JPS59203259A - Optical magnetic disc device - Google Patents
Optical magnetic disc deviceInfo
- Publication number
- JPS59203259A JPS59203259A JP7844183A JP7844183A JPS59203259A JP S59203259 A JPS59203259 A JP S59203259A JP 7844183 A JP7844183 A JP 7844183A JP 7844183 A JP7844183 A JP 7844183A JP S59203259 A JPS59203259 A JP S59203259A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wollaston prism
- recording medium
- polarized
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10532—Heads
Abstract
Description
【発明の詳細な説明】
(イl 産業上の利用分野
本発明は磁気光学効果を利用した光磁気ディスク装置(
二関する。DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Field of Application The present invention relates to a magneto-optical disk device that utilizes the magneto-optic effect.
Two matters.
(ロ)従来技術
従来よI)ファラデー効果や磁気カー効果等の磁気光学
効果を応用した情報の垂直磁気記録、再生の研究が進め
られている。記録媒体としては、一般にG(100%(
)dFe、T11F6等のアモルファス磁性膜が用いら
れてお0、あらかじめ全面(二わたって一方向に磁化さ
せた記録媒体に半導体レーザ等の光を照射して局部的に
記録媒体温度なキュリ一点近傍まで上昇させ、且っレー
ザ光照射部分を含む領域(:記録媒体が磁化されている
向きと逆向きのバイアス磁界をかけて、レーザ光照射部
分C二まわ0と逆向きの磁化領域を作ることにより記録
が行なわれる。(B) Prior art Conventional technology (I) Research on perpendicular magnetic recording and reproduction of information by applying magneto-optical effects such as the Faraday effect and the magnetic Kerr effect is underway. Generally speaking, G (100%) is used as a recording medium.
) dFe, T11F6, or other amorphous magnetic film is used, and the recording medium is magnetized in one direction over the entire surface (two directions) and is irradiated with light from a semiconductor laser or the like to locally reduce the temperature of the recording medium to around the Curie point. area including the laser beam irradiated area (: applying a bias magnetic field in the opposite direction to the direction in which the recording medium is magnetized, to create a magnetized area in the opposite direction to the laser beam irradiated area C 2 0). Recording is performed by
記録情報の再生は、レーザ光源等よ尋)射出された光を
偏光子を通して直線偏光とした後記録媒体(二照射し、
そこからの反射光、もしくは透過光を検光子を介して光
電変換素子等の光検出器で受けることにより、記録情報
による偏光面の回転を検出して情報再生は行なわれる。To reproduce recorded information, the light emitted from a laser light source, etc. is converted into linearly polarized light through a polarizer, and then the recording medium is irradiated with light.
Information is reproduced by detecting the rotation of the plane of polarization due to the recorded information by receiving the reflected light or transmitted light from the light through an analyzer and a photodetector such as a photoelectric conversion element.
また、情報記録部分(−1記録時と同様にレーザ光等を
照射して局部的に記録媒体の温度を上昇させ、バイアス
磁界を記録時とは逆向き、すなわち記録媒体全体をあら
かじめ磁化した向きにかけてやるとレーザ元照射部の磁
化の向きはまわI)と同じとな++、記録情報は消去さ
れたことになる。In addition, the temperature of the recording medium is locally raised by irradiating the information recording part (-1) with a laser beam, etc. in the same way as when recording, and the bias magnetic field is applied in the opposite direction to that during recording, that is, in the direction in which the entire recording medium has been previously magnetized. When it is turned on, the direction of magnetization of the laser source irradiation part becomes the same as that of turning I), and the recorded information is erased.
第1図は光磁気記録再生装置の一般的な構成図である。FIG. 1 is a general configuration diagram of a magneto-optical recording/reproducing apparatus.
記e+学系では記録すべき信号に応じてレーデ光を変調
するレーザ変調器(1)(二よって変調された半導体レ
ーザ(2)(よIT、出たレーザ光はレンズ(3)によ
って平行ビームとなI〕ミラー(4)、偏光ビームスブ
リ7り(5)、に波長板(6)を通過し、対物レンズ(
7)(二よってディスク状記録媒体(8)上に集光照射
(1ミクロン程度)される。ディスク状記録媒体(8)
はあらかじめ全面にわたって一方向に磁化されている。In the e+ system, the laser modulator (1) (2) modulates the radar light according to the signal to be recorded. The polarized beam passes through the mirror (4), the polarized beam (5), the wavelength plate (6), and the objective lens (
7) (Therefore, a condensed light (approximately 1 micron) is irradiated onto the disc-shaped recording medium (8).
is already magnetized in one direction over its entire surface.
レーザ光が集光照射されている部分を含む領域に、バイ
アス磁界用コイル(9)等によって、記録媒体(8)が
すでに磁化されている方向と逆向きの磁界を与えること
によI)記録が行なわれる。反射光は再び対物レンズ(
7)、X波長板(6)を通過した後、偏光ビームスプリ
ッタ−(5)で反射され、シリンドリカルレンズ(10
)を通を)光検出器σDに到達する。I) Recording by applying a magnetic field in the opposite direction to the direction in which the recording medium (8) is already magnetized using a bias magnetic field coil (9) or the like to the area including the part where the laser beam is focused and irradiated. will be carried out. The reflected light passes through the objective lens (
7), after passing through the X wavelength plate (6), it is reflected by the polarizing beam splitter (5), and is reflected by the cylindrical lens (10
) to reach the photodetector σD.
この光検出器(111から得られる信号によりフォーカ
ス制御を行ないながら記録する。Recording is performed while performing focus control using a signal obtained from this photodetector (111).
再生には記録と別の光学系が用いられる。半導体レーザ
鰺から出たレーザ光はレンズ化で平行光線とな!]ミラ
ー[141で反射された後偏光子(151によって直線
偏光C二なる。ハーフミラ−翰を透過したレーザ光は対
物レンズ(17)によ1)記録媒体(8)上(二焦点を
結ぶ。記録媒体(8)からの反射光は磁気光学効果(カ
ー効果)によって偏光面が記録媒体(8)の磁化の向き
に応じて右もしくは左(二回転する。偏光面の回転した
反射光は再び対物レンズr17)を通って八−フミラー
00に入11、その反射光は更にもう一つのハーフミラ
−α1ユよって2分割され、おのおの検光子(19a)
、(19b ) (二人射する。コ(7)2つの検光子
(19a)、(19111)は設定角を偏光子+151
の偏光面(二対し、互いに逆向きに同一角度となってい
る。検光子(11L)、(19b)を通過したビーム元
はレンズ(20a)、(20))を通りおのおの光検出
器(21a)、(21b)に受光される。光検出器(2
1B)、(21b)(二よって光電変換された出力な差
動増幅器(24に入れて演算し、“1“、“0′に相当
したディジタル信号が出力として得られる。また光検出
器(21b)よ%)出力されたフォーカス信号、トラッ
キング信号はフォーカスサーボ回路(ハ)、トラッキン
グサーボ回路<241で処理されフォーカスサーボ、ト
ラッキングサーボが行なわれる。For playback, an optical system separate from that for recording is used. The laser light emitted from the semiconductor laser mackerel is turned into a parallel beam by making it into a lens! ] After being reflected by the mirror [141], it becomes linearly polarized light C2 by the polarizer (151).The laser beam transmitted through the half-mirror head is focused on the recording medium (8) by the objective lens (17). Due to the magneto-optical effect (Kerr effect), the reflected light from the recording medium (8) rotates the plane of polarization to the right or left (twice) depending on the direction of magnetization of the recording medium (8).The reflected light with the rotated plane of polarization rotates again. The reflected light passes through the objective lens r17) and enters the eight-half mirror 0011, and the reflected light is further divided into two parts by another half mirror α1, each of which is sent to an analyzer (19a).
, (19b) (Two people shoot. (7) Two analyzers (19a), (19111) set the setting angle to polarizer + 151
The polarization planes (two pairs, opposite to each other and at the same angle. The beam origin that passed through the analyzers (11L) and (19b) passes through the lenses (20a) and (20)) and is detected by the respective photodetectors (21a). ), (21b). Photodetector (2
1B), (21b) (2), the photoelectrically converted output is put into the differential amplifier (24) and calculated, and digital signals corresponding to "1" and "0' are obtained as output. Also, the photodetector (21b) ) The output focus signal and tracking signal are processed by a focus servo circuit (c) and a tracking servo circuit <241 to perform focus servo and tracking servo.
粥1図の光学系(二おいて問題となるのは再生の光学系
において、ディスク(8)からの反射ツliをハーフミ
ラ−11all二よ1)2分割し、さらに夫々の元は検
光子(19a)(19b)を通過した上で光検出えても
各光検出器(21&)(211))へ入射する光量はデ
ィスク(8)からの反射光の入となっていて光源レーザ
の利用効率が悪い。The optical system shown in Figure 1 (the problem with 2 is the reproduction optical system is that the reflection beam from the disk (8) is divided into two half mirrors (11all 2 and 1), and each source is divided into two by an analyzer (2). Even if the light is detected after passing through 19a) and 19b, the amount of light that enters each photodetector (21 &) (211) is the reflected light from the disk (8), which reduces the efficiency of use of the light source laser. bad.
光磁気ディスクにおけるカー回転角は1度前後と非常(
二手さいので変m度が極めて小さい。従って信号のSN
比は光検出器(21)(21b)に入射する光量に比例
すると考えられる。実際、光磁気ディスクのカー回転角
をθに1光検出器への入射V鰍を工とするとSN比は、
検出器をPINフォトダイ方−ドで構成した場合(=は
2θk・It−比例し、アバランシェフォトダイオード
で構成した場合には2θkJT(二比例することが知ら
れでいる。従い再生信号のSN比を向上する為にはレー
ザの利用効率を高め、光検出器への入射光量を増やす必
要がある。The Kerr rotation angle of a magneto-optical disk is around 1 degree, which is very small (
Since it is two-handed, the degree of m variation is extremely small. Therefore, the signal SN
The ratio is considered to be proportional to the amount of light incident on the photodetectors (21) (21b). In fact, if the Kerr rotation angle of the magneto-optical disk is θ and the incident V angle to the photodetector is the factor, the S/N ratio is:
It is known that when the detector is configured with a PIN photodiode (= is proportional to 2θk・It−), and when it is configured with an avalanche photodiode, it is proportional to 2θkJT (2θkJT). Therefore, the S/N ratio of the reproduced signal is In order to improve this, it is necessary to increase the efficiency of laser use and increase the amount of light incident on the photodetector.
(ハ)発明の目的
本発明は上記の点に鑑みなされたものであり、光源レー
ザの利用効率を高め、SN比の向上した光磁気ディスク
装置を提供することを目的とする。(c) Purpose of the Invention The present invention has been made in view of the above points, and an object of the present invention is to provide a magneto-optical disk device with improved utilization efficiency of a light source laser and an improved signal-to-noise ratio.
に)発明の構成
本発明は記録媒体から反射されたレーザ光を複屈折を利
用して前記反射レーザ光を2つの8構成分に分離する偏
1元素子に導入し、2分割したレーザ>ti=天々の光
検出手段C二人射せしめることを特徴とする光磁気ディ
スク装置である。B) Structure of the Invention The present invention utilizes birefringence to introduce a laser beam reflected from a recording medium into a polarized single-element element that separates the reflected laser beam into two 8 components. = This is a magneto-optical disk device characterized in that two people can emit light from each other.
実施例
以下図面に従い本発明の一寅施例について説明する。第
2図は再生時の光学系の一部を拡大して示す図である。EXAMPLE An example of the present invention will be described below with reference to the drawings. FIG. 2 is an enlarged view of a part of the optical system during reproduction.
第1図と同じもの(−は同−囚番を付しである。図にお
いて、(ハ)は集光レンズ、(26)は書記光子、(2
7)はウォラストンプリズム、鰭は少なくとも2つの検
出手段か一体となった検出器である。The same thing as in Figure 1 (- indicates the same number). In the figure, (C) is a condenser lens, (26) is a writing photon, (2
7) is a Wollaston prism, and the fin is at least two detection means or a detector integrated.
ディスク(8)からの反射光は対物レンズ17)、ハー
フミラ−叫を介して集光レンズ(ハ)に到達する。この
集光レンズ(ハ)からの光はi光子弼によ!】所定角度
偏光面が回転され、ウォラストンプリズム(2?)へ入
射する。The reflected light from the disk (8) reaches the condenser lens (c) via the objective lens 17) and the half mirror. The light from this condensing lens (c) is i-photon! ] The plane of polarization is rotated by a predetermined angle, and the light enters the Wollaston prism (2?).
ウォラストンプリズムは周知の如く、結晶の複屈折性を
利用した偏光素子の一種であ暑)、入射光のP偏光成分
、S偏光成分を分離する機能を有し、この種の偏光素子
として他(二はニコルプリズム、グラン−トムソンプリ
ズム、ローションプリズム、セナルモンプリズム等があ
る。ウォラストンプリズム、ローションプリズム、セナ
ルモンプリズム等では入射方向と略同方向にP偏光成分
、S偏光成分が取I]出される。ただし、ウォラストン
プリズムではP@元酸成分S偏光成分とも3二屈折する
の(二対し、ローションプリズムではS偏光成分のみが
屈折し、P偏光成分は直進する。As is well known, the Wollaston prism is a type of polarizing element that utilizes the birefringence of crystals, and has the function of separating the P-polarized light component and the S-polarized light component of incident light. (Secondly, there are Nicol prisms, Glan-Thomson prisms, Rochon prisms, Senarmont prisms, etc.) In Wollaston prisms, Rochon prisms, Senarmont prisms, etc., P polarized light components and S polarized light components are taken in approximately the same direction as the incident direction. ] However, in the Wollaston prism, both the S-polarized light component and the P@Original acid component are refracted (2), whereas in the Rochon prism, only the S-polarized light component is refracted, and the P-polarized light component travels straight.
挫光子(イ)が設けられているのは、ウォラストンプリ
ズムQηへ入射する光がウォラストンプリズムさせる為
である。すなわち坂元子+2E9によ))偏光面か所定
角度回転することC″−第8図(=示す様(−P1S各
偏光成分の方向に対してf=45度傾いて、入射する。The reason why the photon (A) is provided is to cause the light incident on the Wollaston prism Qη to become a Wollaston prism. That is, by Motoko Saka+2E9)) the plane of polarization is rotated by a predetermined angle C''-as shown in FIG.
ウォラストンプリズムCI!Dに入射した光は該プリズ
ム(27)(=よってP偏光成分、S偏光成分C二分割
され、夫々の光検出手段(28a)(281))l:与
えられる。各光検出手段(2B&)(281))の出力
は差動増幅器器(二供給され、該差動増幅器器の出力C
3Qか再生信号出力となる。光検出器■は前述の如く、
少なく共2つの光検出手段を一体(こ形成(又は、一つ
の検出手段を分割して夫々別個に出力が取蚤)出せる様
形成)したものである。トラッキング、フォーカス制御
を為す場合には、更(二分割すれば良い。Wollaston Prism CI! The light incident on D is divided into two by the prism (27) (=therefore, a P polarized light component and an S polarized light component C, and are provided to the respective light detection means (28a) and (281)). The output of each photodetection means (2B&) (281) is supplied to a differential amplifier (2B&), and the output of the differential amplifier C
3Q or playback signal output. As mentioned above, the photodetector■
At least two light detection means are integrated (or one detection means is divided so that outputs can be obtained separately from each other). When performing tracking and focus control, it is sufficient to divide the image into two parts.
さて、ディスクからの反射光はディスク上に記録された
信号(磁化の向き)に応じて、第3図に四[Blで示す
様±θk(カー回転角)変位した形となっている。この
様な偏光成分を備えた反射光がウォラストンプリズムQ
ηに入射するとP偏光成分S偏光成分(二分割され、夫
々の光検出手段へ与えられる。第6図よI]明らかな様
(二P偏光成分、S偏光成分の出力はブクシュプルの関
係にあ修)、光検出手段(28a)(281))の出力
な差動増幅することで光源や媒体面で生じる光強度の変
動に影響されない2値信号が取る)出せる。Now, the reflected light from the disk is shifted by ±θk (Kerr rotation angle) as shown by Bl in FIG. 3, depending on the signal (direction of magnetization) recorded on the disk. The reflected light with such a polarized component is the Wollaston Prism Q.
When it is incident on By differentially amplifying the outputs of the light detection means (28a) and (281)), a binary signal that is unaffected by fluctuations in light intensity occurring at the light source or medium surface can be obtained.
差動出力が最大となる角度ψは、偏光面がψ+θk及び
ψ−θにだけ回転した光がウォラストンプリズムによ)
)分割されるので、0os2(ψ十θ1c)−Cos2
(ψ−θk)を計算して%45度となる。この45度の
角度を設定する為に説元子(2eを設けているわけだか
ら、獲光子の位置は集光レンズ(ハ)とウォラストンプ
リズムQηの間(二限らない。また第3図の関係でウォ
ラストンプリズムに入射すればよいから、江光子を配置
する以外にレーザ光源が半導体レーザである場合には(
半導体レーザの出力ビームは略直線偏光である)半導体
レーザを出力ビームの光軸を中心に回動させて回転させ
る)や、ウォラストンプリズムを回動する様σ構成も考
えられる。The angle ψ at which the differential output is maximum is determined by the Wollaston prism when the light whose polarization plane is rotated by ψ + θk and ψ - θ is determined by the Wollaston prism.
), so 0os2(ψ1θ1c)−Cos2
(ψ−θk) is calculated to be %45 degrees. Since the photon element (2e) is provided to set this 45 degree angle, the position of the photon capturer is between the condenser lens (c) and the Wollaston prism Qη (not limited to two. In this connection, it is sufficient to enter the Wollaston prism, so if the laser light source is a semiconductor laser (
The output beam of the semiconductor laser is substantially linearly polarized light) (the semiconductor laser is rotated around the optical axis of the output beam), or the σ configuration in which the Wollaston prism is rotated is also conceivable.
実施例中で使用したウォラストンプリズムではP偏光成
分、S偏光成分の分離角はウォラストンプリズムの大き
さく長さ、巾)によ1)設定でき、光検出器嫡上のレー
ザ光の間隔はこの分離角と集光レンズの位置で制御でき
る。ウォラストンプリズムの様(二、入射光と略同方向
へ分離した光が取1)出される偏光素子(その他、ロー
ションプリズム、セナルモンプリズム等も含む)では、
第2図の如く光検出器を1つC二出来(P成分、S成分
共(二同一方向に取・)出されるため)再生の光学系の
小型化、調整が簡単(−なるという効果が伴なう。In the Wollaston prism used in the examples, the separation angle of the P-polarized light component and the S-polarized light component can be set by 1) the size, length, and width of the Wollaston prism, and the interval between the laser beams directly on the photodetector is It can be controlled by this separation angle and the position of the condensing lens. Polarizing elements (including Rochon prisms, Senarmont prisms, etc.) that emit light separated in approximately the same direction as the incident light (2), such as the Wollaston prism (1),
As shown in Figure 2, one photodetector can be used (because both the P and S components are taken out in the same direction), the reproduction optical system can be made smaller, and the adjustment is easier (-). accompany.
(へ)発明の効果
以上の如く、本発明(こよれば、結晶の複屈折性を利用
して光を2つの偏光成分(二分離する偏光素子にて、デ
ィスクからの反射レーザ光を2分割し、夫々の光検出手
段に入射せしめるので、検光子を必要とせず、光検出手
段に入射する光量が増大し、(f) Effects of the Invention As described above, the present invention (according to which the reflected laser beam from the disk is divided into two by a polarizing element that divides the light into two polarized components (two) by utilizing the birefringence of the crystal). However, since the light is made incident on each photodetection means, an analyzer is not required, and the amount of light incident on the photodetection means is increased.
第1図は従来の光磁気ディスク装置の構成図、第2図は
本発明一実施例の一部の構成図、第3図はウォラストン
プリズムの入射光の偏光面の説明図である。
王な図番の説明
12η・・・ウォラストンプリズム(偏光素子)、(2
8a)(281))・・・光検出手段、G・・・差動増
幅器。
第2図
18図 、□分FIG. 1 is a block diagram of a conventional magneto-optical disk device, FIG. 2 is a block diagram of a part of an embodiment of the present invention, and FIG. 3 is an explanatory diagram of the plane of polarization of incident light on a Wollaston prism. Explanation of the main figure number 12η...Wollaston prism (polarizing element), (2
8a) (281))...Photodetection means, G...Differential amplifier. Figure 2 Figure 18, □min.
Claims (1)
し、該記録媒体からの反射光(:よ1)前記記録媒体上
に記録された情報を光学的C二読取る光磁気ディスク装
置(二おいて、前記反射光を複屈折を利用して入射光を
2つの偏光成分に分離する偏光素子に導入し、該偏光菓
子から取を)出された2つの偏光成分を夫々光検出手段
に供給することを特徴とする光磁気ディスク装置。(1) A magneto-optical disk device (2) that irradiates light from a laser light source onto a magneto-optical recording medium and uses reflected light from the recording medium (1) to optically read information recorded on the recording medium. Then, the reflected light is introduced into a polarizing element that separates the incident light into two polarized light components using birefringence, and the two polarized light components extracted from the polarized confectionery are respectively supplied to a light detection means. A magneto-optical disk device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7844183A JPS59203259A (en) | 1983-05-04 | 1983-05-04 | Optical magnetic disc device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7844183A JPS59203259A (en) | 1983-05-04 | 1983-05-04 | Optical magnetic disc device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59203259A true JPS59203259A (en) | 1984-11-17 |
Family
ID=13662124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7844183A Pending JPS59203259A (en) | 1983-05-04 | 1983-05-04 | Optical magnetic disc device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59203259A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63229645A (en) * | 1987-03-19 | 1988-09-26 | Matsushita Electric Ind Co Ltd | Magneto-optical disk device |
JPS63244346A (en) * | 1987-03-30 | 1988-10-11 | Matsushita Electric Ind Co Ltd | Magneto-optical disk device |
US4797868A (en) * | 1985-05-15 | 1989-01-10 | Kabushiki Kaisha Toshiba | Optical system employing a laser beam for focusing, tracking and transferring information signals with respect to a magneto-optical memory |
JPH01189053A (en) * | 1987-10-13 | 1989-07-28 | William H T Mcgourthy Jr | Thermal,magnetic and optical memory device using cone refraction |
JPH01319145A (en) * | 1988-06-20 | 1989-12-25 | Hitachi Maxell Ltd | Optical recording medium driving device |
JPH0279241A (en) * | 1988-09-16 | 1990-03-19 | Hitachi Ltd | Optical head |
JPH02158943A (en) * | 1988-12-12 | 1990-06-19 | Fujitsu Ltd | Optical head device |
US5416755A (en) * | 1985-02-28 | 1995-05-16 | Canon Kabushiki Kaisha | Optical pickup using split beams impinging on different photo-detector areas |
US5444677A (en) * | 1992-03-03 | 1995-08-22 | Omron Corporation | Optical read/write head low angle beamsplitter and coplanar detectors |
US5661701A (en) * | 1985-02-28 | 1997-08-26 | Canon Kabushiki Kaisha | Optical pickup using split beams impinging on different photodetector areas |
US6587297B1 (en) * | 2000-02-18 | 2003-07-01 | Robin Reinhard Padden | System and method for detecting the presence of a data-storage cartridge using phase-rotated polarized light |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5744241A (en) * | 1980-08-27 | 1982-03-12 | Matsushita Electric Ind Co Ltd | Magnetooptic reproducer |
JPS57147148A (en) * | 1981-03-05 | 1982-09-10 | Olympus Optical Co Ltd | Information reproducer with magnetooptic system |
-
1983
- 1983-05-04 JP JP7844183A patent/JPS59203259A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5744241A (en) * | 1980-08-27 | 1982-03-12 | Matsushita Electric Ind Co Ltd | Magnetooptic reproducer |
JPS57147148A (en) * | 1981-03-05 | 1982-09-10 | Olympus Optical Co Ltd | Information reproducer with magnetooptic system |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5416755A (en) * | 1985-02-28 | 1995-05-16 | Canon Kabushiki Kaisha | Optical pickup using split beams impinging on different photo-detector areas |
US5488598A (en) * | 1985-02-28 | 1996-01-30 | Canon Kabushiki Kaisha | Optical pickup using split beams impinging on different photodetector areas |
US5661701A (en) * | 1985-02-28 | 1997-08-26 | Canon Kabushiki Kaisha | Optical pickup using split beams impinging on different photodetector areas |
US4797868A (en) * | 1985-05-15 | 1989-01-10 | Kabushiki Kaisha Toshiba | Optical system employing a laser beam for focusing, tracking and transferring information signals with respect to a magneto-optical memory |
JPS63229645A (en) * | 1987-03-19 | 1988-09-26 | Matsushita Electric Ind Co Ltd | Magneto-optical disk device |
JPS63244346A (en) * | 1987-03-30 | 1988-10-11 | Matsushita Electric Ind Co Ltd | Magneto-optical disk device |
JPH01189053A (en) * | 1987-10-13 | 1989-07-28 | William H T Mcgourthy Jr | Thermal,magnetic and optical memory device using cone refraction |
JPH01319145A (en) * | 1988-06-20 | 1989-12-25 | Hitachi Maxell Ltd | Optical recording medium driving device |
JPH0279241A (en) * | 1988-09-16 | 1990-03-19 | Hitachi Ltd | Optical head |
JPH02158943A (en) * | 1988-12-12 | 1990-06-19 | Fujitsu Ltd | Optical head device |
US5444677A (en) * | 1992-03-03 | 1995-08-22 | Omron Corporation | Optical read/write head low angle beamsplitter and coplanar detectors |
US6587297B1 (en) * | 2000-02-18 | 2003-07-01 | Robin Reinhard Padden | System and method for detecting the presence of a data-storage cartridge using phase-rotated polarized light |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4561032A (en) | Magnetooptic reproducing device | |
JPH01166351A (en) | Optical pickup | |
JPS59203259A (en) | Optical magnetic disc device | |
JPS63298734A (en) | Magneto-optical disk reproducing device | |
US5189651A (en) | Optical system in magneto-optical recording and reproducing device | |
JPH0363139B2 (en) | ||
JPH034976B2 (en) | ||
JPH0327977B2 (en) | ||
JPS58196640A (en) | Magnetooptic recording and reproducing device | |
JPH0115932B2 (en) | ||
JPS5992457A (en) | Optical reproducer | |
JPS59157856A (en) | Reproduction structure for photomagnetic information recorder | |
JPH0327978B2 (en) | ||
JP2574915B2 (en) | Optical device for reproducing magneto-optical recording media | |
JPS62226454A (en) | Photomagnetic recording and reproducing device | |
JPS60223044A (en) | Photomagnetic reproducer | |
JPH053666B2 (en) | ||
JPS59168951A (en) | Optical magnetic disc device | |
JPS60157745A (en) | Photomagnetic recorder | |
JPS59168955A (en) | Reproducing structure of optical magnetic information recording device | |
JPH01189051A (en) | Optical head for magneto optical recorder | |
JPH0528575A (en) | Optical head | |
JPH02192053A (en) | Magneto-optical disk device | |
JPS647407B2 (en) | ||
JPS61199252A (en) | Photomagnetic recording and reproducing device |