JPS5938865B2 - Mold material for continuous casting equipment - Google Patents

Mold material for continuous casting equipment

Info

Publication number
JPS5938865B2
JPS5938865B2 JP18866980A JP18866980A JPS5938865B2 JP S5938865 B2 JPS5938865 B2 JP S5938865B2 JP 18866980 A JP18866980 A JP 18866980A JP 18866980 A JP18866980 A JP 18866980A JP S5938865 B2 JPS5938865 B2 JP S5938865B2
Authority
JP
Japan
Prior art keywords
copper
mold
phase
alloy
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18866980A
Other languages
Japanese (ja)
Other versions
JPS57112945A (en
Inventor
勝 山口
茂 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP18866980A priority Critical patent/JPS5938865B2/en
Publication of JPS57112945A publication Critical patent/JPS57112945A/en
Publication of JPS5938865B2 publication Critical patent/JPS5938865B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Description

【発明の詳細な説明】 本発明は連続鋳造設備lこおける鋳型材に関する。[Detailed description of the invention] The present invention relates to a mold material for continuous casting equipment.

連続鋳造設備の鋳型材料lこ要求される特性は、連鋳機
の高速化tこ伴なってますます多様化、苛酷化しつつあ
り、耐摩耗性もその重要な性質の一つである。
The properties required of mold materials for continuous casting equipment are becoming increasingly diverse and severe as the speed of continuous casting machines increases, and wear resistance is one of the important properties.

通常、鋳型材料として銅が使用されており、鋳型の耐摩
耗性+こ対処するものとして表面処理lこよる方法も種
々行なわれているが、本発明のものは表面処理lこなら
ず鋳型材自身で対処するものである。
Copper is usually used as a mold material, and various surface treatments have been used to improve the wear resistance of the mold, but the method of the present invention does not require surface treatment. You have to deal with it yourself.

ところで、鋳型の摩耗はストランドの寸法的精度に関与
するだけでなく、Cuピックアップとなってストランド
の表面性状を阻害するものである。
By the way, the wear of the mold not only affects the dimensional accuracy of the strand, but also picks up Cu and impairs the surface quality of the strand.

そこで本発明者等11、上記問題を解消するため1こ、
銅の中lこ他の元素を添加し、銅α相とは異なる第2相
を析出させて、鋳型材料の金属組織とCuピックアップ
による表面性状評点との関連を検討した。
Therefore, in order to solve the above problem, the inventors 11,
By adding other elements to copper to precipitate a second phase different from the copper α phase, we investigated the relationship between the metal structure of the mold material and the surface texture rating based on Cu pickup.

その結果、銅合金鋳型材料であっても、第2相(異相)
の占める面積をある値以上1こすること(こより、表面
割れを顕著に減らすことが可能であることをつきとめ、
本発明1こ至った。
As a result, even with copper alloy mold materials, the second phase (different phase)
It was discovered that it is possible to significantly reduce surface cracks by rubbing the area occupied by a certain value or more.
The present invention has been completed.

以下、本発明を図面ととも1こ詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は銅α相に第2相を析出させた場合、その面積率
とクラック評点との関係を表わしたグラフである。
FIG. 1 is a graph showing the relationship between the area ratio and crack score when a second phase is precipitated in the copper α phase.

このグラフかられかるように、銅α相の面積率が減少す
ると、クラック評点は小さくなり、表面性状は向上する
As can be seen from this graph, as the area ratio of the copper α phase decreases, the crack score decreases and the surface quality improves.

例えば、70%まではその向上はわずかであるが、65
%より少なくなると、その表面性状は急激1こ向上し、
50%1こ8いてはその評点は4となる。
For example, up to 70% the improvement is small, but 65%
When it becomes less than %, the surface quality rapidly improves by 1,
If 50% is 1/8, the score will be 4.

そして、更lこ向上させると、ニッケル表面処理材に接
近する。
If the material is further improved, it approaches a nickel surface-treated material.

なお、第1図1こおいて、Aは純銅(こ相当し、Bはニ
ッケル表面処理材に相当する。
In FIG. 1, A corresponds to pure copper, and B corresponds to a nickel surface-treated material.

このように、銅α相の面積率の減少がクラック評点の向
上につながる理由は、ストランドと接触する銅α相の面
積率が低下するためだけでなく、銅α相の面積率の減少
は銅α相以外の第2相の増加2こ対応するものであり、
従って第2相の増加1こよる耐摩耗性の向上が銅α相の
面積率の低下と相乗的lこ好結果をもたらしているため
である。
In this way, the reason why a decrease in the area ratio of the copper α phase leads to an improvement in the crack score is not only because the area ratio of the copper α phase in contact with the strand decreases, but also because the decrease in the area ratio of the copper α phase leads to an improvement in the crack score. This corresponds to an increase of 2 in the second phase other than the α phase,
Therefore, the improvement in wear resistance due to the increase in the second phase has a synergistic effect with the decrease in the area ratio of the copper α phase.

ところで、銅に添加される金属元素としては、鋳型材料
であることを考慮すると、下記の事項を満足する必要が
ある。
By the way, considering that the metal element added to copper is a mold material, it is necessary to satisfy the following requirements.

■ 硬さが大きいこと。■ High hardness.

例えば金属間化合物などが望才しい。For example, intermetallic compounds are promising.

■ 銅との相互固溶度が小さいこと。■ Mutual solid solubility with copper is small.

■ 極力少量の添加で、第2相の形成が太きくなること
■ Adding as little amount as possible increases the formation of the second phase.

■ 熱伝導度を極力低下させないこと。■ Avoid reducing thermal conductivity as much as possible.

例えば、銅−亜鉛系のよう1こ1 α相とくらべてさほ
ど硬さの大きくないβ相を第2相として析出させた場合
、第1図の点線で示すよう1こ、銅α相の減少の効果は
低下する。
For example, when a β phase, which is not as hard as the α phase in a copper-zinc system, is precipitated as a second phase, the copper α phase decreases as shown by the dotted line in Figure 1. becomes less effective.

そこで、焼結法などの特殊製造法を除き、溶解鋳造法1
こより製造可能なもの1こ限定して、上述した合金系を
検討した結果、下記の条件を満足すれば良いことが分か
った。
Therefore, excluding special manufacturing methods such as sintering, melting and casting method 1
As a result of considering the above-mentioned alloy system, limiting it to one that can be manufactured, it was found that it is sufficient to satisfy the following conditions.

即ち、第1図1こεいて示された第2相の形成割合が3
5%以上1こなる量が最小添加量となり、また最大添加
量は合金系の熱伝導度が純銅の12%以上lこなる量で
決定されることである。
That is, the formation rate of the second phase shown in Figure 1 is 3.
The minimum addition amount is 5% or more, and the maximum addition amount is determined by the amount where the thermal conductivity of the alloy is 12% or more of pure copper.

このような条件を満足するものとしてCu−5〜18%
Zr合金が指摘される。
Cu-5 to 18% satisfies these conditions.
Zr alloys are mentioned.

なお、合金の熱伝導度が純銅の12%より低くならない
ように考慮したのは、これより低くなると鋳型温度が上
昇し、その結果鋳型内熱応力が大きくなり、不都合が生
じるからである。
The reason for ensuring that the thermal conductivity of the alloy was not lower than 12% of that of pure copper was that if it were lower than this, the mold temperature would rise, resulting in an increase in thermal stress within the mold, which would cause problems.

しかし、通常の鋳型は使用回数の増力旧こつれて変形し
、摩耗をきたし、寿命となるが、高速連鋳機の鋳型(こ
ぢいては、鋳型銅板の上部(上端)が収縮するいわゆる
扇形変形が最大の寿命原因となっている。
However, as normal molds are used over and over again, they become deformed and worn out, reaching the end of their service life. Deformation is the biggest cause of longevity.

この扇型変形の主原因としては、操業時lこ銅板1こ発
生する熱応力lこよるクリープ変形が指摘されてSす、
従って鋳型寿命増大のためには、鋳型オ料がクリープ変
形の生じ1こくい、即ちクリーブ強度l−1こSけるク
リープ歪の小さいものであることが望ましい。
It has been pointed out that the main cause of this fan-shaped deformation is creep deformation due to thermal stress generated on the copper plate during operation.
Therefore, in order to increase the life of the mold, it is desirable that the mold material has a small amount of creep deformation, that is, a cleave strength of 1-1 and a small creep strain.

そこで、以下、上述のCu−5〜18%Zr合金のクリ
ープ歪を更に改善したものについて説明する。
Therefore, a further improved creep strain of the above-mentioned Cu-5 to 18% Zr alloy will be described below.

このものは上記Cu−5〜18%Zr合金1こクロム、
チタン及び鉄のうち少なくとも一種以上の元素を添加し
たものである。
This is the above-mentioned Cu-5~18% Zr alloy 1 cochromium,
At least one element selected from titanium and iron is added.

即ち、クロムは鋼中で析出硬化rる元素であり、電子顕
微鏡で観察しなければならない程微細な析出をもたらし
、CuZr合金のクリープ強度の向上lこ寄与する。
That is, chromium is an element that undergoes precipitation hardening in steel, causing precipitation so fine that it must be observed with an electron microscope, and contributing to improving the creep strength of the CuZr alloy.

このクリーブ強度の改善1こ適切なりロムの添加量を検
討した結果、第2図1こ示すようlこ、0.6〜1.5
%であることが判った。
As a result of examining the appropriate amount of ROM to be added to improve this cleave strength, we found that the amount of ROM added was 0.6 to 1.5 as shown in Figure 2.
It was found that %.

なお、0.6%より少ないとその効果は十分でなく、ま
た1、5%より多い場合はその効果が飽和する。
Note that if it is less than 0.6%, the effect is not sufficient, and if it is more than 1.5%, the effect is saturated.

次に、チタンは、クロムと同じ効果を有する元素で、そ
の適正添加量は、第3図1こ示すように0.02〜0.
20%である。
Next, titanium is an element that has the same effect as chromium, and the appropriate amount of titanium to be added is 0.02 to 0.0, as shown in Figure 3.
It is 20%.

鉄は結晶粒の微細化lこ効果があり、その添加量は0.
03%以上必要であり、1.0%より多く添加してもそ
の効果は変わらない。
Iron has the effect of refining crystal grains, and the amount of iron added is 0.
0.3% or more is required, and the effect does not change even if it is added in an amount greater than 1.0%.

このよう1こクロム、チタン、及び鉄はそれぞれ単独1
こ添加しても効果はあるが、複合添加するとその効果が
より顕著1こなる。
In this way, chromium, titanium, and iron are each individually 1
Although it is effective even if these are added, the effect becomes more pronounced when they are added in combination.

例えば、Cr−Ti。Cr−Fe、Ti−Fe、Cr−
Ti−Feのように複合添加すると、第−表Iこ示すよ
う1こそのクリープ特性は向上する。
For example, Cr-Ti. Cr-Fe, Ti-Fe, Cr-
When a compound such as Ti-Fe is added, the creep properties are improved as shown in Table I.

なE、第−表1こ、8ける試験条件としてtま、温度3
30℃、応力22kg f /mrA、時間8Hである
E, Table 1, test conditions for 8, temperature 3
The temperature was 30° C., the stress was 22 kg f /mrA, and the time was 8 hours.

上記第−表の合金のうちで、Cu6%Zr合金及びCu
−6%Zr−0,13%Ti−0,5%Fe合金で鋳型
を製作し、従来の銅鋳型及びニッケルメッキ銅鋳型とス
トランドの表面性状並び(こ鋳型の耐久性の点で比較す
ると第2表1こ示すよう1こなる。
Among the alloys in the table above, Cu6%Zr alloy and Cu
A mold was made from -6%Zr-0,13%Ti-0,5%Fe alloy, and the surface quality of the strand and the conventional copper mold and nickel-plated copper mold (compared in terms of durability of this mold) As shown in Table 2, the result is 1.

なS1鋳造速度1ま1.1m/min・、鋳造鋼種は低
炭素鋼である。
The S1 casting speed is 1 or 1.1 m/min, and the casting steel type is low carbon steel.

0クラック評点:不艮10(クラック著しい)艮 1(
クラック無し ) 0耐久性 :鋳造可能チャージ数の比率このようl
こ、第2表から判るようlこ、本発明に係るものの方が
純銅鋳型1こ比べて、ストランド表面性状の改善並びl
こ鋳型寿命の向上が著しい。
0 crack rating: 10 (significant crack) 1 (
No cracks) 0 Durability: Ratio of the number of charges that can be cast
As can be seen from Table 2, the mold according to the present invention has improved strand surface properties compared to one pure copper mold.
The mold life is significantly improved.

なお、本明細書ζこ旧いて、合金の添bIXl量を表わ
す%は重量%を示すものである。
Note that throughout this specification, % representing the amount of added bIXl in the alloy indicates weight %.

以上のように、本発明のCu 5〜18%Zr合金及
び該Cu−5〜18%Zr合金tこCr:0.6〜1.
5%、Ti:0.02〜0.20%、及びFe:0.0
3〜1.0%のうち少なくとも一種以上の元素を添加し
た合金を使用した鋳型1こよれば、従来の純銅鋳型lこ
比べて、ストランド表面性状及び鋳型寿命を著しく向上
させることができる。
As described above, the Cu 5-18% Zr alloy and the Cu-5-18% Zr alloy of the present invention have Cr: 0.6-1.
5%, Ti: 0.02-0.20%, and Fe: 0.0
By using a mold using an alloy containing at least one element among 3 to 1.0%, the strand surface quality and mold life can be significantly improved compared to conventional pure copper molds.

【図面の簡単な説明】 第1図は銅合金1こεける銅の面積率とストランド表面
のクラック評点との関係を示すグラフ、第2図はCu
−6%Zrへのクロム添加量とクリープ歪との関係を示
すグラフ、第3図はCu 6%Zrへのチタン添加量
とクリープ歪との関係を示すグラフである。
[Brief explanation of the drawings] Figure 1 is a graph showing the relationship between the area ratio of copper per copper alloy and the crack score on the strand surface.
-A graph showing the relationship between the amount of chromium added to 6% Zr and creep strain, and FIG. 3 is a graph showing the relationship between the amount of titanium added to Cu 6% Zr and creep strain.

Claims (1)

【特許請求の範囲】 1 Cu−Zr合金1こおいて、Zrの添加量を5〜1
8%1こしたことを特徴とする連続鋳造設備の鋳型材。 2Cu−5〜18%Zr合金lこ、Cr:0.6〜1.
5%、T i : 0.02〜0.20%、及びFe:
0.03%〜1.0%のうち少なくとも一種以上の元素
をそれぞれ上記した割合で添加したことを特徴とする連
続鋳造設備の鋳型材。
[Claims] 1. In one Cu-Zr alloy, the amount of Zr added is 5 to 1.
Mold material for continuous casting equipment characterized by 8% 1%. 2Cu-5-18% Zr alloy, Cr: 0.6-1.
5%, Ti: 0.02-0.20%, and Fe:
A mold material for continuous casting equipment, characterized in that at least one element selected from 0.03% to 1.0% is added in the above-mentioned proportions.
JP18866980A 1980-12-29 1980-12-29 Mold material for continuous casting equipment Expired JPS5938865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18866980A JPS5938865B2 (en) 1980-12-29 1980-12-29 Mold material for continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18866980A JPS5938865B2 (en) 1980-12-29 1980-12-29 Mold material for continuous casting equipment

Publications (2)

Publication Number Publication Date
JPS57112945A JPS57112945A (en) 1982-07-14
JPS5938865B2 true JPS5938865B2 (en) 1984-09-19

Family

ID=16227773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18866980A Expired JPS5938865B2 (en) 1980-12-29 1980-12-29 Mold material for continuous casting equipment

Country Status (1)

Country Link
JP (1) JPS5938865B2 (en)

Also Published As

Publication number Publication date
JPS57112945A (en) 1982-07-14

Similar Documents

Publication Publication Date Title
US9994933B2 (en) Copper alloy sheet and method for producing same
US6083328A (en) Casting rolls made of hardenable copper alloy
JPS5938865B2 (en) Mold material for continuous casting equipment
JPS6039140B2 (en) High-strength, highly conductive Cu alloy with excellent resistance to molten metal erosion
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPH0397818A (en) Electrode material for resistance welding
JP4295492B2 (en) Casting roll for twin roll casting equipment
JPS62182239A (en) Cu alloy for continuous casting mold
JPS62182238A (en) Cu alloy for continuous casting mold
RU2260493C2 (en) Method of making wide lateral walls of crystallizer for casting thin slabs
JPS6136060B2 (en)
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
JPS6058771B2 (en) Mold material for continuous casting equipment
US2849310A (en) Copper-base alloy
JP2869076B2 (en) Precipitation hardening mold material for continuous casting
JPH0461057B2 (en)
JP2697242B2 (en) Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same
JPS6341976B2 (en)
JPH0598392A (en) Wear resistant and thermal cracking resistant roll material for hot rolling
JP2929680B2 (en) Coil spring and manufacturing method thereof
JP2870156B2 (en) Coil spring and manufacturing method thereof
JP6600401B1 (en) Method for producing age-hardening type copper alloy
JPH05354A (en) Die for casting metal
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JPS635464B2 (en)