JPS61206952A - Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device - Google Patents

Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device

Info

Publication number
JPS61206952A
JPS61206952A JP4783985A JP4783985A JPS61206952A JP S61206952 A JPS61206952 A JP S61206952A JP 4783985 A JP4783985 A JP 4783985A JP 4783985 A JP4783985 A JP 4783985A JP S61206952 A JPS61206952 A JP S61206952A
Authority
JP
Japan
Prior art keywords
recording
light
reflected
beam splitter
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4783985A
Other languages
Japanese (ja)
Inventor
Hideki Akasaka
赤坂 秀機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP4783985A priority Critical patent/JPS61206952A/en
Publication of JPS61206952A publication Critical patent/JPS61206952A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make recording and reproducing of simultaneous erasing and recording type by one pickup and to monitor at the time of recording by using beams of different wavelength at the time of recording and reproducing. CONSTITUTION:When recording, a polarized light beam Bm having an oscillation plane perpendicular to the face of paper is oscillated from a light source 1. The beam is reflected by the first beam splitter 3 and projected vertically onto a recording medium S. On the other hand, a beam Bm oscillated from a light source 2 is a polarized light beam B having an oscillation plane parallel to the face of paper and intensity of the sub-beam Bm is modulated according to binary coded information to be recorded by controlling the light source 2. When reproducing, the main beam Bw is oscillated lowering its intensity than the case of recording, and reflected light from the medium S is utilized as controlling light as in the case of recording. The sub-beam Bm is oscillated at a fixed intensity without making intensity modulation, and reflected light from the medium S is received by the second photoelectric converting device similar to the case of monitoring of recording, and converted to electrical signals.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は同時消録型光磁気記録方式に使用する記録及び
再生兼用装置のピックアップに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a pickup for a recording and reproducing device used in a simultaneous erasure type magneto-optical recording system.

(発明の背景) 光磁気記録方式とは、光磁気記録再生方式から由来した
術語であり、光熱磁気記録方式とも呼ぶことができる。
(Background of the Invention) The magneto-optical recording method is a term derived from the magneto-optical recording and reproducing method, and can also be called the magneto-optical recording method.

この光磁気記録方式とは9例えばGdCo、GdTbF
eの如き垂直磁化膜からなる光磁気記録媒体の磁化の方
向を予め強力な外部磁場によ、り膜面に対し上向きか又
は下向きかのいずれか一方に揃えておく (この作業を
初期化という)、その上でこの媒体に反対向きの垂直磁
化を有するピットを形成することにより、2値化された
情報を記録して行くものである。このピットを形成する
には直径を1〜2ミクロン程度に絞ったレーザービーム
を照射して、その部分の温度を磁化膜のキュリ一点付近
に上昇させ、それにより。
This magneto-optical recording system is9 For example, GdCo, GdTbF.
The direction of magnetization of a magneto-optical recording medium made of a perpendicularly magnetized film such as e is aligned in advance with a strong external magnetic field, either upward or downward relative to the film surface (this process is called initialization). ), and then, by forming pits with opposite perpendicular magnetization on this medium, binarized information is recorded. To form these pits, a laser beam with a diameter of about 1 to 2 microns is irradiated to raise the temperature of the area to around the Curie point of the magnetized film.

その部分の保磁力をゼロ又はほとんどゼロにし。Make the coercive force of that part zero or almost zero.

同時に反対向きの弱い外部磁場(バイアス磁場)を印加
して磁化の向きを反転させ、その上でレーザービームの
照射を止めると、自然に冷却されて常温に戻り2反転し
た磁化の向きが固定される。
At the same time, a weak external magnetic field (bias magnetic field) in the opposite direction is applied to reverse the direction of magnetization, and then when the laser beam irradiation is stopped, it is naturally cooled and returns to room temperature. 2 The reversed direction of magnetization is fixed. Ru.

こうして磁化の向きが反対のピットが形成される。In this way, pits with opposite magnetization directions are formed.

従って1例えば元の向きをrOJとすれば、「1」のピ
ットが形成され、2値化された情報は。
Therefore, for example, if the original orientation is rOJ, a pit of "1" is formed, and the binarized information is.

このピットの有無又はビット長として記録される。The presence or absence of this pit or the bit length is recorded.

こうして記録された2値化情報は、記録媒体に対して直
線偏光(レーザービーム)を照射して。
The binarized information recorded in this way is generated by irradiating the recording medium with linearly polarized light (laser beam).

その反射光や透過光の偏光面の回転状況が磁化の向きに
よって相違する現象(磁気カー効果及びファラデに一効
果)を利用して読み取られる。つまり、入射光に対して
磁化の向きが上向きのとき。
The state of rotation of the polarization plane of the reflected light and transmitted light is read using a phenomenon (magnetic Kerr effect and Faraday effect) that differs depending on the direction of magnetization. In other words, when the direction of magnetization is upward relative to the incident light.

反射光や透過光の偏光面が入射光の偏光面に対してθに
度回転したとすると、入射光に対して磁化の向きが下向
きのときは一θに度回転する。従って1反射光や透過光
の先に偏光子(アナライザーとも呼ばれる)の主軸を一
θに皮面にほぼ直交するように置いておくと、下向き磁
化の部分からの光はアナライザーをほとんど透過せず、
上向きの磁化の部分からの光はsin” 20にの分だ
け透過するので、アナライザーの先にディテクター(光
電変換手段)を設置しておけば、記録媒体を高速でスキ
ャンニングして行くと、記録された磁気的情報に基づい
て電流の強弱信号(電気的情報)が再生される。
If the polarization plane of reflected light or transmitted light is rotated by θ with respect to the polarization plane of incident light, when the direction of magnetization is downward with respect to the incident light, it is rotated by 1 θ. Therefore, if a polarizer (also called an analyzer) is placed in front of the reflected or transmitted light with its principal axis at 1θ and almost perpendicular to the skin surface, the light from the downwardly magnetized part will hardly pass through the analyzer. ,
Since the light from the upwardly magnetized portion is transmitted by the amount equal to sin" 20, if a detector (photoelectric conversion means) is installed at the end of the analyzer, the recording medium can be scanned at high speed. A current strength signal (electrical information) is reproduced based on the generated magnetic information.

ところで記録済みの媒体を再使用するには。By the way, how can I reuse recorded media?

(イ)再び初期化装置で初期化するか、(ロ)別に消去
用のヘッドを併設するか、(ハ)予め前段処理として記
録ヘッドを用いて消去する必要がある。しかしながら、
初期化装置は大型で高価であり、記録装置に付随させる
ことは実用上無理である。別に消去用のヘッドを併設す
ることも、それだけ製造コストが上昇する。また、予め
記録装置を用いて消去することも、消去に記録時と同じ
時間がかかるので実用的な魅力に乏しい。
It is necessary to (b) initialize again with an initialization device, (b) install a separate head for erasing, or (c) erase in advance using a recording head as a preliminary process. however,
The initialization device is large and expensive, and it is practically impossible to attach it to the recording device. Providing a separate erasing head also increases manufacturing costs. Furthermore, erasing using a recording device in advance is not practical because it takes the same amount of time to erase as it does to record.

従って、簡単に記録済みの情報を消すと同時に新しい情
報を記録できると好都合である。このように同時消録す
るには、記録媒体の磁化の向きが上向き、下向きのいず
れを向いていても、希望する磁化の向きを有するピット
を形成できなければならない。そのためには、バイアス
磁場が一方向だけでな(、希望に応じて上向き、下向き
のいずれにも変えられなければならない。しかも、その
変化の速度(変調周波数)は、記録速度を高めるため、
メガHz(10’サイクル/秒)程度必要である。もし
、そうでなければ、この光磁気記録再生方式は他の記録
再生方式に比べて魅力が失なわれることになる。
Therefore, it would be advantageous if new information could be recorded at the same time as easily erasing recorded information. In order to perform simultaneous erasure in this way, it is necessary to form pits having the desired magnetization direction, regardless of whether the magnetization direction of the recording medium is upward or downward. To do this, the bias magnetic field must be changed not only in one direction (but also upwards or downwards as desired).Moreover, the speed of change (modulation frequency) must be changed to increase the recording speed.
Approximately megaHz (10' cycles/sec) is required. If this were not the case, this magneto-optical recording and reproducing method would lose its appeal compared to other recording and reproducing methods.

他方、バイアス磁場を得るには、永久磁石か電磁石を使
用する訳であるが、磁化の向きをメガHzの頻度で変化
(変調)させるには電磁石しか考えられない。何故なら
ば、永久磁石をメガHzの頻度で機械的に反転させるの
は相当に困難であるからである。しかし、電磁石でも、
記録媒体の垂直磁化膜に対し非接触で十分な磁場を及ぼ
すには相当に大きな電流を電磁石に流す必要があり、こ
の電流の方向をメガllzの頻度で変調させるのは相当
に困難である。
On the other hand, to obtain a bias magnetic field, a permanent magnet or an electromagnet is used, but an electromagnet is the only option that can be used to change (modulate) the direction of magnetization at a frequency of megahertz. This is because it is quite difficult to mechanically flip a permanent magnet at a frequency of megahertz. However, even electromagnets
In order to apply a sufficient magnetic field to the perpendicularly magnetized film of a recording medium in a non-contact manner, it is necessary to flow a considerably large current through an electromagnet, and it is extremely difficult to modulate the direction of this current at a frequency of megallz.

従って、現在のところ、バイアス磁場は定磁場の方式し
か考えられておらず、結局、光磁気記録方式は別に消去
−ラドを併設しない限り同時消録が不可能と考えられて
いる。
Therefore, at present, only a constant magnetic field system is being considered for the bias magnetic field, and it is considered that simultaneous erasing is not possible in the magneto-optical recording system unless a separate erasing and rad system is installed.

ところで、光磁気記録媒体は2通常円盤状であるので同
心円又は渦巻き状の記ttcSI域(Aw)を持ち、隣
接の記録領域(Aw)との重複を避けるため、記録領域
(Aw)と記録領域(Aw)との間に非記録領域(Am
)を有する(第2A図参照)。
By the way, since magneto-optical recording media are usually disk-shaped, they have concentric circles or spiral ttcSI areas (Aw), and in order to avoid overlapping with adjacent recording areas (Aw), recording areas (Aw) and recording areas (Aw) and the non-recording area (Am
) (see Figure 2A).

また第2A図のようにトラッキングの溝を形成すること
で記録領域(A w)と非記録領域(Am)をあらかじ
め区別することをしない媒体でも。
Also, as shown in FIG. 2A, the recording area (Aw) and the non-recording area (Am) are not distinguished in advance by forming tracking grooves on the medium.

トラック間のクローストークを防ぐために、記録トラッ
ク間に十分な非記録領域(Am)を設けるのが普通であ
る。
To prevent crosstalk between tracks, it is common to provide sufficient non-recording areas (Am) between recording tracks.

そして、記録領域(A W)に垂直磁化膜を形成する際
に非記録領域(Am)に垂直磁化膜を形成させないよう
にするのは非常に面倒なので、一般には全体に垂直磁化
膜を形成してしまう。そのため、非記録領域(A m 
)が常に一方に揃った垂直磁化を持つことになり、しか
も、記録領域(Aw)に非記録領域(Am)が隣接する
ため、記録領域(Aw)には第2B図に破線で示すよう
に非記録領域(Am)からの浮遊磁場が及ぶことになる
When forming a perpendicular magnetization film in the recording area (A W), it is extremely troublesome to prevent the perpendicular magnetization film from forming in the non-recording area (Am), so generally a perpendicular magnetization film is formed over the entire area. I end up. Therefore, the non-recording area (A m
) will always have perpendicular magnetization aligned on one side, and since the non-recording area (Am) is adjacent to the recording area (Aw), the recording area (Aw) will have perpendicular magnetization that is always aligned on one side, as shown by the broken line in Figure 2B. A stray magnetic field from the non-recording area (Am) will reach this area.

本発明者は、他の発明者と共に先に垂直磁化膜の温度を
メガHz程度の頻度で変調することが可能な点に注目し
、温度によって変わる非記録領域(Am>からの浮遊磁
場をバイアス磁場として利用することにより同時消録を
可能にした光磁気記録方式を発明し、特許出願した(特
願昭59−91360号)。
The present inventor, together with other inventors, first focused on the fact that it is possible to modulate the temperature of a perpendicularly magnetized film at a frequency of around megahertz, and biased the stray magnetic field from the non-recording area (Am), which changes depending on the temperature. He invented a magneto-optical recording system that enabled simultaneous erasure by using it as a magnetic field, and filed a patent application (Japanese Patent Application No. 91360/1982).

但し、垂直磁化膜の材料によっては、温度を高温、低温
の2段階に設定したとき、その垂直磁化の向きがいずれ
の温度段階に於いても同じ場合や。
However, depending on the material of the perpendicularly magnetized film, when the temperature is set at two levels, high and low, the direction of perpendicular magnetization may be the same at both temperature levels.

いずれか一方の向きの垂直磁化の大きさが不十分で、そ
こからの浮遊磁場が記録に十分な記録用磁場IHlより
弱い場合には、補助としてバイアス定磁場を印加するこ
とにより、変調される浮遊磁場との和によって、記録が
可能になる。一般には、高温時の浮遊磁場をH11低温
時の浮遊磁場をHa、バイアス定磁場をHbとすれば。
If the magnitude of perpendicular magnetization in either direction is insufficient and the stray magnetic field from there is weaker than the recording magnetic field IHL, which is sufficient for recording, modulation can be performed by applying a bias constant magnetic field as an auxiliary. Recording is made possible by the sum of the stray magnetic fields. Generally, if the floating magnetic field at high temperature is H1, the floating magnetic field at low temperature is Ha, and the bias constant magnetic field is Hb.

IH,+Hbl≧IHw1 1H・+ Hbl≧1HW1 でなければならない。IH, +Hbl≧IHw1 1H・+Hbl≧1HW1 Must.

従って、先願発明では垂直磁化膜からなる記録領域(A
4@)と一方の向きに揃った垂直磁化を示す非記録領域
(A m )とを有する光磁気記録媒体に対して、第3
図に示すように。
Therefore, in the prior invention, the recording area (A
4@) and a non-recording area (A m ) exhibiting perpendicular magnetization aligned in one direction.
As shown in the figure.

該媒体(S)をモーター(33)で回転させながら、前
記記録領域(Aw)には、その保磁力がゼロまたは相当
に小さくなる温度に上げるのに十分な光強度を有する主
ビーム(B W)を記録中常時照射し、同時に必要に応
じて永久磁石、または電磁石(40)により記録領域(
Aw)にバイアス定磁場を印加し。
While the medium (S) is rotated by a motor (33), a main beam (B W ) is constantly irradiated during recording, and at the same time, if necessary, the recording area (
Apply a bias constant magnetic field to Aw).

他方、非記録領域(Am)には、別の副ビーム(Bm)
の強度を高強度と低強度(ゼロを含む)との間で(39
)により変調して照射して非記録領域(Am)の温度を
高温と低温との間で変調し。
On the other hand, another sub beam (Bm) is placed in the non-recording area (Am).
between high and low intensities (including zero) (39
) to modulate the temperature of the non-recording area (Am) between high and low temperatures.

それにより非記録領域(Am)の垂直磁化を変調し。This modulates the perpendicular magnetization of the non-recording area (Am).

この変調された垂直磁化からの浮遊磁場と必要に応じて
印加されるバイアス定磁場との和によって互いに向きの
異なる記録用磁場を作り出し、それにより記録領域(A
 W)に上向きの磁化を有するピント(PO)と下向き
の磁化を有するピット(Pl)とを形成し、それらのピ
ットにより記録な を行セうのである。
The sum of the floating magnetic field from this modulated perpendicular magnetization and the bias constant magnetic field applied as necessary creates recording magnetic fields with mutually different directions, thereby creating a recording area (A
A focus (PO) with upward magnetization and a pit (Pl) with downward magnetization are formed in the W), and recording is performed using these pits.

(発明の目的) 本発明の目的は、上述の如き同時消録型光磁気記録方式
に適した記録及び再生兼用装置のピックアップを提供す
ることにある。
(Object of the Invention) An object of the present invention is to provide a pickup for a recording and reproducing device suitable for the above-mentioned simultaneous erasure type magneto-optical recording system.

(発明の概要) 本発明は、記録時再生時ともに互いに波長の異なるビー
ム(Bw)、  (Bm)を使用するもので。
(Summary of the Invention) The present invention uses beams (Bw) and (Bm) having different wavelengths during both recording and reproduction.

その特徴をするところは。What makes it so special?

(1)前記記録領域(Aw)を照射する波長λ1の偏光
ビーム(B W)光源 (2)前記非記録領域(Am)及び記録領域(Aw)の
双方を同時に照射し、波長λwとは異なる波長λwの偏
光ビーム(Bm)光源 (3)  第一ビームスブリツタ− (4)第1面に1/4波長板 及びその外側に反射層が
設けられ、第2面に1/4波長板及びその外側にビーム
(Bw)を透過しビーム(Bm)を反射する。第1干渉
フィルターを設けた偏光ビームスプリッタ− (5)第2ビームスプリッタ−9 (6)  ビーム(Bm)を透過し、ビーム(B W)
を透過しない第2干渉フィルター (7)制御光を受光する第1光電変換手段、及び・ビー
ム(Bm)は、第2ビームスプリッターを透過させて偏
光ビームスプリッタ−の第3面に入射させ、第1面に設
けられた反射層で反射させた後、第2面に設けられた第
1干渉フィルターで更に反射させ、その反射光を第4面
より出射させて。
(1) A polarized beam (B W) light source with a wavelength λ1 that irradiates the recording area (Aw). (2) A polarized beam (B W) light source that irradiates both the non-recording area (Am) and the recording area (Aw) at the same time and has a wavelength different from λw. Polarized beam (Bm) light source with wavelength λw (3) First beam splitter (4) A quarter-wave plate on the first surface and a reflective layer on the outside thereof, and a quarter-wave plate and a reflective layer on the second surface. The beam (Bw) is transmitted to the outside and the beam (Bm) is reflected. Polarizing beam splitter with first interference filter (5) Second beam splitter 9 (6) Transmits the beam (Bm) and converts the beam (B W)
a second interference filter (7) that does not transmit the control light; and a first photoelectric conversion means that receives the control light; After being reflected by a reflective layer provided on one surface, the light is further reflected by a first interference filter provided on a second surface, and the reflected light is emitted from a fourth surface.

前記第1ビームスプリッタ−を経て、記録媒体に垂直入
射させ、媒体で反射された反射光(Bm)は第1ビーム
スプリッタ−を経て偏光ビームスプリッタ−に入射させ
て、そこで情報光(第1光)と第2光に分割し、第3面
から出射した情報光(Bm)を第2ビームスプリッタ−
で反射させて。
After passing through the first beam splitter, the reflected light (Bm) is vertically incident on the recording medium, and the reflected light (Bm) reflected by the medium passes through the first beam splitter and enters the polarizing beam splitter, where information light (first light ) and a second beam, and the information beam (Bm) emitted from the third surface is sent to a second beam splitter.
Let it reflect.

第2干渉フィルターを通して第2光電変換手段に受光さ
せ。
The light is received by a second photoelectric conversion means through a second interference filter.

・ビーム(Bw)は前記第1ビームスプリッターを経て
、記録媒体に垂直入射させ、該媒体で反射されたビーム
(B W)を前記ビームスプリッタ−を経て前記偏光ビ
ームスプリッタ−の第4面に入射させ、1/4波長板及
び第1干渉フィルターを通して第1光電変換手段に受光
させることを特徴とする同時消録型の光磁気記録及び再
生兼用装置のピックアップにある。
- The beam (Bw) passes through the first beam splitter and is vertically incident on the recording medium, and the beam (BW) reflected by the medium passes through the beam splitter and enters the fourth surface of the polarizing beam splitter. A pickup for a simultaneous erasing type magneto-optical recording and reproducing device is characterized in that the light is received by a first photoelectric conversion means through a quarter-wave plate and a first interference filter.

以下1本発明を実施例により具体的に説明するが1本発
明はこれに限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto.

(光磁気記録媒体の一例) 厚さ1゜2鶴の円形ガラス基板に厚さ3000人のGd
、  (Fe  Co)の垂直磁化膜(第1層)を形成
し、その上に厚さ2000人のTbFeの垂直磁化膜(
第2層)を形成することにより作られたものである。
(Example of magneto-optical recording medium) Gd of 3,000 people thick on a circular glass substrate of 1° and 2 mm thick.
, (FeCo) perpendicular magnetization film (first layer) is formed, and a TbFe perpendicular magnetization film (1st layer) with a thickness of 2000 μm is formed on it.
2nd layer).

ここでは、簡単のために得に基板に溝を設けることはせ
ず、巾1ミクロンの記録N域(A W)と。
Here, for the sake of simplicity, no grooves are provided on the substrate, and a recording N area (AW) with a width of 1 micron is used.

その隣りに巾3ミクロンの非記録領域(A m)とを渦
巻き状に設定しである。
Adjacent to this, a non-recording area (A m) with a width of 3 microns is set in a spiral shape.

この媒体を予め外部磁場を印加して初期化する。This medium is initialized by applying an external magnetic field in advance.

(実施例1) 第1図は本実施例の光磁気記録兼再生装置のピックアッ
プの構成を示す概念図(レンズ系は省略)である。
(Example 1) FIG. 1 is a conceptual diagram (the lens system is omitted) showing the configuration of a pickup of a magneto-optical recording and reproducing apparatus of this example.

第1図に於いて、(1)は波長λイ”780nmの偏光
ビーム(BW)を発するレーザー光源であり。
In FIG. 1, (1) is a laser light source that emits a polarized beam (BW) with a wavelength λ of 780 nm.

(2)はλ−=830nmの偏光ビーム(B)を発する
レーザー光源である。(3)はビーム(Bm)及び−(
BS)であり、(4)は偏光ビームスプリッタ−(PB
S)である。
(2) is a laser light source that emits a polarized beam (B) of λ-=830 nm. (3) is the beam (Bm) and -(
(4) is a polarizing beam splitter (PB).
S).

(P B S)とは1例えばウオーラストンプリズム。(P B S) means 1, for example, a Wallaston prism.

ローションプリズム、トムソンプリズム、薄膜型偏光ビ
ームスプリッタ−であり、これは、入射偏I PBSの方位と入射偏光の基準偏光面との成す角度(γ
)によって決まる。
These are Rochon prisms, Thomson prisms, and thin-film polarizing beam splitters. These are the angle (γ
) is determined by

P B S (41の第1面には1/4波長板(4a)
が設けてあり、1/4波長1(4a)を2度通ると偏光
面が90度回転する。1/4波長板(4a)の外側には
更に反射層(4b)を設けである。更にP B S (
4)の第2面には同じく1/4波長板(4c)、その外
側にビーム(B W)を透過しビーム(Bm)を反射す
る第1干渉フィルター(4d)が設けである。
P B S (1/4 wavelength plate (4a) on the first side of 41
is provided, and when the light passes through the 1/4 wavelength 1 (4a) twice, the plane of polarization rotates 90 degrees. A reflective layer (4b) is further provided on the outside of the quarter wavelength plate (4a). Furthermore, P B S (
Similarly, the second surface of 4) is provided with a 1/4 wavelength plate (4c) and a first interference filter (4d) that transmits the beam (BW) and reflects the beam (Bm) on the outside thereof.

(5)は第2BSであり、(6)はビーム(Bm)を透
過しビーム(Bw)を透過しない第2干渉フィルターで
あり、(7)は制御光を受光する第1光電変換手段、(
8)は情報光を受光する第2光電変換手段である。(S
)は前述の記録媒体である。
(5) is the second BS, (6) is the second interference filter that transmits the beam (Bm) and does not transmit the beam (Bw), (7) is the first photoelectric conversion means that receives the control light;
8) is a second photoelectric conversion means for receiving information light. (S
) is the aforementioned recording medium.

第1 B S (31とPBSとは、基準偏光面に対し
て方位角(T)を45≧γ〉0に配置してあり、PBS
と第2BSとは方位を一致させである。
The first B S (31 and PBS are arranged at an azimuth angle (T) of 45≧γ〉0 with respect to the reference polarization plane, and the PBS
and the second BS have the same direction.

主ビーム(BW)は記録媒体(S)の記録領域(Aw)
を照らし、照射面が直径例えば1μmの円となるように
設計され、副ビーム(B m)は同心の例えば直径5μ
mの円となるように設計され(第4図参照)、従って、
副ビーム(Bm)は記録領域(Aw)及びその両側に設
けられた非記録領域(A m )の双方を照らす。この
場合、副ビーム(Bm)に照らされる記録領域(Aw)
は、これから記録される部分、記録中の部分及び記録済
みの部分の3個所を照らす(第5図参照)。
The main beam (BW) is the recording area (Aw) of the recording medium (S)
The irradiation surface is designed to be a circle with a diameter of, for example, 1 μm, and the sub beam (B m) is a concentric circle with a diameter of, for example, 5 μm.
It is designed to be a circle of m (see Figure 4), and therefore,
The sub beam (Bm) illuminates both the recording area (Aw) and the non-recording areas (A m ) provided on both sides thereof. In this case, the recording area (Aw) illuminated by the sub beam (Bm)
illuminates three locations: the part that is about to be recorded, the part that is being recorded, and the part that has already been recorded (see Figure 5).

本発明では記録済みの部分からの反射光を記録時のモニ
ター及び再生に利用する。
In the present invention, the reflected light from the recorded portion is used for monitoring during recording and for reproduction.

閤司双 記録時には、光源(11より第1図紙面に垂直な振動面
を有する偏光ビーム(B m )を発振させ、第1ビー
ムスプリッタ−(3)で反射させて記録媒体(S)に垂
直入射させる。
During recording, the light source (11) oscillates a polarized beam (B m ) having a plane of vibration perpendicular to the plane of the paper in FIG. Make it incident.

ビーム(B W)は記録時常時照射し続け、その強度は
垂直磁化膜の温度が150〜160℃に達する強度とす
る。そうすると、記録領域(A W”)の保磁力はほと
んどゼロになる。
The beam (BW) is continuously irradiated during recording, and its intensity is such that the temperature of the perpendicularly magnetized film reaches 150 to 160°C. Then, the coercive force of the recording area (AW'') becomes almost zero.

媒体(S)で反射されたビーム(Bw)は、制御光とし
て利用すべく第1ビームスプリッタ−(3)を透過させ
て、PBS(4)でほぼ100%透過させる。光源(1
)からの偏光ビーム(Bw)が例えば第1図に示したよ
うに紙面に平行な振動面を有するとき、媒体(S)から
の反射光(BW)も同じ振動面を有するので、PBS(
41を、その振動方向の偏光をほぼ100%透過させる
角度に設置する。
The beam (Bw) reflected by the medium (S) is transmitted through the first beam splitter (3) to be used as control light, and almost 100% thereof is transmitted through the PBS (4). Light source (1
For example, when the polarized beam (Bw) from the medium (S) has a plane of vibration parallel to the paper plane as shown in FIG.
41 is installed at an angle that transmits almost 100% of the polarized light in the vibration direction.

P B S (4)を透過したビーム(Bw)は第1干
渉フィルター(4d)を通って第1光電変換手段(7)
に受光され電気信号に変換される。この電気信号で。
The beam (Bw) that has passed through PBS (4) passes through the first interference filter (4d) and enters the first photoelectric conversion means (7).
The light is received and converted into an electrical signal. with this electrical signal.

フォーカシング、トラッキング等のドライブコントロー
ル(制御)を行なう。
Performs drive control such as focusing and tracking.

他方、光源(2)より発振されたビーム(B m)は。On the other hand, the beam (Bm) oscillated from the light source (2) is.

例えば第1図紙面に平行な振動面を有する偏光ビーム(
B)であり、第2 B S (5)を透過させた後。
For example, a polarized beam (
B) and after passing through the second B S (5).

P B S (41の第3面よりP B S (41に
入射させる。入射したビーム(B m)はP B S 
(41を100%透過して1/4波長板(4a)に達し
3反射層(4b)で反射されて再び1/4波長板(4a
)を通る。
P B S (Inject into P B S (41) from the third surface of 41. The incident beam (B m)
(It passes through 41 100% and reaches the 1/4 wavelength plate (4a), is reflected by the 3 reflective layer (4b), and is again 1/4 wavelength plate (4a).
).

この間にビーム(Bm)は1/4波長板(4a)を2度
通るので振動面は90度回転して第1図紙面に垂直な振
動面を持つ。そのためビーム(Bm)は今度はP B 
S (41で反射されてP B S (4)の第2面を
通って1/4波長板(4C)に達し第1干渉フィルター
(4d)で反射されて再びガス1/4波長板(4C)を
通る。この間にビーム(Bm)は1/4波長板(4C)
を2度通るので振動面は90度回転して再び第1図紙面
に平行な振動面を持つ。そのためビーム(Bm)は今度
はPBS(4)を100%透過して第4面より出射して
、第1ビームスプリッタ−(3)にはいり、それを透過
して記録媒体(S)に垂直入射する。
During this time, the beam (Bm) passes through the 1/4 wavelength plate (4a) twice, so the vibration plane rotates 90 degrees and has a vibration plane perpendicular to the plane of FIG. 1. Therefore, the beam (Bm) is now P B
S (41) and passes through the second surface of P ).During this time, the beam (Bm) passes through the 1/4 wavelength plate (4C).
Since the vibration plane passes through twice, the vibration plane rotates 90 degrees and becomes parallel to the plane of the first drawing again. Therefore, the beam (Bm) transmits 100% through the PBS (4), exits from the fourth surface, enters the first beam splitter (3), passes through it, and enters the recording medium (S) perpendicularly. do.

副ビーム(Bm)の強度は、変調手段(図示していない
)によって光源(2)をコントロールすることにより、
記録したい2値化情報に従い変調する。
The intensity of the sub beam (Bm) is controlled by controlling the light source (2) by a modulation means (not shown).
Modulate it according to the binary information you want to record.

変調強度は、高強度時で非記録領域(Am)の垂直磁化
膜の温度が100〜110℃に達する強度とし、低強度
時は再生に必要な最低強度とする。
The modulation intensity is such that the temperature of the perpendicularly magnetized film in the non-recording area (Am) reaches 100 to 110° C. when the intensity is high, and the minimum intensity required for reproduction when the intensity is low.

尚、低強度時にゼロにすると、モニターができなくなる
Note that if you set it to zero when the intensity is low, you will not be able to monitor it.

その結果、副ビーム(B m)の強度が高強度の時には
記録領域(Aw)に対して周囲の非記録領域(Am)か
ら下向きの浮遊磁場が及ぼされて。
As a result, when the intensity of the sub-beam (Bm) is high, a downward floating magnetic field is applied to the recording area (Aw) from the surrounding non-recording area (Am).

下向きの垂直磁化ををするピット(Pl)が形成され、
副ビーム(B m )の強度が低強度の時には同じく上
向きの浮遊磁場が及ぼされて上向き(p。
A pit (Pl) with downward perpendicular magnetization is formed,
When the intensity of the sub-beam (B m ) is low, an upward floating magnetic field is also applied, causing an upward magnetic field (p).

)のピットが形成される。こうして、上向きのピソト(
Po)と下向きのピット(PI )により所望の2値化
情報が記録されて行く (第5図参照)。
) pits are formed. Thus, the upward pisoto (
Desired binarized information is recorded by the pits (Po) and downward pits (PI) (see FIG. 5).

尚、この副ビーム(Bm)が媒体(S)で反射されても
1反射光は第1干渉フィルター(4d)でカットされて
、第1光電変換手段(7)に入射することがないので、
ドライブコントロールが誤る恐れはない。
Incidentally, even if this sub beam (Bm) is reflected by the medium (S), one reflected light is cut by the first interference filter (4d) and does not enter the first photoelectric conversion means (7).
There is no risk of drive control being incorrect.

ところで、媒体(S)で反射された副ビーム(Bm)は
、第5図に示されるように、これから記録しようとする
領域のピット(先行ビット)及び今記録し終えた領域の
ピット(後行ビット)からの反射光を含んでいる。従っ
て、それらを区別して受光できれば、先行、後行ピット
のモニターができる。先行モニターは1例えばそのセク
ターやトランクが記録してもよいものか否かを示す媒体
上の固有信号を検知するものであり、後行モニターは今
記録し終えたピットが所望のピットに形成されたか否か
を検知するものである。
By the way, as shown in FIG. 5, the sub beam (Bm) reflected by the medium (S) is used to generate pits (leading bits) in the area to be recorded and pits (trailing bits) in the area that has just been recorded. includes reflected light from bits). Therefore, if these can be distinguished and received, it is possible to monitor the leading and trailing pits. The leading monitor detects a unique signal on the medium that indicates, for example, whether or not that sector or trunk is allowed to be recorded, and the trailing monitor detects whether the pit that has just been recorded is formed into the desired pit. This is to detect whether or not the

いずれにせよ、媒体(S)で反射された副ビーム(Bm
)を第1ビームスプリッター(3)を透過させて、PB
Sf41に入射させ、そこで、情報光(第兜 ■光)と第2光に分割し、この情報光を第3面より出射
させ、第2 B S (51及び第2干渉フィルター(
6)を経て第2光電変換手段(8)に受光させる。第2
光電変換手段(8)では、先行モニター、後行モニター
に応じて、先行ピット、後行ピットからだけの反射光を
受光させる必要がある。そのため、まずビーム* (B
m)で照射された媒体面の実像を結彰 像ないし投射光学系(図示せず)で受光面近傍ないし、
それと等価な固止に結像させ、先行、後行いずれか一方
だけのモニターをする場合には、その必要な部分の光だ
けを結像面に置いたマスクで透過させて光電変換手段(
8)に受光させるか又は必要な部分の光だけを受光する
形状9寸法の光電変換手段(8)に受光させる。受光の
際に分割手段で2つに分光して、それぞれ別々の受光素
子に受光させて電気信号に変換し、その上で差動をとっ
て情報信号としてもよい。
In any case, the sub-beam (Bm) reflected by the medium (S)
) is transmitted through the first beam splitter (3) and the PB
It enters the Sf41, where it is split into an information light (the first light) and a second light, and this information light is emitted from the third surface, and the second B S (51 and the second interference filter (
6), the light is received by the second photoelectric conversion means (8). Second
The photoelectric conversion means (8) needs to receive reflected light only from the leading pit and trailing pit, depending on the leading monitor and trailing monitor. Therefore, first, beam * (B
The real image of the medium surface irradiated by m) is projected near the light-receiving surface using a formed image or a projection optical system (not shown),
If you want to monitor only one of the leading and trailing lights by forming an image on a fixed point equivalent to that, only the necessary part of the light is transmitted through a mask placed on the imaging surface, and the photoelectric conversion means (
8) or a photoelectric conversion means (8) having a shape and dimensions of 9 that receives only the necessary portion of the light. When receiving light, the light may be split into two parts by a splitting means, received by separate light-receiving elements, converted into electrical signals, and then differentially divided into two parts to be used as information signals.

ただ、こうして再生された先行、後行時モニターとして
の情報信号X (t) 、  S (t)は、いずれも
記録中の情報信号fm(t)に応じて強度変調されたビ
ーム(B m)の照射によって得られたものなので、真
の先行モニターとしての情報信号はX (t)をfm(
t)で割った商X (t) /fm (t)となる。こ
れが先行モニターで得た固を信号であり、これを常法に
従い処理してその意味を知る。後行モニターについては
、同様に商5(t)/fm(t)が真のモニター信号で
あり。
However, the information signals X (t) and S (t) reproduced in this way as the leading and trailing monitors are both beams (B m) whose intensity is modulated according to the information signal fm (t) being recorded. Therefore, the information signal as a true advance monitor is obtained by irradiating X (t) with fm (
The quotient divided by t) is X (t) /fm (t). This is the solid signal obtained from the preliminary monitor, and it is processed according to conventional methods to find out its meaning. Similarly, for the trailing monitor, the quotient 5(t)/fm(t) is the true monitor signal.

これを遅延回路を通して得られる後行モニタービットを
記録したときの情報信号fm(を−Δt)と比較し1両
者が一致すれば正しく記録されていることが知れる。
This is compared with the information signal fm (-Δt) obtained when the trailing monitor bit obtained through the delay circuit is recorded, and if the two match, it is known that the information has been recorded correctly.

圃■碍 再生時には主ビーム(Bw)は、記録時より強度を落し
て発振させ、その媒体(S)からの反射光を記録時と同
様に制御光として利用する。
During field reproduction, the main beam (Bw) is oscillated with a lower intensity than during recording, and the reflected light from the medium (S) is used as control light in the same way as during recording.

副ビーム(B m )は強度変詞せずに一定強度で発振
させ、その媒体(S)からの反射光を記録モニタ一時と
同様に第2光電変換手段(8)で受光させて、電気信号
に変換する。この信号は、そのまま記録された情報の再
生信号として利用できる。
The sub beam (B m ) is oscillated at a constant intensity without varying the intensity, and the reflected light from the medium (S) is received by the second photoelectric conversion means (8) in the same way as the recording monitor, and is converted into an electric signal. Convert to This signal can be used as it is as a reproduction signal of recorded information.

この場合、副ビーム(Bm)は媒体面上のスポット径が
大きいので、複数(例えば3個)のピットを同時に照射
することができる。従って、媒体からの反射光路中に結
像ないし、投影光学系を設け、複数のピットの実像を光
電変換手段(8)の受光面に結像ないし投影させる。こ
のとき手段(8)を例えば第7図に示す如くそれぞれの
ピットの実像に対応した複数の受光素子(8a〜8c)
からなるものを設置しておくと、同一のピットからの反
射光を各受光素子が次々と時間差を以って受光し。
In this case, since the sub beam (Bm) has a large spot diameter on the medium surface, it is possible to irradiate a plurality of pits (for example, three) at the same time. Therefore, an imaging or projection optical system is provided in the optical path of reflection from the medium to form or project real images of the plurality of pits onto the light receiving surface of the photoelectric conversion means (8). At this time, the means (8) is a plurality of light receiving elements (8a to 8c) corresponding to the real images of the respective pits, as shown in FIG.
When a light receiving element consisting of a pit is installed, each light receiving element receives reflected light from the same pit one after another with a time difference.

電気信号に変換することになる。そこで変換された信号
を遅延回路を用いて、ある時刻に足し合わせれば、1つ
のピットからの再生信号強度が複数n倍となり、S/N
比はfW 倍に向上する。この方法は本出願人の先願:
特願昭58−152839号の明細書に詳しく開示しで
ある。
It will be converted into an electrical signal. If the converted signals are added at a certain time using a delay circuit, the strength of the reproduced signal from one pit will be multiplied by n times, and the S/N
The ratio increases by a factor of fW. This method was applied in the applicant's earlier application:
This is disclosed in detail in the specification of Japanese Patent Application No. 152839/1983.

尚、再生時に副ビーム(B m)を点灯せずに主ビーム
(Bw)を再生及び制御光として利用してもよい。つま
り、第2干渉フィルター(6)を設けず。
Note that during reproduction, the main beam (Bw) may be used as reproduction and control light without turning on the sub beam (Bm). In other words, the second interference filter (6) is not provided.

媒体(S)で反射されたビーム(B w)をPBS(4
)で第1光と第2光に分割し、第1光は情報光として第
2 B S (5)で反射させて第2光電変換手段(8
)に受光させ、第2光は制御光(+情報光)として第1
干渉フィルター(4d)を経て第1光電変換手段(7)
に受光させ、場合により(7)、 (8)の差動をとっ
て情報再生信号を得てもよい。
The beam (B w) reflected by the medium (S) is transferred to PBS (4
) is divided into first light and second light, and the first light is reflected as information light by the second B S (5) and converted to the second photoelectric conversion means (8
), and the second light is received by the first light as a control light (+information light).
First photoelectric conversion means (7) via interference filter (4d)
If necessary, the information reproduction signal may be obtained by taking the differential between (7) and (8).

(実施例2) 本実施例は実施例1の変形例であり、その構成を第6図
に示す。実施例1と配置が僅かに変わっただけで本質的
な相違はない。
(Example 2) This example is a modification of Example 1, and its configuration is shown in FIG. There is no essential difference from the first embodiment except for a slight change in arrangement.

(発明の効果) 以上の通り2本発明によれば1つのピックアップで同時
消録型の記録と再生ができ、しかも記録時にモニターす
ることができる。
(Effects of the Invention) As described above, according to the two aspects of the present invention, simultaneous erasing type recording and reproduction can be performed using one pickup, and moreover, it is possible to monitor during recording.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本願発明の実施例1にかかるピックアンプの
全体構成を示す概念図である。 第2A図は、記録媒体の概略垂直断面図である。 第2B図は、記録媒体の記録領域(Aw)に対して非記
録領域(Am)から浮遊磁場が印加される様子を示す概
念図である。 第3図は、先願:特願昭59−91360号の発明にか
かる同時消録型光磁気記録装置の全体構成を示す概念図
である。 第4図は、記録媒体にビーム(Bw)、  (Bm)を
照射した様子を示す説明図である。 第5図は実施例1に従い、記録している様子を説明する
説明図である。 第6図は、実施例2にかかるピックアップの全体構成を
示す概念図である。 第7図は、ビーム(Bm)の受光面でのスポット形状と
受光素子3個の受光面との関係を示す説明図である。想
像線は投影されたピットの実像を示す。 〔主要部分の符号の説明〕
FIG. 1 is a conceptual diagram showing the overall configuration of a pick amplifier according to a first embodiment of the present invention. FIG. 2A is a schematic vertical cross-sectional view of the recording medium. FIG. 2B is a conceptual diagram showing how a floating magnetic field is applied from a non-recording area (Am) to a recording area (Aw) of a recording medium. FIG. 3 is a conceptual diagram showing the overall structure of a simultaneous erasing type magneto-optical recording device according to the invention of the earlier application: Japanese Patent Application No. 59-91360. FIG. 4 is an explanatory diagram showing how the recording medium is irradiated with beams (Bw) and (Bm). FIG. 5 is an explanatory diagram illustrating how recording is performed according to the first embodiment. FIG. 6 is a conceptual diagram showing the overall configuration of a pickup according to the second embodiment. FIG. 7 is an explanatory diagram showing the relationship between the spot shape of the beam (Bm) on the light-receiving surface and the light-receiving surfaces of three light-receiving elements. The imaginary line shows the actual image of the projected pit. [Explanation of symbols of main parts]

Claims (1)

【特許請求の範囲】 垂直磁化膜からなる記録領域(Aw)と一方の向きに揃
った垂直磁化を示す非記録領域(Am)とを有する光磁
気記録媒体に対して、 (1)前記記録領域(Aw)を照射する波長λ_wの偏
光ビーム(Bw)光源、 (2)前記非記録領域(Am)及び記録領域(Aw)の
双方を同時に照射し、波長λ_wとは異なる波長λ_m
の偏光ビーム(Bm)光源、 (3)第1ビームスプリッター、 (4)第1面に1/4波長板及びその外側に反射層が設
けられ、第2面に1/4波長板及びその外側にビーム(
Bw)を透過しビーム(Bm)を反射する第1干渉フィ
ルターを設けた偏光ビームスプリッター、 (5)第2ビームスプリッター、 (6)ビーム(Bm)を透過し、ビーム(Bw)を透過
しない第2干渉フィルター、 (7)制御光を受光する第1光電変換手段、及び (8)情報光を受光する第2光電変換手段 からなり、記録時再生時共に、 ・ビーム(Bm)は第2ビームスプリッターを透過させ
て偏光ビームスプリッターの第3面に入射させ、第1面
に設けられた反射層で反射させた後、第2面に設けられ
た第1干渉フィルターで更に反射させ、その反射光を第
4面より出射させて、前記第1ビームスプリッターを経
て記録媒体に垂直入射させ、媒体で反射された反射光(
Bm)は第1ビームスプリッターを経て偏光ビームスプ
リッターに入射させて、そこで情報光(第1光)と第2
光に分割し、第3面から出射した情報光(Bm)を第2
ビームスプリッターで反射させて第2干渉フィルターを
通して第2光電変換手段に受光させ、 ・ビーム(Bw)は前記第1ビームスプリッターを経て
記録媒体に垂直入射させ、該媒体で反射されたビーム(
Bw)を前記ビームスプリッターを経て前記偏光ビーム
スプリッターの第4面に入射させ、1/4波長板及び第
1干渉フィルターを通して第1光電変換手段に受光させ
ることを特徴とする同時消録型の光磁気記録及び再生兼
用装置のピックアップ
[Claims] For a magneto-optical recording medium having a recording area (Aw) made of a perpendicular magnetization film and a non-recording area (Am) exhibiting perpendicular magnetization aligned in one direction, (1) the recording area a polarized beam (Bw) light source with a wavelength λ_w that irradiates (Aw);
a polarized beam (Bm) light source, (3) a first beam splitter, (4) a 1/4 wavelength plate on the first surface and a reflective layer on the outside thereof, and a 1/4 wavelength plate on the second surface and the outside thereof. Beam (
a polarizing beam splitter including a first interference filter that transmits the beam (Bw) and reflects the beam (Bm); (5) a second beam splitter; (6) a second interference filter that transmits the beam (Bm) and does not transmit the beam (Bw); 2 interference filters, (7) a first photoelectric conversion means that receives control light, and (8) a second photoelectric conversion means that receives information light, and during both recording and reproduction, the beam (Bm) is the second beam. The light passes through the splitter and enters the third surface of the polarizing beam splitter, is reflected by the reflective layer provided on the first surface, is further reflected by the first interference filter provided on the second surface, and the reflected light is reflected by the first interference filter provided on the second surface. The reflected light (
Bm) passes through the first beam splitter and enters the polarizing beam splitter, where it separates the information light (first light) and the second light beam.
The information light (Bm) emitted from the third surface is divided into two
The beam (Bw) is reflected by a beam splitter and received by a second photoelectric conversion means through a second interference filter, and the beam (Bw) passes through the first beam splitter and is made perpendicularly incident on a recording medium, and the beam (Bw) reflected by the medium is
Bw) is incident on the fourth surface of the polarizing beam splitter through the beam splitter, and is received by the first photoelectric conversion means through a quarter-wave plate and a first interference filter. Pick-up for magnetic recording and playback equipment
JP4783985A 1985-03-11 1985-03-11 Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device Pending JPS61206952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4783985A JPS61206952A (en) 1985-03-11 1985-03-11 Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4783985A JPS61206952A (en) 1985-03-11 1985-03-11 Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device

Publications (1)

Publication Number Publication Date
JPS61206952A true JPS61206952A (en) 1986-09-13

Family

ID=12786534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4783985A Pending JPS61206952A (en) 1985-03-11 1985-03-11 Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device

Country Status (1)

Country Link
JP (1) JPS61206952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165034A (en) * 1987-09-22 1989-06-29 Hitachi Maxell Ltd Optical information recording and reproducing device
US5123007A (en) * 1986-05-02 1992-06-16 Hitachi, Ltd. Method for recording, reproducing and erasing information and thin film for recording information

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123007A (en) * 1986-05-02 1992-06-16 Hitachi, Ltd. Method for recording, reproducing and erasing information and thin film for recording information
JPH01165034A (en) * 1987-09-22 1989-06-29 Hitachi Maxell Ltd Optical information recording and reproducing device

Similar Documents

Publication Publication Date Title
EP0107754B1 (en) Apparatus for magneto-optical information storage
JPH0321961B2 (en)
JPH04258831A (en) Reproduction method for magneto-optical disk
US5007039A (en) Optical information recording/reproducing apparatus
JPH0512746A (en) Optical head
EP0220023B1 (en) Optical magnetic memory device
JPS61206952A (en) Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device
JPS61206950A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPS61206947A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
US5966347A (en) Apparatus and method for reproducing data from a magneto-optic recording medium
JP3229907B2 (en) Optical recording medium and optical recording medium reproducing apparatus
JPS61206951A (en) Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device
JPH0445134Y2 (en)
JPS61206949A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPS61206948A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JP2619372B2 (en) Magneto-optical recording method
JP2935375B2 (en) Magneto-optical recording / reproducing device
JPS5938949A (en) Magneto-optical reproducer
JPS6113461A (en) Photomagnetic disk device
JPS6254857A (en) Photo-magnetic information recorder
JP2851399B2 (en) Magneto-optical recording / reproducing device
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPH0467241B2 (en)
JPS6035303A (en) Rewritable optical information recording and reproducing device
JPS6214327A (en) Recording and reproducing method for optical signal