がアモルフアス磁性薄膜のような磁性材である場
合は、反射光は偏光面の回転として変調を受ける
ので、偏光板6a,6bを光路に配置して、偏光
面の回転による情報を明暗の変調に変換して光検
出器4に導くことになる。
2. Description of the Related Art Various methods for reproducing recorded patterns on a recording medium have been known. FIG. 1 shows a conventional optical system for optically reproducing a recorded pattern, and is composed of a light source 1, lenses 2a, 2b, 2c, a half mirror 3, and a photodetector 4. The light beam emitted from the light source 1 becomes a parallel light beam by the lens 2a, and is focused onto the recording medium 5 by the lens 2b. The reflected light from the recording medium 5 is modulated by information or signals on the recording medium 5. This reflected light is separated from the incident optical path by a half mirror 3, and is focused on a photodetector 4 via a lens 2c.
The information on the recording medium 5 will be output as an electrical signal. If the signal is formed on the recording medium 5 by pits or irregularities of a metal thin film, the reflected light is modulated in brightness and darkness by the signal. Recording medium 5
When is made of a magnetic material such as an amorphous magnetic thin film, the reflected light is modulated by the rotation of the plane of polarization, so by placing polarizing plates 6a and 6b in the optical path, the information from the rotation of the plane of polarization can be used to modulate brightness and darkness. It will be converted and guided to the photodetector 4.

本発明の目的は、集積光学構造体を用いること
によつて、小型な光学系でかつ高速に信号の読み
出しが可能な記録情報再生装置を提供することに
あり、その要旨は、光磁気記録媒体に直線偏光光
束を照射する光源と、前記媒体で反射された光束
を伝播する薄膜光導波路と、該導波路を伝播した
光束を外部に取り出す光結合器と、該光結合器か
ら取り出される光束を受光する光検出器と、前記
媒体から薄膜光導波路に至る光路中に設けた旋光
機構とから成り、前記媒体に記録された情報に応
じて前記光結合器から取り出される光束の出射角
度が変化することを前記光検出器で検知すること
により、前記情報を再生することを特徴とするも
のである。
An object of the present invention is to provide a recorded information reproducing device that has a compact optical system and can read signals at high speed by using an integrated optical structure. a light source that irradiates a linearly polarized light beam to the medium, a thin film optical waveguide that propagates the light beam reflected by the medium, an optical coupler that takes out the light beam propagated through the waveguide to the outside, and a light beam taken out from the optical coupler. It consists of a photodetector that receives light and an optical rotation mechanism provided in the optical path from the medium to the thin film optical waveguide, and the output angle of the light beam taken out from the optical coupler changes depending on the information recorded on the medium. The information is reproduced by detecting this with the photodetector.

以下に本発明を第2図以下に図示の実施例に基
づいて詳細に説明する。
The present invention will be explained in detail below based on the embodiments shown in FIG. 2 and below.

第2図は本発明に使用する集積光学構造体10
を示し、XZ平面に置かれた基板12上に平面状
に形成された薄膜導波路13に、プリズムカツプ
ラから成る光結合器14が設けられている。入射
光束L1は光結合器14を介して導波路13中に
光束L2として端面15に導かれる。この集積光
学構造体10の各構成部分について更に詳しく説
明すると、基板12にはLiNbO3(ニオブ酸リチ
ウム)、LiTaO3(タンタル酸リチウム)、ZnO(酸
化亜鉛)等が用いられ、導波路13については、
LiNbO3の基板12の場合はTiを約1000℃の高温
下で拡散して基板12上に数μmの厚さに形成す
る。又、LiTaO3の基板12の場合は、Nb又は
Tiを拡散して得られる。更に他の組合せも挙げ
られるが、導波路13は高屈折率でかつ基板12
との屈折率差が大きい物質で、導波路13を薄く
しても光を伝導し得る材料で形成されることが好
ましい。
FIG. 2 shows an integrated optical structure 10 used in the present invention.
An optical coupler 14 made of a prism coupler is provided on a thin film waveguide 13 formed in a planar shape on a substrate 12 placed on an XZ plane. The incident light beam L 1 is guided into the waveguide 13 via the optical coupler 14 as a light beam L 2 to the end face 15 . To explain each component of the integrated optical structure 10 in more detail, the substrate 12 is made of LiNbO 3 (lithium niobate), LiTaO 3 (lithium tantalate), ZnO (zinc oxide), etc. teeth,
In the case of the substrate 12 of LiNbO 3 , Ti is diffused at a high temperature of about 1000° C. to form a thickness of several μm on the substrate 12 . In addition, in the case of the LiTaO 3 substrate 12, Nb or
Obtained by diffusing Ti. Although other combinations are also possible, the waveguide 13 has a high refractive index and the substrate 12
It is preferable to use a material that has a large refractive index difference between the waveguide 13 and the waveguide 13 and that can conduct light even if the waveguide 13 is made thin.

集積光学構造体10には、第3図に示すように
光結合器14を介して光源20からレーザ光L1
が入射され、端面15から光束L3が射出される。
端面15側には順次、レンズ系21、フアラデイ
回転子22、レンズ系23、磁気記録媒体24が
配列されている。レンズ系21は集積光学構造体
10の端面15の射出光をフアラデイ回転子22
に結像し、レンズ系23はフアラデイ回転子22
の像を記録媒体24に結像するような幾荷学的位
置関係を有している。フアラデイ回転子22には
駆動磁場回路25が接続され、磁界により光束を
旋光するようになつている。又、件結合器14の
射出部側には光検出器26が配置されている。
The integrated optical structure 10 receives a laser beam L 1 from a light source 20 via an optical coupler 14 as shown in FIG.
is incident, and a light beam L3 is emitted from the end face 15.
A lens system 21, a Faraday rotator 22, a lens system 23, and a magnetic recording medium 24 are arranged in this order on the end surface 15 side. The lens system 21 converts the light emitted from the end surface 15 of the integrated optical structure 10 into a Faraday rotator 22.
The lens system 23 focuses on the Faraday rotator 22.
It has a geometrical positional relationship such that an image of 1 is formed on the recording medium 24. A driving magnetic field circuit 25 is connected to the Faraday rotator 22, and the light beam is rotated by the magnetic field. Further, a photodetector 26 is arranged on the emission part side of the coupler 14.

光磁気記録媒体24としては、光エネルギの熱
による磁区反転記録が行なえる例えばMnBiや、
GdCo、GdFe、TbFe、GdTbFe等の垂直磁化特
性を有するアモルフアス磁性薄膜が使用できる。
一般に、垂直磁化をもつ光磁気記録媒体24で直
線偏光の光束が反射されるとき、この反射光は楕
円偏光となり、同時に磁化に比例する偏光面の回
転が起こる。今、光磁気記録媒体24に、磁化の
向きが厚さ方向に対し上向きと下向きの二者択一
の状態で記録するものとする。この上向きと下向
きの状態で記録された光磁気記録媒体24に、直
線偏光をした光束を照射すると、その反射光の偏
光面はそれぞれの状態に対して、良く知られてい
るカー(Kerr)効果により+ΘK又は−ΘK回転す
る。即ち第4図に示すように、直線偏光をした入
射光束の偏光面をAとすると、反射光の偏光面は
それぞれの磁化の向きに対してB、Cとなる。
As the magneto-optical recording medium 24, for example, MnBi, which can perform magnetic domain reversal recording by heat of optical energy,
Amorphous magnetic thin films having perpendicular magnetization characteristics such as GdCo, GdFe, TbFe, and GdTbFe can be used.
Generally, when a linearly polarized light beam is reflected by the magneto-optical recording medium 24 having perpendicular magnetization, the reflected light becomes elliptically polarized light, and at the same time, the plane of polarization rotates in proportion to the magnetization. Now, it is assumed that recording is to be performed on the magneto-optical recording medium 24 with the direction of magnetization either upward or downward with respect to the thickness direction. When the magneto-optical recording medium 24 recorded in these upward and downward states is irradiated with a linearly polarized beam of light, the polarization plane of the reflected light changes depending on the well-known Kerr effect. It rotates by +Θ K or -Θ K. That is, as shown in FIG. 4, if the polarization plane of the linearly polarized incident light beam is A, then the polarization planes of the reflected light are B and C with respect to the respective magnetization directions.

フアラデイ回転子22としては、駆動磁場が少
なくて済む位相整合膜を付けたYIG薄膜等が好適
であり、このフアラデイ回転子22を用いれば、
40度程度のフアラデイ回転子を得るためには、約
200Oe程度の小さい駆動磁場で済むという利点を
有している。
As the Faraday rotator 22, a YIG thin film or the like with a phase matching film that requires less driving magnetic field is suitable, and if this Faraday rotator 22 is used,
To obtain a Faraday rotator of about 40 degrees, approximately
It has the advantage of requiring only a small driving magnetic field of about 200 Oe.

実施例に於いては駆動磁場回路25により磁界
の大きさを調節して、フアラデイ回転子22を通
過した光の偏光面がΘK/2回転するようにして
おく。
In this embodiment, the magnitude of the magnetic field is adjusted by the drive magnetic field circuit 25 so that the plane of polarization of the light that has passed through the Faraday rotator 22 is rotated by Θ K /2.

情報の再生に当つては、光源20から、電場の
振動方向が導波路13の端面15に平行である直
線偏光光束(以下TEモードの光束と称する)L1
を、光結合器14を通して導波路13に導びく。
導波路13内に入射した光束L2は、導波路13
内を伝搬して、導波路13の端面15から射出さ
れる。端面15から射出されたこの光束L3は、
TEモードの光束であり、その偏光方向を第5図
aのDとする。この光束L3がフアラデイ回転子
22を透過すると、前述の説明により第5図aの
Eに示すように、偏光面がΘK/2回転する。フ
アラデイ回転子22を透過した光束L4は、光磁
気記録媒体24で反射し、第5図bに示すように
その偏光面はEの状態から、記録媒体24の磁化
の向きに応じて、+ΘK又は−ΘK回転し、F又はG
の状態に至る。反射光L5が再びフアラデイ回転
子22を透過すると、偏光面は更にΘK/2回転
するので、再び導波路13の端面15へ戻る光束
L6の偏光面は、F、Gの状態から記録媒体24
の磁化の向きに応じて、第5図cに示すように
H、Iの状態となる。即ち、磁化の向きが上向き
の状態である媒体24からの反射光の偏光面は、
TEモードに対応した偏光面から2ΘK回転してお
り、下向きの状態からの反射光の偏光面は、TE
モードの偏光面と一致することになる。光束L6
は集積光学構造体10の端面15から再び導波路
13内に入射するに際し、上向き状態からの反射
光のTM成分H′がTMモードで、上記反射光の
TE成分H″と下向き状態からの反射光IがTEモ
ードで、導波路13内を光束L7として伝搬する。
TEモードの光束とTMモードの光束は、導波路
13内の伝搬定数に差があるので、再び光結合器
14から射出する角度は異なる。又、光検出器2
6をTMモードの射出光束L8を受光する位置に配
置しておけば、光磁気記録媒体24上で磁化の向
きが上向き状態のときにのみ、光検出器26に光
束が入射し、信号の再生が可能になる。又、光源
20方向に戻るTEモードの射出光束のパワーの
変化が検出することによつても、信号の再生は可
能である。
When reproducing information, a linearly polarized light beam (hereinafter referred to as a TE mode light beam) L 1 whose electric field vibration direction is parallel to the end surface 15 of the waveguide 13 is emitted from the light source 20.
is guided to the waveguide 13 through the optical coupler 14.
The light beam L 2 incident on the waveguide 13 is
The light propagates within the waveguide 13 and is emitted from the end face 15 of the waveguide 13. This luminous flux L 3 emitted from the end face 15 is
It is a TE mode light beam, and its polarization direction is indicated by D in FIG. 5a. When this light beam L 3 passes through the Faraday rotator 22, the plane of polarization rotates by Θ K /2 as shown in E of FIG. 5A according to the above explanation. The light beam L4 transmitted through the Faraday rotator 22 is reflected by the magneto-optical recording medium 24, and as shown in FIG. K or -Θ K rotation, F or G
reaches the state of When the reflected light L 5 passes through the Faraday rotator 22 again, the plane of polarization is further rotated by Θ K /2, so that the light flux returns to the end face 15 of the waveguide 13 again.
The polarization plane of L 6 is determined by the recording medium 24 from the F and G states.
Depending on the direction of magnetization, the state becomes H or I as shown in FIG. 5c. That is, the polarization plane of the reflected light from the medium 24 whose magnetization direction is upward is as follows:
It is rotated by 2ΘK from the polarization plane corresponding to the TE mode, and the polarization plane of the reflected light from the downward state is the TE mode.
This will match the plane of polarization of the mode. Luminous flux L 6
When entering the waveguide 13 again from the end surface 15 of the integrated optical structure 10, the TM component H' of the reflected light from the upward state is in the TM mode, and the reflected light is in the TM mode.
The TE component H'' and the reflected light I from the downward state propagate in the waveguide 13 as a light flux L7 in the TE mode.
Since the TE mode light flux and the TM mode light flux have different propagation constants within the waveguide 13, the angles at which they exit from the optical coupler 14 are different. Also, photodetector 2
6 is placed in a position to receive the emitted light flux L8 in the TM mode, the light flux enters the photodetector 26 only when the magnetization direction is upward on the magneto-optical recording medium 24, and the signal is detected. playback becomes possible. Further, the signal can also be reproduced by detecting a change in the power of the emitted light beam in the TE mode returning toward the light source 20.

上述の説明では、フアラデイ回転子22により
偏光面をΘK/2だけ回転するようにしたが、
(π/4−ΘK/2)だけ回転させても同様の再生
が可能である。この場合、第6図に示すように、
第5図cに対応して、磁化の向きが上向き状態で
ある媒体24からの反射光の偏光面JはTMモー
ドに対応した偏光面に一致し、下向き状態からの
反射光の偏光面KはTEモードに対応した面から
(π/2−2ΘK)だけ回転した角度に位置する。
この方法を用いる場合、光検出器26をTMモー
ドの射出光束を受光する位置に置けば信号の再生
ができる。
In the above explanation, the plane of polarization was rotated by Θ K /2 using the Faraday rotator 22.
Similar reproduction is possible by rotating by (π/4−Θ K /2). In this case, as shown in Figure 6,
Corresponding to FIG. 5c, the polarization plane J of the reflected light from the medium 24 whose magnetization direction is in the upward state matches the polarization plane corresponding to the TM mode, and the polarization plane K of the reflected light from the downward state is It is located at an angle rotated by (π/2−2Θ K ) from the plane corresponding to the TE mode.
When using this method, the signal can be regenerated by placing the photodetector 26 at a position where it receives the emitted light beam in the TM mode.

第7図は、本発明の他の実施例を示し、集積光
学構造体10でその導波路13上に、表面弾性波
Wを発生させる櫛の歯状電極16と薄膜レンズ1
7とが設けられている。今、光源20から平行光
束l1を光結合器14を介して、導波路13に導び
くと、導波路13を伝搬する光束l2は、導波路1
3の一部に設けられた櫛の歯状電極16によつて
励起される表面弾性波Wにより回折作用を起こし
偏向される。更にこの偏向光束l3は、薄膜レンズ
17により導波路13の端面15に輝点Sを形成
するように集光される。前記櫛の歯状電極16に
印加する高周波電圧の周波数を変化させて、導波
路13上の表面弾性波Wの波長を変えることによ
り偏光角を制御し、端面15上で輝点走査が行な
われる。この実施例は輝点Sをレンズ系21,2
3により光磁気記録媒体24上に結像させ、媒体
24上の信号の再生を先の実施例と同一の手段に
より行なうものである。
FIG. 7 shows another embodiment of the present invention, in which an integrated optical structure 10 has a comb tooth-like electrode 16 and a thin film lens 1 on its waveguide 13 for generating a surface acoustic wave W.
7 is provided. Now, when the parallel light beam l 1 from the light source 20 is guided to the waveguide 13 via the optical coupler 14, the light beam l 2 propagating through the waveguide 13 is
The surface acoustic wave W excited by the comb tooth-shaped electrode 16 provided on a part of the surface acoustic wave W causes a diffraction effect and is deflected. Furthermore, this deflected light beam l 3 is focused by a thin film lens 17 so as to form a bright spot S on the end face 15 of the waveguide 13. The polarization angle is controlled by changing the frequency of the high-frequency voltage applied to the comb tooth-shaped electrode 16 to change the wavelength of the surface acoustic wave W on the waveguide 13, and bright spot scanning is performed on the end face 15. . In this embodiment, the bright spot S is
3, an image is formed on the magneto-optical recording medium 24, and the signal on the medium 24 is reproduced by the same means as in the previous embodiment.

このような記録情報再生装置は、光磁気記録媒
体24上に於いて輝点Sを走査して信号の読み出
しを行なうため、高速な再生が可能になる利点を
有している。又、こららの実施例のように、導波
路13上に再び光束を戻す手段は、単に光学系が
小型になること以外に、記録媒体24上で輝点S
を走査しても、光束を静止した状態で検出できる
という利点がある。
Such a recorded information reproducing apparatus reads a signal by scanning the bright spot S on the magneto-optical recording medium 24, and therefore has the advantage of being able to perform high-speed reproduction. In addition, as in these embodiments, the means for returning the luminous flux onto the waveguide 13 is not limited to simply making the optical system smaller;
There is an advantage in that even if the beam is scanned, the light beam can be detected in a stationary state.

以上説明したように、本発明に係る記録情報再
生装置は、集積光学構造体に光束を往復させて記
録媒体の情報を再生するものであり、構成が簡素
で高速度の読み出しが可能となる。
As described above, the recorded information reproducing apparatus according to the present invention reproduces information on a recording medium by reciprocating a light beam through an integrated optical structure, and has a simple configuration and enables high-speed reading.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、記録媒体上の記録パターンを再生す
る従来の光学系の構成図、第2図以下は本発明に
係る記録情報再生装置の実施例であり、第2図は
集積光学構造体の斜視図、第3図は第1の実施例
の構成図、第4図は記録媒体によるカー効果の説
明図、第5図及び第6図は再生時の偏光面の状態
を示す説明図、第7図は第2の実施例の構成図で
ある。 符号10は集積光学構造体、12は基板、13
は導波路、14は光結合器、15は端面、17は
薄膜レンズ、20は光源、21,23はレンズ
系、22はフアラデイ回転子、24は記録媒体、
26は光検出器である。
FIG. 1 is a block diagram of a conventional optical system for reproducing a recorded pattern on a recording medium. FIG. 2 and the following are examples of a recorded information reproducing apparatus according to the present invention. 3 is a configuration diagram of the first embodiment, FIG. 4 is an explanatory diagram of the Kerr effect due to the recording medium, FIGS. 5 and 6 are explanatory diagrams showing the state of the polarization plane during reproduction, and FIG. FIG. 7 is a configuration diagram of the second embodiment. 10 is an integrated optical structure, 12 is a substrate, 13
is a waveguide, 14 is an optical coupler, 15 is an end face, 17 is a thin film lens, 20 is a light source, 21 and 23 are lens systems, 22 is a Faraday rotator, 24 is a recording medium,
26 is a photodetector.

Claims (1)

【特許請求の範囲】[Claims] 1 光磁気記録媒体に直線偏光光束を照射する光
源と、前記媒体で反射された光束を伝播する薄膜
光導波路と、該導波路を伝播した光束を外部に取
り出す光結合器と、該光結合器から取り出される
光束を受光する光検出器と、前記媒体から薄膜光
導波路に至る光路中に設けた旋光機構とから成
り、前記媒体に記録された情報に応じて前記光結
合器から取り出される光束の出射角度が変化する
ことを前記光検出器で検知することにより、前記
情報を再生することを特徴とする記録情報再生装
置。
1. A light source that irradiates a magneto-optical recording medium with a linearly polarized light beam, a thin film optical waveguide that propagates the light beam reflected by the medium, an optical coupler that extracts the light beam propagated through the waveguide to the outside, and the optical coupler. It consists of a photodetector that receives the light flux extracted from the optical coupler, and an optical rotation mechanism provided in the optical path from the medium to the thin-film optical waveguide, which detects the light flux extracted from the optical coupler according to the information recorded on the medium. A recorded information reproducing apparatus characterized in that the information is reproduced by detecting with the photodetector that the emission angle changes.
JP56119154A 1981-07-31 1981-07-31 Recording information reproducing device Granted JPS5823337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56119154A JPS5823337A (en) 1981-07-31 1981-07-31 Recording information reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56119154A JPS5823337A (en) 1981-07-31 1981-07-31 Recording information reproducing device

Publications (2)

Publication Number Publication Date
JPS5823337A JPS5823337A (en) 1983-02-12
JPH0232691B2 true JPH0232691B2 (en) 1990-07-23

Family

ID=14754252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56119154A Granted JPS5823337A (en) 1981-07-31 1981-07-31 Recording information reproducing device

Country Status (1)

Country Link
JP (1) JPS5823337A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271032A (en) * 1985-05-24 1986-12-01 Matsui Seisakusho:Kk Method and apparatus for regenerating adsorbent by dehumidification
FR2606921B1 (en) * 1986-11-18 1989-01-13 Commissariat Energie Atomique INTEGRATED OPTICAL READING HEAD FOR READING INFORMATION RECORDED ON A MAGNETIC MEDIUM
JP2539254B2 (en) * 1988-09-01 1996-10-02 動力炉・核燃料開発事業団 Microwave heating container

Also Published As

Publication number Publication date
JPS5823337A (en) 1983-02-12

Similar Documents

Publication Publication Date Title
US4571650A (en) Magneto-optic information storage system utilizing a self-coupled laser
US4660187A (en) Light signal reading method and apparatus using interference between two light beams of different frequency and polarization
JPH0581977B2 (en)
JPH0232691B2 (en)
JPH0445134Y2 (en)
JPS628347A (en) Optomagnetic recording and reproducing device
JPS61131288A (en) Solid-state memory
JP2576545B2 (en) Optical head
JPS61237241A (en) Photomagnetic recording and reproducing device
JP2624241B2 (en) Magneto-optical disk device
JP2859519B2 (en) Optical information reproducing device
JPS61206947A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPS5823336A (en) Recording information reproducing device
JPH0253852B2 (en)
JPH053667B2 (en)
JPS61206952A (en) Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device
EP0520813A2 (en) Magneto-optical recording and reproducing apparatus
JP2716988B2 (en) Magnetic field modulation overwrite type magneto-optical disk drive
JPS60201547A (en) Magnetooptic reproducing device in common use for recording
JPS61206950A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPS58199466A (en) Optical information processor
JPH03290844A (en) Optical accumulator for magneto-optical reproducing head
JPS63146259A (en) Magneto-optical recording system
JPS6066338A (en) Method and apparatus for recording or reproducing information
JPS61206951A (en) Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device