JPS59168955A - Reproducing structure of optical magnetic information recording device - Google Patents

Reproducing structure of optical magnetic information recording device

Info

Publication number
JPS59168955A
JPS59168955A JP4537583A JP4537583A JPS59168955A JP S59168955 A JPS59168955 A JP S59168955A JP 4537583 A JP4537583 A JP 4537583A JP 4537583 A JP4537583 A JP 4537583A JP S59168955 A JPS59168955 A JP S59168955A
Authority
JP
Japan
Prior art keywords
recording medium
light
magneto
laser
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4537583A
Other languages
Japanese (ja)
Inventor
Kenji Torasawa
虎沢 研示
Yoichi Tsuchiya
洋一 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4537583A priority Critical patent/JPS59168955A/en
Publication of JPS59168955A publication Critical patent/JPS59168955A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads

Abstract

PURPOSE:To enhance the use efficiency of the light of a light source laser to improve the S/N ratio of the signal of an optical magnetic recording medium by providing a Faraday rotating element, which rotates the polarization direction at a prescribed angle, between a beam splitter and the recording medium. CONSTITUTION:The laser parallel light from a laser light source 28 is reflected by a polarizing beam splitter 31 and passes through a Faraday rotating element 32 and is flare diaphragmed by an object lens 33 and is irradiated to an optical magnetic recording medium 34. This light is reflected by the medium 34 and passes through the lens 33, the element 32, the splitter 31, and lenses 35 and 36 again and is made incident to a detector 37.The beam which passes through the element 32 on the returning path becomes a beam having two kinds of oscillation direction of 45 deg.+Qk and 45 deg.-Qk in accordance with the recording direction of the medium 34. The splitter 31 is used as an analyzer also, and therefore, a signal which has a variable intensity in accordance with the recording direction of the medium 34 is obtained with a high S/N ratio in an element (b).

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、膜面に対して垂直方向に磁気異方性を有する
磁気記録媒体にレーザ光等に依って情報を記録、再生す
る光磁気情報記録装置に於ける情報再生構造に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a method for recording and reproducing information on a magnetic recording medium having magnetic anisotropy in the direction perpendicular to the film surface using a laser beam or the like. The present invention relates to an information reproducing structure in a magnetic information recording device.

(ロ) 従 来 技 術 ファラデー効果や磁気カー効果等の磁気光学効果を応用
した情報の記録、再生の研究が進められている。記録媒
体としては、一般にGdCo、GdFe、TbFe等の
アモルファス磁性膜が用いられており、あらかじめ全面
にわたって一方向に磁化きせた記録媒体に、半導体レー
ザ等の光を照射して局部的に記録媒体温度をキュリ一点
近傍まで上昇させ、且つレーザ光照射部分を含む領域に
記録媒体が磁化されている向きと逆向きのバイアス磁界
をかけて、レーザ光照射部分にまわりと逆向きの磁化領
域を作ることにより記録が行なわれる。
(b) Conventional technology Research is underway on recording and reproducing information by applying magneto-optical effects such as the Faraday effect and the magnetic Kerr effect. Generally, an amorphous magnetic film such as GdCo, GdFe, or TbFe is used as a recording medium.The recording medium is magnetized in one direction over its entire surface in advance, and is irradiated with light from a semiconductor laser to locally increase the temperature of the recording medium. To create a magnetized region in the laser beam irradiated area in the opposite direction to the surroundings by raising the magnetic field to near the Curie point and applying a bias magnetic field in the opposite direction to the direction in which the recording medium is magnetized to the area including the laser beam irradiated area. Recording is performed by

記録情報の再生は、レーザ光源等より射出された光を偏
光子を通して直線偏光とした後、記録媒体に照射し、そ
こからの反射光、もしくは透過光を検光子を介して光電
変換素子等の光検出器で受けることにより、記録情報に
よる偏光面の回転を検出して情報再生は行なわれる。
To reproduce recorded information, light emitted from a laser light source, etc. is converted into linearly polarized light through a polarizer, then irradiated onto a recording medium, and the reflected or transmitted light is passed through an analyzer to a photoelectric conversion element, etc. Information is reproduced by detecting the rotation of the plane of polarization due to the recorded information by receiving the information with a photodetector.

また情報記録部分に、記録時と同様にレーザ光等を照射
して局部的に記録媒体の温度を上昇させ、バイアス磁界
を記録時とは逆向き、すなわち記録媒体全体をあらかじ
め磁化した向きにかけてやるとレーザ光照射部の磁化の
向きはまわりと同じとなり、記録情報は消去きれたこと
になる。いいかえればこの記録媒体における情報の記録
再生方法では情報の書換えが可能である。
In addition, the temperature of the recording medium is locally increased by irradiating the information recording area with a laser beam, etc. in the same way as during recording, and a bias magnetic field is applied in the opposite direction to that during recording, that is, in the direction in which the entire recording medium has been magnetized in advance. The magnetization direction of the laser beam irradiated part becomes the same as that of the surrounding area, and the recorded information is completely erased. In other words, this method of recording and reproducing information on a recording medium allows information to be rewritten.

第1図は現存する光磁気記録再生装置の一般的な構成図
で、その左側が記録光学系、右側が再生光学系を示して
いる。記録光学系では、記録すべき信号に応じてレーザ
光を変調するレーザ変調器(2)によって、変調された
半導体レーザ(1)より出たレーザ光は集光レンズ(3
)によって平行ビームとなり、ミラー(4)、偏光ビー
ムスプリッタ(5)、に波長板(6)を通過し、対物レ
ンズ(7)によってディスク状記録媒体(8)上に集光
照射される。
FIG. 1 is a general configuration diagram of an existing magneto-optical recording and reproducing device, with the left side showing the recording optical system and the right side showing the reproducing optical system. In the recording optical system, a laser modulator (2) modulates laser light according to the signal to be recorded, and the modulated laser light emitted from the semiconductor laser (1) is passed through a condenser lens (3).
), it becomes a parallel beam, passes through a mirror (4), a polarizing beam splitter (5), and a wavelength plate (6), and is focused and irradiated onto a disk-shaped recording medium (8) by an objective lens (7).

ディスク状記録媒体(8〉はあらかじめ全面にわたって
一方向に磁化されている。レーザ光が集光照射されてい
る部分を含む領域に、バイアス磁界用コイル(9)によ
って、記録媒体(8)がすでに磁化されている方向と逆
向きの磁界を与えることにより、記録が行なわれる。尚
、反射光は再び対物レンズ(7)、に波長板〈6)を通
過した後、偏光ビームスプリッタ(5)で反射され、シ
リンドリカルレンズ(10)を通り、光検出器(11)
に到達し、この光検出器(11)から得られる信号によ
り記録時のフォーカス制御が行なわれる。
The entire surface of the disk-shaped recording medium (8) is magnetized in one direction in advance.The recording medium (8) is already magnetized by the bias magnetic field coil (9) in the area including the part where the laser beam is focused and irradiated. Recording is performed by applying a magnetic field in the opposite direction to the direction of magnetization.The reflected light passes through the objective lens (7) and the wavelength plate (6) again, and then is sent to the polarizing beam splitter (5). It is reflected, passes through a cylindrical lens (10), and passes through a photodetector (11).
The signal obtained from this photodetector (11) is used to perform focus control during recording.

再生には第1図の右側に示すように記録と別の再生光学
系が用いられる。半導体レーザ(12)から出たレーザ
光は集光レンズ(13)で集められ、ミラー (14)
で反射された後、偏光子(15)によって直線偏光にな
る。ハーフミラ−(16)を透過したレーザ光は対物レ
ンズ(17)により記録媒体(8)上に焦点を結ぶ。記
録媒体(8)からの反射光は磁気光学効果によって偏光
面が記録媒体(8)の磁化の向きに応じて右もしくは左
に回転する。このように偏光3− 面の回転した反射光は再び対物レンズ(17)により集
光きれた後、再びハーフミラ−(16)に入り、その反
射光は更にもう一つのハーフミラ−(17)によって2
分割きれ、おのおの検光子(19a)、(19b)に入
射する。この2つの検光子(19a)、(19b)は設
定角を偏光子(15)の偏光面に対し、互いに逆向きに
同一角度となっている。検光子(19a)、(llb)
を通過したビーム光はレンズ(20a)、(20b)ヲ
通す、おのおの光検出器(21a)、(21,b)に受
光きれる。光検出器(21a)、(21b)によって光
電変換きれた出力を差動増幅!i!(22)に入れて演
算し、” 1 ”、′0”相当したディジタル信号が出
力として得られる。また光検出器(21b)より出力き
れたフォーカス信号、トラッキング信号はフォーカスサ
ーボ回路(23)、トラッキングサーボ回路(24)で
処理され再生時のフォーカスサーボ、トラッキングサー
ボが行なわれる。
For reproduction, as shown on the right side of FIG. 1, a reproduction optical system separate from that for recording is used. Laser light emitted from the semiconductor laser (12) is collected by a condensing lens (13) and then passed through a mirror (14).
After being reflected by the polarizer (15), it becomes linearly polarized light. The laser beam transmitted through the half mirror (16) is focused onto the recording medium (8) by the objective lens (17). The plane of polarization of the reflected light from the recording medium (8) rotates to the right or left depending on the direction of magnetization of the recording medium (8) due to the magneto-optic effect. After the reflected light whose polarization plane has been rotated in this way is again focused by the objective lens (17), it enters the half mirror (16) again, and the reflected light is further divided into two by another half mirror (17).
The light is divided and enters each analyzer (19a) and (19b). These two analyzers (19a) and (19b) have set angles that are opposite to each other but at the same angle with respect to the polarization plane of the polarizer (15). Analyzer (19a), (llb)
The beam light that has passed through passes through lenses (20a) and (20b), and is received by photodetectors (21a) and (21, b), respectively. Differential amplification of the photoelectrically converted output by the photodetectors (21a) and (21b)! i! (22), and digital signals corresponding to "1" and '0' are obtained as output.Furthermore, the focus signal and tracking signal output from the photodetector (21b) are sent to the focus servo circuit (23), It is processed by a tracking servo circuit (24) to perform focus servo and tracking servo during playback.

これらの記録媒体〈8)からの反射光の偏光面の回転の
検出によって記録情報を再生する装置においては、その
必要上第1図に示されている様に光4− 学部量の一つとしてハーフミラ−が使用されている。特
に再生光学系のハーフミラ−(16)ではレーザ光が往
復で2度通過することとなるため、光量は%に減少する
。これは非常に大きなロスである。このように従来の再
生装置の光学系ではレーザ光の利用効率が非常に悪いと
いう欠点を有している。
In devices that reproduce recorded information by detecting the rotation of the plane of polarization of reflected light from these recording media (8), as shown in Figure 1, as one of the amounts of light, it is necessary to A half mirror is used. In particular, since the laser beam passes through the half mirror (16) of the reproduction optical system twice in a round trip, the amount of light decreases to %. This is a very large loss. As described above, the optical system of the conventional reproducing apparatus has the drawback that the efficiency of using laser light is very low.

また光磁気記録媒体に於けるカー回転角は1゜前後と非
常に小さいので、信号の変調度は極めて小さい。従って
記録媒体全体のS/N比は、次のように表わされる。
Furthermore, since the Kerr rotation angle in the magneto-optical recording medium is very small, around 1°, the degree of signal modulation is extremely small. Therefore, the S/N ratio of the entire recording medium is expressed as follows.

検出子がPINフォトダイオードの場合、S/N  心
 2θsl百]]。
If the detector is a PIN photodiode, the S/N ratio is 2θsl 100].

検出子がアバランシェフォトダイオードの場合、S/N
 oe 2θK fi17.− ここで、θバは光磁気記録媒体のカー回転角、roは記
録媒体への入射光量、   ′Rは記録媒体への入射光
量に対して 検出子が受ける光量の割合、である。
If the detector is an avalanche photodiode, the S/N
oe 2θK fi17. - Here, θ is the Kerr rotation angle of the magneto-optical recording medium, ro is the amount of light incident on the recording medium, and 'R is the ratio of the amount of light received by the detector to the amount of light incident on the recording medium.

従、って、このS/N比を高めるには、再生光学系での
損失光量を少なくする事が重要である。
Therefore, in order to increase this S/N ratio, it is important to reduce the amount of light loss in the reproduction optical system.

(ハ) 発 明 の 目 的 本発明はこのような点に鑑みて為されたものであって、
光源レーザの光利用効率を高め、光磁気記録媒体からの
信号をS/N比良く得る構造を得んとするものである。
(c) Purpose of the invention The present invention has been made in view of the above points, and
The purpose of this invention is to improve the light utilization efficiency of a light source laser and to obtain a structure that can obtain a signal from a magneto-optical recording medium with a good S/N ratio.

(ニ)発明の構成 本発明はビームスプリッタと記録媒体との間に所定角度
だけ偏光方向を回転させるファラデー回転素子を設けた
ものである。
(d) Structure of the Invention The present invention provides a Faraday rotation element that rotates the polarization direction by a predetermined angle between the beam splitter and the recording medium.

(ホ) 実    施    例 本発明実施例の説明に先立って本発明の原理を第2図を
用いて説明しておく。この第2図に於て、(25)は偏
光子、(26)はファラデー回転素子、(27)は反射
板を示しており、偏光子〈25)を通ったレーザビーム
はy軸方向に振動する直線偏光の光となる。ファラデー
回転素子(26)の偏光面の回転角を〆とすると、反射
板(27)で反射し、再度ファラデー回転素子(26)
を通過したレーザビームの直線偏光の偏光面は、第2図
(b)に示すようにy軸に対して2〆だけ回転して振動
している。そこで反射板(27)がθにのカー回転角を
有する光磁気記録媒体であるとすると、その媒体で反射
され、ファラデー回転素子(26)を通ったレーザビー
ムは第2図(c)のように磁気記録の方向により、y軸
に対して、2メーθ〆及び2〆十θバの2種類の回転角
を持つビームが生じる。従って再度偏光子(25)を通
ったレーザビームには、2種類の強弱信号が存在し、光
磁気記録媒体に記録きれた信号を読み取る事が出来る。
(E) Embodiments Prior to describing embodiments of the present invention, the principle of the present invention will be explained using FIG. 2. In this Figure 2, (25) is a polarizer, (26) is a Faraday rotator, and (27) is a reflector, and the laser beam that has passed through the polarizer (25) vibrates in the y-axis direction. It becomes linearly polarized light. When the angle of rotation of the polarization plane of the Faraday rotator (26) is set as the final angle, it is reflected by the reflector (27) and then the Faraday rotator (26)
The polarization plane of the linearly polarized laser beam that has passed through is rotated by 2 degrees with respect to the y-axis and vibrates, as shown in FIG. 2(b). Therefore, if the reflecting plate (27) is a magneto-optical recording medium having a Kerr rotation angle of θ, the laser beam reflected by the medium and passing through the Faraday rotation element (26) will be as shown in Fig. 2(c). Depending on the direction of magnetic recording, beams having two types of rotation angles with respect to the y-axis, 2 meters θ〆 and 2〆〆〆 θ, are generated. Therefore, there are two types of strong and weak signals in the laser beam that has passed through the polarizer (25) again, and it is possible to read the signal completely recorded on the magneto-optical recording medium.

その時の信号の大きさは、X軸方向の偏光子を入れると
、第2図(c)から、 Co5(2(+07.) −Co5(2d−θに)= 
 5in4 i ・5in2θに 即ち5in4〆・5in2θバに比例するので1、−2
2.5°の時、最大の信号出力を得る事が出来る。
When a polarizer in the X-axis direction is inserted, the magnitude of the signal at that time is as follows from Fig. 2 (c): Co5 (2 (+07.) - Co5 (2d - θ) =
It is proportional to 5in4 i ・5in2θ, that is, 5in4〆・5in2θba, so 1, -2
Maximum signal output can be obtained at 2.5°.

この原理に基づいた本発明構造を第3図に示す。同図に
於て、(28)は半導体レーザ光源、(29)はコリメ
ータレンズ、 (30)は回折格子、(31)はピ7− 一ムスブリツタ、(32)はファラデー回転素子で上記
した如く、22.5°の回転角を持っている。(33)
は対物レンズ、(34)は光磁気記録媒体、(35)は
中間レンズ、(36)はシリンドリカルレンズ、(37
)は検出器であ、る。
The structure of the present invention based on this principle is shown in FIG. In the figure, (28) is a semiconductor laser light source, (29) is a collimator lens, (30) is a diffraction grating, (31) is a pin 7-1 oscillator, and (32) is a Faraday rotation element, as described above. It has a rotation angle of 22.5°. (33)
is an objective lens, (34) is a magneto-optical recording medium, (35) is an intermediate lens, (36) is a cylindrical lens, and (37) is an intermediate lens.
) is a detector.

而してレーザ光源(28)から発射されたレーザピーA
は、コリメータレンズ(29)に依って平行光となり、
回折格子(30)を通って偏光ビームスプリ・ンタ(3
1)で反射きれ、ファラデー回転素子(32)を通り対
物レンズ(33〉で絞られて光磁気記録媒体(34)に
照射される。記録媒体(34)で反射されたレーザビー
ムは再び対物レンズ(33)、ファラデー回転素子(3
2)、偏光ビームスブリック(31L中間レンズ(35
)及びシリンドリカルレンズ(36)を通り、検出器(
37)に入射する。この光学系に於ける復路のファラデ
ー回転素子(32)を通ったレーザビームは光磁気記録
媒体〈34)の記録方向に依って、45°+Qに、45
°−QKの2種類の振動方向を持つレーザビームとなる
。この時偏光ビームスプリッタ〈31)は検光子の役目
をも果たすので、検出器(37)の中8− 央の素子(b)には光磁気記録媒体(34)の記録方向
に対応して強弱の信号を得る事が出来る。また回折格子
(30)はトラッキング制御を行なうために設置された
もので、その±1次光は、検出器(37)の上下の素子
(a)(c)に夫々入射する事となり、その画素子(a
)(C)の出力の差に依って、トラッキング誤差信号が
得られ、その誤差信号からトラッキングの調整が行なわ
れる。またシリンドリカルレンズ(36)はその非点収
差効果を利用してフォーカス制御を行なう為に設置きれ
たもので、検出器(37)の中央素子(b)を4分割構
成とし、その4素子の各出力間の演算に依ってフォーカ
ス誤差信号を得てフォーカス制御が行なわれる。
Therefore, the laser beam A emitted from the laser light source (28)
becomes parallel light due to the collimator lens (29),
The polarized beam splitter (3) passes through the diffraction grating (30).
1), passes through the Faraday rotator (32), is focused by the objective lens (33), and is irradiated onto the magneto-optical recording medium (34).The laser beam reflected by the recording medium (34) is reflected by the objective lens again. (33), Faraday rotation element (3
2), Polarized beam brick (31L intermediate lens (35
) and the cylindrical lens (36) to the detector (
37). The laser beam passing through the Faraday rotation element (32) on the return path in this optical system is rotated at 45°+Q and 45° depending on the recording direction of the magneto-optical recording medium (34).
The resulting laser beam has two types of vibration directions: °-QK. At this time, the polarizing beam splitter (31) also serves as an analyzer, so the 8-center element (b) in the detector (37) has a light intensity that corresponds to the recording direction of the magneto-optical recording medium (34). signal can be obtained. In addition, the diffraction grating (30) is installed for tracking control, and its ±1st-order light enters the upper and lower elements (a) and (c) of the detector (37), respectively, and the pixels Child (a
) (C) A tracking error signal is obtained, and tracking adjustment is performed from this error signal. In addition, the cylindrical lens (36) was installed to perform focus control using its astigmatism effect, and the central element (b) of the detector (37) was divided into four parts, and each of the four elements was Focus control is performed by obtaining a focus error signal by calculating between the outputs.

(へ)発明の効果 本発明は以上の説明から明らかな如く、ビームスプリッ
タと記録媒体との間にファラデー回転素子を配置するだ
けの簡単な構成であるので、光学系が簡略化されて光量
のロスが低減され、記録媒体からの読み取り信号を高い
S/N比で得る事が出来る。
(f) Effects of the Invention As is clear from the above description, the present invention has a simple configuration of just arranging a Faraday rotation element between the beam splitter and the recording medium, so the optical system is simplified and the amount of light can be reduced. Loss is reduced, and a read signal from the recording medium can be obtained with a high S/N ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光磁気情報記憶装置の構成を示す概要図、第2
図は本発明構造の原理説明の為の光学系図、第3図は本
発明の構造を示す光学系図であって、(31)はビーム
スプリッタ、(32)はファラデー回転素子、(34)
は記録媒体、を夫々示している。 11− ■ 派 304−
Figure 1 is a schematic diagram showing the configuration of a magneto-optical information storage device;
The figure is an optical system diagram for explaining the principle of the structure of the present invention, and FIG. 3 is an optical system diagram showing the structure of the present invention, in which (31) is a beam splitter, (32) is a Faraday rotation element, (34)
indicate the recording medium, respectively. 11- ■ Sect 304-

Claims (1)

【特許請求の範囲】 1)レーザビームを光磁気記録媒体に照射し、その反射
光から該記録媒体に磁気的に記録された情報を光学的に
読み取るものに於て、レーザ光源と、該光源からのレー
ザビームを光磁気記録媒体側へ導くと共に該、記録媒体
からの反射光を検出器に導くビームスプリッタと、この
ビームスプリッタと記録媒体との間の光路内に配置した
所定角度だけ偏光方向が回転させたファラデー回転素子
と、から成る光磁気情報記録装置に於ける再生構造。 2)上記ファラデー回転素子は22.5°偏光方向が回
転している事を特徴とする特許請求の範囲第1項記載の
光磁気情報記録装置に於ける再生装置。
[Claims] 1) A device that irradiates a magneto-optical recording medium with a laser beam and optically reads information magnetically recorded on the recording medium from the reflected light, comprising: a laser light source; a beam splitter that guides the laser beam from the magneto-optical recording medium toward the magneto-optical recording medium and guides the reflected light from the recording medium to the detector; A reproducing structure in a magneto-optical information recording device comprising a Faraday rotation element rotated by a magneto-optical information recording device. 2) A reproducing apparatus in a magneto-optical information recording apparatus according to claim 1, wherein the Faraday rotation element has a polarization direction rotated by 22.5 degrees.
JP4537583A 1983-03-17 1983-03-17 Reproducing structure of optical magnetic information recording device Pending JPS59168955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4537583A JPS59168955A (en) 1983-03-17 1983-03-17 Reproducing structure of optical magnetic information recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4537583A JPS59168955A (en) 1983-03-17 1983-03-17 Reproducing structure of optical magnetic information recording device

Publications (1)

Publication Number Publication Date
JPS59168955A true JPS59168955A (en) 1984-09-22

Family

ID=12717517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4537583A Pending JPS59168955A (en) 1983-03-17 1983-03-17 Reproducing structure of optical magnetic information recording device

Country Status (1)

Country Link
JP (1) JPS59168955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156058A2 (en) * 1983-08-06 1985-10-02 Brother Kogyo Kabushiki Kaisha Magneto-optical reading apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147148A (en) * 1981-03-05 1982-09-10 Olympus Optical Co Ltd Information reproducer with magnetooptic system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147148A (en) * 1981-03-05 1982-09-10 Olympus Optical Co Ltd Information reproducer with magnetooptic system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156058A2 (en) * 1983-08-06 1985-10-02 Brother Kogyo Kabushiki Kaisha Magneto-optical reading apparatus
US5007021A (en) * 1983-08-06 1991-04-09 Brother Kogyo Kabushiki Kaisha Magneto-optical data reading apparatus

Similar Documents

Publication Publication Date Title
US4549287A (en) System for recording and playing back information with magneto-optical disk memory using record and readout light beams of different wavelengths
JPS6370950A (en) Magneto-optical signal reproducer
JPS59203259A (en) Optical magnetic disc device
JPH0363139B2 (en)
US6118748A (en) Optical information storage unit having phase compensation means for applying different phase compensation quantities with respect to signals detected from land and groove of recording medium
JPS59168955A (en) Reproducing structure of optical magnetic information recording device
US6741528B1 (en) Magneto-optical head device
JPS59157856A (en) Reproduction structure for photomagnetic information recorder
JPH0327977B2 (en)
JPH0115932B2 (en)
JPS5992457A (en) Optical reproducer
JPH0445134Y2 (en)
JPH0327978B2 (en)
JPS5938949A (en) Magneto-optical reproducer
JPS59168951A (en) Optical magnetic disc device
JP3095194B2 (en) Magneto-optical information reproducing device
JPS62134839A (en) Optical magnetic reproducing device
JP2578413B2 (en) Magneto-optical information reproducing device
JPH02301029A (en) Optical head device
JPS60157745A (en) Photomagnetic recorder
JPH053666B2 (en)
JPS63100647A (en) Magneto-optical information reproducing device
JPS60223044A (en) Photomagnetic reproducer
JPS6361936A (en) Double reflection measuring instrument
JPH04181537A (en) Optical information reproducer