JPS635464B2 - - Google Patents
Info
- Publication number
- JPS635464B2 JPS635464B2 JP17475185A JP17475185A JPS635464B2 JP S635464 B2 JPS635464 B2 JP S635464B2 JP 17475185 A JP17475185 A JP 17475185A JP 17475185 A JP17475185 A JP 17475185A JP S635464 B2 JPS635464 B2 JP S635464B2
- Authority
- JP
- Japan
- Prior art keywords
- dispersed
- temperature
- carbides
- based alloy
- wear resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 30
- 150000001247 metal acetylides Chemical class 0.000 claims description 28
- 239000000956 alloy Substances 0.000 claims description 20
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 16
- 230000032683 aging Effects 0.000 claims description 9
- 239000013078 crystal Substances 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000005098 hot rolling Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
〔産業上の利用分野〕
この発明は、すぐれた耐摩耗性を有し、かつ耐
熱性にもすぐれたCo基合金板材の製造法に関す
るものである。
〔従来の技術〕
一般に、チエンソーガイドや、木工加工用並び
に軽金属および合金切断用のこ歯、さらに蒸気タ
ービンのブレードなどの製造には、すぐれた耐摩
耗性と耐熱性が要求されることから、各種のCo
基合金板材が用いられている。
また、これらの各種Co基合金板材のうち1つ
として、重量%で(以下%は重量%を示す)、
C:0.05〜2%、
WおよびMoのうち1種または2種:2〜20
%、
Cr:15〜35%、
を含有し、さらに必要に応じて、
NiおよびFeのうちの1種または2種:1〜25
%、を含有し、残りがCoと不可避不純物からな
る組成を有するCo基合金板材が広く知られてい
る。
このCo基合金板材は、通常、鋳造後のインゴ
ツトに、分塊鍛造や分塊圧延、さらに熱間圧延や
冷間圧延を施して、板厚:約1〜4mmを有する板
材とし、これに1100〜1250℃の温度で溶体化処理
を施すことによつて製造され、この状態で実用に
供されている。
〔発明が解決しようとする問題点〕
しかし、近年、上記の利用分野においても高速
化や高性能化が要求されるようになつており、こ
れに伴つて、上記の従来Co基合金板材のもつ耐
摩耗性のより一層の向上が望まれている。
〔問題点を解決するための手段〕
そこで、本発明者等は、上述のような観点か
ら、上記の従来Co基合金板材に着目し、これの
もつ耐摩耗性を一段と向上せしめるべく研究を行
なつた結果、上記従来Co基合金板材は、溶体化
処理後、素地に1次炭化物が分散し、かつ2次炭
化物が結晶粒界だけに析出した組織をもつが、上
記のCo基合金板材を熱間加工により成形するに
際して、
加工終了温度:700〜1000℃、
1000℃から加工終了温度までの加工率:5〜30
%、
を満足する最終熱間圧条件で行ない、これによつ
て加工硬化されたCo基合金板材に、700〜1000℃
の温度で時効処理を施すと、この結果のCo基合
金板材においては、1次炭化物が素地中に、また
2次炭化物が結晶粒界に分散した状態で存在する
が、さらに2次炭化物が結晶粒内に析出した組織
をもつようになり、しかもこの2次炭化物は直
径:1μm以下の微細なものであるため、結晶粒内
の硬さが、従来Co基合金板材ではビツカース硬
さで約250であつたものが、同300以上にまで向上
し、耐摩耗性の著しい改善がはかれるようになる
という知見を得たのである。
したがつて、この発明は、上記知見にもとづい
てなされたものであつて、
C:0.05〜2%、
WおよびMoのうちの1種または2種:2〜20
%、
Cr:15〜35%、
を含有し、さらに必要に応じて、
NiおよびFeのうちの1種または2種:1〜25
%、を含有し、残りがCoと不可避不純物からな
る組成を有し、かつ、
加工終了温度:700〜1000℃、
1000℃から加工終了温度までの加工率:5〜30
%、
を満足する最終熱間圧延条件で熱間加工された
Co基合金板材に、700〜1000℃の温度で時効処理
を施すことによつて、素地中に1次炭化物が、ま
た結晶粒界に2次炭化物が分散し、さらに結晶粒
内に直径:1μm以下の2次炭化物が分散した組織
を有する、耐摩耗性の著しくすぐれたCo基合金
板材を製造する方法に特徴を有するものである。
つぎに、この発明の方法において、Co基合金
板材の成分組成、最終熱間加工条件、および時効
処理温度を上記の通りに限定した理由を説明す
る。
A 成分組成
(a) C
C成分には、炭化物を形成して耐摩耗性を向上
させる作用があるが、その含有量が0.05%未満で
は、特に2次炭化物の析出が不十分となり、所望
の耐摩耗性を確保することができず、一方その含
有量が2%を越えると、塑性加工が困難になるこ
とから、その含有量を0.05〜2%と定めた。
(b) WおよびMo
これらの成分には、一部が素地に固溶して、こ
れを強化するほか、炭化物を形成して耐摩耗性を
向上させる作用があるが、その含有量が2%未満
では前記作用に所望の効果が得られず、一方その
含有量が20%を越えると、塑性加工性が低下する
ようになるほか、板材に脆化傾向が現われるよう
になることから、その含有量を2〜20%と定め
た。
(c) Cr
Cr成分には、素地に固溶して耐熱性を向上さ
せるほか、炭化物を形成して耐摩耗性を向上させ
る作用があるが、その含有量が15%未満では前記
作用に所望の効果が得られず、一方その含有量が
35%を越えると、σ相などの脆化相が出現するよ
うになつて塑性加工性および延性が低下するよう
になることから、その含有量を15〜35%と定め
た。
(d) NiおよびFe
これらの成分には、素地に固溶して、延性およ
び塑性加工性を向上させる作用があるので、特に
これらの特性が要求される場合に必要に応じて含
有されるが、その含有量が1%未満では前記作用
に所望の向上効果が得られず、一方その含有量が
25%を越えると耐摩耗性の低下が著しくなること
から、その含有量を1〜25%と定めた。
B 最終熱間加工条件
加工終了温度が1000℃を越えたり、また1000℃
〜加工終了温度間の加工率が5%未満であつたり
する場合には、加工硬化が不十分で、時効処理後
に十分な2次炭化物を結晶粒内に析出させること
ができず、この結果所望のすぐれた耐摩耗性を確
保することができなくなり、一方、その温度が
700℃未満であつたり、その加工率が30%を越え
たりする場合には、板材に割れが発生し易くなる
ことから、その温度を700〜1000℃、その加工率
を5〜30%を定めた。
C 時効処理温度
その温度が700℃未満では、結晶粒内に微細な
2次炭化物を十分に析出させることができず、一
方その温度が1000℃を越えると、2次炭化物が粗
大化するようになつて所望の耐摩耗性を確保する
ことができないことから、その温度を700〜1000
℃と定めた。
〔実施例〕
つぎに、この発明の方法を実施例により具体的
に説明する。
通常の溶解法を用い、それぞれ第1表に示され
る成分組成をもつたCo基合金溶湯を調整し、鋳
造して直径:90mmφ×長さ:350mmの寸法をもつ
たインゴツトとした後、このインゴツトに、1200
〜1000℃の温度での熱間鍛造を行なつて板厚:10
mmの板材とし、この板材に、1200〜1000℃の範囲
内の温度で所定の厚さまで熱間圧延を施し、さら
にそれぞれ第1表に示される条件で最終熱間圧延
(いずれの場合も開始温度は1100℃)を施して板
厚:2mmの熱延板とし、ついで、この熱延板に同
じく第1表に示される温度で時効処理(大気中、
1時間保持後、空冷)を施すことによつて本発明
法1〜21をそれぞれ実施した。
また、比較の目的で、最終熱間圧延を第1表に
示される条件(本発明法を同じ条件)で行ない、
かつ時効処理を行なわず、これに代つて、大気
中、温度:1200℃に、30分間保持後、空冷の条件
で溶体化処理を行なうことによつて従来法1〜18
をそれぞれ実施した。
つぎに、上記本発明法1〜21によつて得られた
板材(以下本発明板材という)、および上記従来
法1〜18によつて得られた板材(以下従来板材と
いう)について、大越式摩耗試験機を用い、
相手材:JIS・SUJ―2 (硬さ:HRC60)、
[Industrial Application Field] The present invention relates to a method for producing a Co-based alloy plate material that has excellent wear resistance and heat resistance. [Prior Art] In general, excellent wear resistance and heat resistance are required for manufacturing chain saw guides, saw teeth for woodworking, light metal and alloy cutting, and steam turbine blades. Various Co
Base alloy plate material is used. In addition, as one of these various Co-based alloy sheet materials, in weight% (hereinafter % indicates weight%), C: 0.05 to 2%, one or two of W and Mo: 2 to 20
%, Cr: 15 to 35%, and, if necessary, one or two of Ni and Fe: 1 to 25
%, with the remainder consisting of Co and unavoidable impurities. Co-based alloy sheet materials are widely known. This Co-based alloy sheet material is usually made into a sheet material having a thickness of approximately 1 to 4 mm by subjecting the ingot after casting to blooming forging, blooming rolling, hot rolling, and cold rolling. It is manufactured by solution treatment at a temperature of ~1250°C, and is put into practical use in this state. [Problems to be solved by the invention] However, in recent years, there has been a demand for higher speeds and higher performance even in the above-mentioned fields of application, and with this, the above-mentioned conventional Co-based alloy sheet materials have Further improvement in wear resistance is desired. [Means for solving the problem] Therefore, from the above-mentioned viewpoint, the present inventors focused on the above-mentioned conventional Co-based alloy sheet material and conducted research to further improve its wear resistance. As a result, after solution treatment, the conventional Co-based alloy sheet material described above has a structure in which primary carbides are dispersed in the matrix and secondary carbides are precipitated only at grain boundaries. When forming by hot working, processing end temperature: 700 to 1000℃, processing rate from 1000℃ to processing end temperature: 5 to 30
%, under final hot pressure conditions that satisfy
When aging treatment is performed at a temperature of It has a structure that precipitates within the grains, and since these secondary carbides are fine with a diameter of 1 μm or less, the hardness within the grains is about 250 in terms of Bitkers hardness in conventional Co-based alloy sheet materials. They obtained the knowledge that the wear resistance was improved from 300 to 300 or more, and that the wear resistance was significantly improved. Therefore, this invention was made based on the above findings, and includes: C: 0.05 to 2%, one or two of W and Mo: 2 to 20%.
%, Cr: 15 to 35%, and, if necessary, one or two of Ni and Fe: 1 to 25
%, with the remainder consisting of Co and unavoidable impurities, and processing finish temperature: 700 to 1000℃, processing rate from 1000℃ to processing finish temperature: 5 to 30
%, hot worked under final hot rolling conditions that satisfy
By aging Co-based alloy plate material at a temperature of 700 to 1000℃, primary carbides are dispersed in the matrix, secondary carbides are dispersed in the grain boundaries, and the grains have a diameter of 1 μm. The present invention is characterized by a method for producing a Co-based alloy sheet material having extremely excellent wear resistance and having a structure in which secondary carbides are dispersed as described below. Next, in the method of the present invention, the reason why the composition of the Co-based alloy sheet material, final hot working conditions, and aging treatment temperature are limited as described above will be explained. A Component composition (a) C The C component has the effect of forming carbides and improving wear resistance, but if its content is less than 0.05%, the precipitation of secondary carbides will be insufficient, and the desired result will not be achieved. Wear resistance cannot be ensured, and if the content exceeds 2%, plastic working becomes difficult, so the content was set at 0.05 to 2%. (b) W and Mo These components partially form a solid solution in the base material and have the effect of strengthening it and forming carbides to improve wear resistance, but the content is 2%. If the content is less than 20%, the desired effect cannot be obtained; on the other hand, if the content exceeds 20%, the plastic workability will decrease and the plate material will tend to become brittle. The amount was set at 2-20%. (c) Cr The Cr component has the effect of improving heat resistance by forming a solid solution in the base material, as well as improving wear resistance by forming carbides, but if its content is less than 15%, the desired effect may not be achieved. However, the content of
If it exceeds 35%, brittle phases such as σ phase will appear and plastic workability and ductility will decrease, so the content was set at 15 to 35%. (d) Ni and Fe These components dissolve in solid solution in the base material and have the effect of improving ductility and plastic workability, so they may be included as necessary when these properties are particularly required. , if its content is less than 1%, the desired effect of improving the above action cannot be obtained;
If it exceeds 25%, the wear resistance deteriorates significantly, so the content is set at 1 to 25%. B Final hot processing conditions If the processing end temperature exceeds 1000℃ or 1000℃
- When the working rate between the working end temperature is less than 5%, work hardening is insufficient and sufficient secondary carbides cannot be precipitated within the crystal grains after aging treatment, resulting in the desired It is no longer possible to ensure excellent wear resistance of the
If the temperature is less than 700℃ or the processing rate exceeds 30%, cracks will easily occur in the plate, so the temperature should be set at 700 to 1000℃ and the processing rate should be set at 5 to 30%. Ta. C Aging treatment temperature If the temperature is less than 700℃, fine secondary carbides cannot be sufficiently precipitated within the crystal grains, while if the temperature exceeds 1000℃, the secondary carbides will become coarse. Since it is not possible to ensure the desired wear resistance over
It was set as ℃. [Example] Next, the method of the present invention will be specifically explained with reference to Examples. Using a normal melting method, molten Co-based alloys having the respective compositions shown in Table 1 are prepared and cast into ingots with dimensions of diameter: 90mmφ x length: 350mm. to, 1200
Plate thickness: 10 by hot forging at a temperature of ~1000℃
mm plate material, hot rolled to a predetermined thickness at a temperature within the range of 1200 to 1000°C, and then final hot rolled under the conditions shown in Table 1 (in both cases, the starting temperature (1100℃) to make a hot-rolled sheet with a thickness of 2 mm, and then this hot-rolled sheet was subjected to aging treatment (in the air,
After holding for 1 hour, methods 1 to 21 of the present invention were carried out, respectively. In addition, for the purpose of comparison, final hot rolling was performed under the conditions shown in Table 1 (same conditions as the method of the present invention),
And, instead of aging treatment, conventional methods 1 to 18 were carried out by solution treatment under conditions of air cooling after holding in the air at a temperature of 1200℃ for 30 minutes.
were carried out respectively. Next, the plate materials obtained by the above-mentioned methods 1 to 21 of the present invention (hereinafter referred to as the present invention plate materials) and the plate materials obtained by the above-mentioned conventional methods 1 to 18 (hereinafter referred to as the conventional plate materials) were subjected to Okoshi method abrasion. Using a testing machine, the mating material: JIS/SUJ-2 (hardness: H R C60),
【表】【table】
【表】【table】
【表】
荷重:18.2Kg、
摩擦速度:0.119m/sec、
摩擦距離:100m、
潤滑剤:使用せず、
の条件で摩耗試験を行ない、比摩耗量を測定し
た。これらの結果を第1表に示した。
また、これらの板材について、その組織を金属
顕微鏡により観察したところ、本発明板材は、い
ずれも1次炭化物が素地中に、また2次炭化物が
結晶粒界に分散し、かつ直径:1μm以下の微細な
2次炭化物が結晶粒内に析出した組織をもつのに
対して、従来板材は、いずれも1次炭化物は素地
中に分散するが、2次炭化物が結晶粒界だけに析
出した組織をもつものであつた。
〔発明の効果〕
第1表に示される結果から、本発明法によつて
製造された本発明板材においては、いずれも微細
な2次炭化物が結晶粒内に析出した組織をもつの
で、2次炭化物が結晶粒界だけに析出した組織を
有する従来板材に比してすぐれた耐摩耗性を示す
ことが明らかである。
上述のように、この発明の方法によれば、直
径:1μm以下の微細な2次炭化物が結晶粒内に析
出した組織を有するCo基合金板材を製造するこ
とができ、前記2次炭化物の析出によつて結晶粒
自体の硬さが著しく向上するようになるので、前
記Co基合金板材はきわめてすぐれた耐摩耗性を
示すようになるなど工業上有用な効果がもたらさ
れるのである。[Table] A wear test was conducted under the following conditions: load: 18.2Kg, friction speed: 0.119m/sec, friction distance: 100m, lubricant: not used, and the specific wear amount was measured. These results are shown in Table 1. In addition, when the structure of these plates was observed using a metallurgical microscope, it was found that the plates of the present invention had primary carbides dispersed in the matrix, secondary carbides dispersed in the grain boundaries, and grains with a diameter of 1 μm or less. In contrast, conventional sheet materials have a structure in which fine secondary carbides are precipitated within the grain boundaries, whereas conventional sheets have a structure in which primary carbides are dispersed throughout the matrix, but secondary carbides are precipitated only at grain boundaries. It was full of giblets. [Effects of the Invention] From the results shown in Table 1, the plates of the present invention manufactured by the method of the present invention all have a structure in which fine secondary carbides are precipitated within the crystal grains. It is clear that this plate exhibits superior wear resistance compared to conventional plate materials, which have a structure in which carbides are precipitated only at grain boundaries. As described above, according to the method of the present invention, it is possible to produce a Co-based alloy sheet material having a structure in which fine secondary carbides with a diameter of 1 μm or less are precipitated within the crystal grains, and the precipitation of the secondary carbides is As a result, the hardness of the crystal grains themselves is significantly improved, resulting in industrially useful effects such as the Co-based alloy plate exhibiting extremely excellent wear resistance.
Claims (1)
%、 Cr:15〜35%、 を含有し、残りがCoと不可避不純物からなる組
成(以上重量%)を有し、かつ、 加工終了温度:700〜1000℃、 1000℃から加工終了温度までの加工率:5〜30
%、 を満足する最終熱間圧延条件で熱間加工された
Co基合金板材に、700〜1000℃の温度で時効処理
を施すことによつて、その組織を、素地中に1次
炭化物が、また結晶粒界に2次炭化物が分散し、
かつ結晶粒内に直径:1μm以下の2次炭化物が分
散した組織とすることを特徴とする耐摩耗性のす
ぐれたCo基合金板材の製造法。 2 C:0.05〜2%、 WおよびMoのうちの1種または2種:2〜20
%、 Cr:15〜35%、 を含有し、さらに、 NiおよびFeのうちの1種または2種:1〜25
%、 を含有し、残りがCoと不可避不純物からなる組
成(以上重量%)を有し、かつ、 加工終了温度:700〜1000℃、 1000℃から加工終了温度までの加工率:5〜30
%、 を満足する最終熱間圧延条件で熱間加工された
Co基合金板材に、700〜1000℃の温度で時効処理
を施すことによつて、その組織を、素地中に1次
炭化物が、また結晶粒界に2次炭化物が分散し、
かつ結晶粒内に直径:1μm以下の2次炭化物が分
散した組織とすることを特徴とする耐摩耗性のす
ぐれたCo基合金板材の製造法。[Claims] 1 C: 0.05 to 2%, one or two of W and Mo: 2 to 20
%, Cr: 15 to 35%, with the remainder being Co and unavoidable impurities (weight %), and processing finish temperature: 700 to 1000℃, from 1000℃ to processing finish temperature. Processing rate: 5-30
%, hot worked under final hot rolling conditions that satisfy
By subjecting Co-based alloy plate material to aging treatment at a temperature of 700 to 1000°C, its structure is changed so that primary carbides are dispersed in the matrix and secondary carbides are dispersed at grain boundaries.
A method for producing a Co-based alloy sheet material with excellent wear resistance, characterized in that it has a structure in which secondary carbides with a diameter of 1 μm or less are dispersed within the crystal grains. 2 C: 0.05-2%, one or two of W and Mo: 2-20
%, Cr: 15-35%, and further contains one or two of Ni and Fe: 1-25
%, with the remainder being Co and unavoidable impurities (wt%), Processing end temperature: 700 to 1000℃, Processing rate from 1000℃ to processing end temperature: 5 to 30
%, hot worked under final hot rolling conditions that satisfy
By subjecting Co-based alloy plate material to aging treatment at a temperature of 700 to 1000°C, its structure is changed so that primary carbides are dispersed in the matrix and secondary carbides are dispersed at grain boundaries.
A method for producing a Co-based alloy sheet material with excellent wear resistance, characterized in that it has a structure in which secondary carbides with a diameter of 1 μm or less are dispersed within the crystal grains.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17475185A JPS6237357A (en) | 1985-08-08 | 1985-08-08 | Manufacture of co base alloy plate material superior in wear resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17475185A JPS6237357A (en) | 1985-08-08 | 1985-08-08 | Manufacture of co base alloy plate material superior in wear resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6237357A JPS6237357A (en) | 1987-02-18 |
JPS635464B2 true JPS635464B2 (en) | 1988-02-03 |
Family
ID=15984044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17475185A Granted JPS6237357A (en) | 1985-08-08 | 1985-08-08 | Manufacture of co base alloy plate material superior in wear resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6237357A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02247367A (en) * | 1989-03-20 | 1990-10-03 | Mitsubishi Metal Corp | Plastic working method for b-containing co-base heat resisting alloy |
KR20030075427A (en) * | 2002-03-19 | 2003-09-26 | 백응률 | An controlling method in producing a specific stellite 6 B alloy |
US11155904B2 (en) | 2019-07-11 | 2021-10-26 | L.E. Jones Company | Cobalt-rich wear resistant alloy and method of making and use thereof |
-
1985
- 1985-08-08 JP JP17475185A patent/JPS6237357A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6237357A (en) | 1987-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5887244A (en) | Copper base spinodal alloy strip and manufacture | |
JPH0641623B2 (en) | Controlled expansion alloy | |
JP5273952B2 (en) | Hot forging die and manufacturing method thereof | |
JP2978384B2 (en) | Roll material for hot rolling | |
JP3581028B2 (en) | Hot work tool steel and high temperature members made of the hot work tool steel | |
JPS635464B2 (en) | ||
JPS6223951A (en) | Co-base alloy excellent in wear resistance | |
JP3412590B2 (en) | Roll for rolling | |
JP2738130B2 (en) | High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same | |
JP2001234288A (en) | Tool material for hot working | |
JPS634905B2 (en) | ||
JP3256184B2 (en) | Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them | |
JPS6237354A (en) | Manufacture of co base alloy plate material superior in wear resistance | |
JP2697242B2 (en) | Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same | |
JPS62182238A (en) | Cu alloy for continuous casting mold | |
JPH0585630B2 (en) | ||
JP3099911B2 (en) | Damping alloy | |
JP2002285277A (en) | Composite roll for rolling made by centrifugal casting | |
JPH04210438A (en) | Continuous casting mold material made of high strength cu alloy | |
JPS634906B2 (en) | ||
JP2000345290A (en) | Hot roll for copper and copper alloy | |
JPH04337050A (en) | High tensile strength magnetic material excellent in magnetic property and its production | |
JP3482349B2 (en) | Hot working tool materials | |
JPS63125632A (en) | High-strength copper alloy having excellent thermal fatigue resistance | |
JP4393031B2 (en) | Method for producing Al-Mg alloy rolled sheet tempered material excellent in bending workability |