JPS5935410B2 - Manufacturing method for steel materials with good cold workability - Google Patents

Manufacturing method for steel materials with good cold workability

Info

Publication number
JPS5935410B2
JPS5935410B2 JP6884680A JP6884680A JPS5935410B2 JP S5935410 B2 JPS5935410 B2 JP S5935410B2 JP 6884680 A JP6884680 A JP 6884680A JP 6884680 A JP6884680 A JP 6884680A JP S5935410 B2 JPS5935410 B2 JP S5935410B2
Authority
JP
Japan
Prior art keywords
steel
cold workability
annealing
carbides
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6884680A
Other languages
Japanese (ja)
Other versions
JPS5635721A (en
Inventor
三郎 大谷
総一 泉
俊道 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6884680A priority Critical patent/JPS5935410B2/en
Publication of JPS5635721A publication Critical patent/JPS5635721A/en
Publication of JPS5935410B2 publication Critical patent/JPS5935410B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、クロムまたはクロムとモリブデンをも含有せ
しめた冷間加工性の良好な鋼材の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a steel material containing chromium or chromium and molybdenum and having good cold workability.

鋼材を冷間で加工すること、就中棒鋼や線材の冷間鍛造
は近年急速に発展した加工技術であるが、冷間鍛造に使
用される素材は、局部的にはげしい変形を受けるために
材料割れによる不良の発生や工具ダイスの破損などの事
故が起りやすい。
Cold processing of steel materials, especially cold forging of steel bars and wire rods, is a processing technology that has developed rapidly in recent years. Accidents such as defects due to cracks and damage to tool dies are likely to occur.

このため、硬質で成形性の悪い中炭素鋼や低合金鋼を冷
間鍛造に供する場合は、冷間加工性を向上させるために
鋼中の炭化物を球状化するための焼鈍(以下球状化焼鈍
と云う)を行なう必要がある。しかし従来のパーライト
組織の熱間圧延鋼材、特に炭化物形成元素であるクロム
を含む低合金熱間圧延鋼材を、直接焼鈍炉に装入し球状
化焼鈍を行なっても鋼中の炭化物は球状化し難く、片状
炭化物が残り、また炭化物がミクロ的に偏在して均一に
分散し難いため、目的とする冷間加工性を十分向上させ
ることが困難である。また、球状化焼鈍処理に長時間を
要し焼鈍炉の生産性が悪くなる上鋼材表面で脱炭が進行
するため、表面スケールをあらかじめ除去しておかなけ
ればならない。
For this reason, when cold forging is used to cold forge medium-carbon steel or low-alloy steel that is hard and has poor formability, annealing (hereinafter referred to as spheroidization annealing) is required to spheroidize the carbides in the steel to improve cold workability. It is necessary to do this. However, even if conventional hot-rolled steel materials with a pearlite structure, especially low-alloy hot-rolled steel materials containing chromium, which is a carbide-forming element, are directly charged into an annealing furnace and subjected to spheroidizing annealing, the carbides in the steel are difficult to spheroidize. , flaky carbides remain, and the carbides are microscopically unevenly distributed and difficult to disperse uniformly, making it difficult to sufficiently improve the desired cold workability. In addition, since the spheroidizing annealing process takes a long time and the productivity of the annealing furnace deteriorates, and decarburization progresses on the surface of the steel material, surface scale must be removed in advance.

また焼鈍炉内の雰囲気ガスには特別の注意が必要である
。これらの点を改善するために、従来、炭化物の球状化
に際し熱間圧延鋼材に引抜加工を加えるか、または熱間
圧延鋼材を焼入マルテンサイト組織とした後に球状化焼
鈍を行なうことによって球状化を促進させ焼鈍時間の短
縮をはかつていた。
Also, special attention must be paid to the atmospheric gas in the annealing furnace. In order to improve these points, conventionally, when spheroidizing carbides, hot-rolled steel is subjected to drawing processing, or hot-rolled steel is made into a quenched martensitic structure and then subjected to spheroidizing annealing. It has been shown that the annealing time has been shortened.

しかし、いずれも球状化焼鈍に先立ち、引抜加工や熱処
理工程が余分に必要で原価高の要因となっている。また
近年犬単重化した線材コイルを焼入することは非常に困
難な上球状化焼鈍が必要な中高炭素鋼の場合には焼割れ
が発生しないよう特別の対策が必要である。
However, both require extra drawing and heat treatment steps prior to spheroidizing annealing, which increases the cost. In addition, in the case of medium-high carbon steel, which requires upper spheroidizing annealing, which is extremely difficult to harden wire rod coils that have become uniform in weight in recent years, special measures must be taken to prevent quench cracking.

また上記方法によった場合は、炭化物は一様に分散する
が、あまりに微細な炭化物となるため素材硬度が高くな
り、工具寿命を著しく短縮する等材質上の欠点もあった
Further, in the case of the above method, although the carbides are uniformly dispersed, the carbides become too fine, resulting in high material hardness, which has disadvantages in terms of material quality, such as significantly shortening tool life.

本発明は、これらの欠点を除去するため炭素0.20〜
0.50%、酸可溶AAO.OO5〜0.i00%を含
み、クロム0.50〜1.50%を含むものと更にこれ
に加えてモリブデン0.50%以下を含み、残部は鉄お
よび不純物よりなる鋼材を、熱間仕上圧延機を通過した
後速やかに550℃〜Ms点の温度範囲に冷却したもの
を素材として用い、冷間加工や熱処理工程を経ることな
く直接650℃〜A1変態点の温度範囲で焼鈍すること
により鋼中の炭化物を短時間のうちに均一にかつ適度の
粒径に球状化させ、鋼材の冷間加工性を大巾に向上させ
るものである。
In order to eliminate these drawbacks, the present invention aims to eliminate carbon 0.20~
0.50% acid soluble AAO. OO5~0. Steel materials containing 00% i, 0.50 to 1.50% chromium, and 0.50% or less of molybdenum, with the remainder consisting of iron and impurities, were passed through a hot finishing mill. The carbides in the steel are removed by immediately cooling the steel to a temperature range of 550°C to Ms point and annealing it directly at a temperature range of 650°C to A1 transformation point without cold working or heat treatment. It uniformly spheroidizes the grains to an appropriate size in a short period of time, greatly improving the cold workability of steel materials.

以下に本発明の方法を詳細に説明する。The method of the present invention will be explained in detail below.

従来から仕上圧延機を通過後、コイル状に捲取られるま
での間に、冷却水、衝風、温水等によって急速冷却する
ことがおこなわれているが、従来の冷間鍛造用鋼材の急
速冷却は、700℃〜850℃までの範囲で、熱間圧延
鋼材の結晶粒の粗大化防止や、表面性状の改善を目的と
しており、せいぜい微細パーライト組織とするために利
用されているにすぎない。
Conventionally, after passing through a finishing mill and before being wound into a coil, rapid cooling has been carried out using cooling water, blast air, hot water, etc.; The temperature range of 700°C to 850°C is aimed at preventing coarsening of crystal grains in hot-rolled steel materials and improving surface properties, and is used at most to create a fine pearlite structure.

このようにして得られたパーライト組織を有する熱間圧
延鋼材に直接球状化焼鈍処理を施しても炭化物は球状化
し難く、前に述べたような種々の欠点が発生する。
Even if a hot-rolled steel material having a pearlite structure obtained in this way is directly subjected to a spheroidizing annealing treatment, the carbides are difficult to spheroidize, resulting in various drawbacks as described above.

また熱間仕上圧延機を通過後Ms点以下の温度に急速冷
却すれば鋼材は焼入マルテンサイト組織となり、炭化物
が球状化しやすく、分散性も良いことが知られているが
、短時間の焼鈍では炭化物が微細なため素材硬度が高く
なり、冷間鍛造工具の寿命を著しく短かくするため工業
的な方法としては不適当である。
It is also known that if the steel material is quickly cooled to a temperature below the Ms point after passing through a hot finishing mill, it will become a quenched martensite structure, carbides will easily become spheroidized, and the dispersibility will be good. However, since the carbides are fine, the material hardness increases and the life of the cold forging tool is significantly shortened, making it unsuitable as an industrial method.

また焼入硬化した線材を巻取ることは非常に困難である
上、球状化焼鈍が必要な中高炭素鋼では焼割れが発生す
る恐れもあり、実用化には問題が多い。本発明者等は研
究調査の結果、熱間仕上圧延機を通過後550℃以下M
s点以上の温度範囲に急速冷却して中間段階組織とした
熱間圧延鋼材を、650゜C以上A1変態点以下の温度
範囲で球状化焼鈍することによって適度の粒度を有する
球状炭化物を均一に分散させることができ、しかも焼鈍
時間を著しく短縮できることを見出した。しかし、機械
構造用炭素鋼(SC材)ではパーライトの生成速度が非
常に早く、径が大きな線材では熱間圧延工程の中で中間
段階組織を得ることはかなり困難である。
In addition, it is very difficult to wind up a quench-hardened wire, and there is a risk of quench cracking in medium-high carbon steels that require spheroidizing annealing, which poses many problems for practical use. As a result of research, the present inventors found that the M
Hot-rolled steel material that has been rapidly cooled to a temperature range above the s point to form an intermediate stage structure is subjected to spheroidizing annealing at a temperature range of 650°C to A1 transformation point to uniformly form spheroidal carbides with an appropriate grain size. It has been found that the annealing time can be significantly shortened. However, in carbon steel for mechanical structures (SC material), the pearlite formation rate is very fast, and it is quite difficult to obtain an intermediate stage structure during the hot rolling process in a wire rod with a large diameter.

本発明は、上記の欠点を除去するためクロムを0.50
〜1.50%あるいはクロム0.50〜1.50%とモ
リブデン0.5%以下を含有せしめた鋼材を用い熱間仕
上圧延後速やかに550せC−Ms点の温度に冷却し、
中間段階組織を得ることを可能としたものである。
In order to eliminate the above-mentioned drawbacks, the present invention provides 0.50% chromium.
Using a steel material containing ~1.50% or 0.50 to 1.50% chromium and 0.5% or less molybdenum, immediately cooled to a temperature of 550 C-Ms point after hot finish rolling,
This made it possible to obtain an intermediate stage structure.

クロムは鋼の強度を高める元素であり、あまり多くを含
有させることは冷間加工性にとって好ましくないが、本
発明に従うことにより、後に示すように非常に良好なる
冷間加工性を得ることが可能である。
Chromium is an element that increases the strength of steel, and containing too much is not favorable for cold workability, but by following the present invention, it is possible to obtain very good cold workability as shown later. It is.

本発明は上記成分と中間段階組織を有する熱間圧延鋼材
を引抜加工や熱処理を施すことなく、直接焼鈍炉に装入
して鋼中の炭化物を短時間のうちに均一に球状化させる
ものである。
The present invention is to directly charge a hot-rolled steel material having the above-mentioned components and intermediate structure into an annealing furnace without drawing or heat treatment, and uniformly spheroidize the carbides in the steel in a short time. be.

第1図に従来の熱間圧延鋼材を使用した場合と、本発明
による場合の球状化焼鈍時間と球状化率の関係を示した
。供試材の成分および熱間圧延後の急速冷却温度、焼鈍
温度を第1表に示す。本発明によれば1時間の短時間球
状化焼鈍ですでに95%以上の炭化物が球状化しており
、冷間加工用素材としては十分である。
FIG. 1 shows the relationship between the spheroidizing annealing time and the spheroidization rate when a conventional hot rolled steel material is used and when the present invention is used. Table 1 shows the components of the test materials, the rapid cooling temperature after hot rolling, and the annealing temperature. According to the present invention, 95% or more of the carbide has already been spheroidized by short-time spheroidizing annealing of 1 hour, which is sufficient as a material for cold working.

球状化焼鈍は長時間行なっても本発明材の特性を損ねる
ものではないが、生産能率および鋼材表面における脱炭
防止の点から本発明の球状化焼鈍時間は1〜5時間が適
当である。
Although the characteristics of the material of the present invention are not impaired even if the spheroidizing annealing is carried out for a long time, from the viewpoint of production efficiency and prevention of decarburization on the surface of the steel material, the suitable time for the spheroidizing annealing of the present invention is 1 to 5 hours.

これによって十分な球状化組織が得られる。球状化焼鈍
温度は、A1変態点温度を超える場合には、焼鈍後に徐
冷するか、更にもう二度A1変態点より下の温度で焼鈍
しなければ炭化物は球状化せず、球状化焼鈍処理に長時
間を要するため生産能率が悪く、鋼材表面では脱炭が進
行する上、鋼中の炭化物は粗大化しゃすく冷間加工性を
低下させる。また650℃以下では、鋼中の炭素の拡散
速度が遅くなるため球状化焼鈍処理に長時間を要する。
したがって本発明の球状化焼鈍温度の範囲は650℃〜
A1変態点とした。本発明によれば、短時間の球状化焼
鈍で鋼中の炭化物は粗大すぎず微細すぎない適度の大き
さを有しかつ均一に分布するため優れた冷間加工性を有
するに至る。
This provides a sufficient spheroidal structure. If the spheroidizing annealing temperature exceeds the A1 transformation point temperature, the carbide will not become spheroidized unless it is slowly cooled after annealing or annealed twice at a temperature below the A1 transformation point, and the spheroidizing annealing process is performed. Production efficiency is poor because it takes a long time to process, decarburization progresses on the surface of the steel, and carbides in the steel become coarse, reducing cold workability. Further, at temperatures below 650°C, the diffusion rate of carbon in the steel becomes slow, so that the spheroidizing annealing process takes a long time.
Therefore, the range of the spheroidizing annealing temperature of the present invention is 650℃~
It was set as the A1 transformation point. According to the present invention, by short-time spheroidizing annealing, the carbides in the steel have an appropriate size that is neither too coarse nor too fine, and are uniformly distributed, resulting in excellent cold workability.

第2図は第1表に示した本発明による球状化焼鈍材と、
従来の熱間圧延鋼材を使用した球状化焼鈍材の冷間加工
性を示したものである。
FIG. 2 shows the spheroidized annealed material according to the present invention shown in Table 1,
This figure shows the cold workability of a spheroidized annealed material using a conventional hot rolled steel material.

本発明材は圧縮率84%以下の冷間加工では材料に割れ
が発生せず、従来材に比較して、冷間加工性が非常に優
れていることが明らかである。
It is clear that the material of the present invention does not crack when cold worked at a compression rate of 84% or less, and has extremely superior cold workability compared to conventional materials.

次に本発明における鋼材成分の限定理由について述べる
。第1の発明において炭素は0.20%未満では本来冷
間加工性が良く球状化焼鈍が玉要な場合が多く、また0
.50%を超える場合には摘度が高く冷間鍛造用鋼とし
ては用いられないことによる。
Next, the reason for limiting the steel material components in the present invention will be described. In the first invention, if the carbon content is less than 0.20%, cold workability is originally good and spheroidizing annealing is often necessary;
.. If it exceeds 50%, the hardness is too high and it cannot be used as cold forging steel.

酸に可溶なAlは、結晶粒を微細とし、冷間加工性を向
上させるため0.005〜0.100%含有させた。こ
の範囲は上記目的達成のため有効な範囲である。クロム
は熱間圧延後の強制冷却中に容易に中間段階組織を得る
ために下限を0.50%とし、上限は強度増加の点から
1.50%とした。
Acid-soluble Al was contained in an amount of 0.005 to 0.100% in order to make crystal grains fine and improve cold workability. This range is an effective range for achieving the above objective. The lower limit of chromium was set at 0.50% in order to easily obtain an intermediate stage structure during forced cooling after hot rolling, and the upper limit was set at 1.50% from the viewpoint of increasing strength.

次に第2の発明において、炭素、酸可溶Al及びクロム
は第1の発明と同一の理由による。
Next, in the second invention, carbon, acid-soluble Al, and chromium are used for the same reason as in the first invention.

モリブデン0.5%以下はクロムと同様の中間段階組織
を得る目的のほか、焼戻しによる強度低下を防止し高強
度を必要とするために有効な範囲としたものである。次
に本発明の実施例について説明する。
Molybdenum of 0.5% or less is set in an effective range not only for the purpose of obtaining an intermediate stage structure similar to that of chromium, but also for preventing a decrease in strength due to tempering and requiring high strength. Next, examples of the present invention will be described.

第2表の成分を含有する鋼材を線径14imφの線材に
熱間圧延した後、80をC〜100℃の温水中で捲取り
、第3表に示す温度まで急冷した後に温水から引上げて
放冷した。
After hot-rolling a steel material containing the components shown in Table 2 into a wire rod with a wire diameter of 14 mmφ, the 80 is rolled up in hot water of 100°C to 100°C, rapidly cooled to the temperature shown in Table 3, and then pulled out of the hot water and released. It got cold.

コイル単重は1トンである。上記の熱間圧延線材を冷間
引抜加工や熱処理を加えることなく直接焼鈍炉に装入し
N2ガス雰囲気中で第3表に示す条件で球状化焼鈍を行
なった。
The coil unit weight is 1 ton. The above hot rolled wire rods were directly charged into an annealing furnace without cold drawing or heat treatment, and spheroidizing annealing was performed in an N2 gas atmosphere under the conditions shown in Table 3.

球状化焼鈍後の機械的性質および冷間加工性を第4表に
示した。本発明材は割れが発生する限界の圧縮率が前述
した従来材にくらべてはるかに高く冷間加工性が非常に
良好であることが明らかである。また本発明材の表面脱
炭はほとんど進行していない。以上説明したように本発
明は上記成分の範囲において中間段階組織を有する熱間
圧延鋼材を直接焼鈍炉に装入して650℃以上A1変態
点以下の温度で球状化焼鈍を行なうもので、次に述べる
ように種々の利点を有し産業上極めて有用である。
Table 4 shows the mechanical properties and cold workability after spheroidizing annealing. It is clear that the material of the present invention has a much higher compressibility limit at which cracks occur than the conventional material described above, and has very good cold workability. In addition, surface decarburization of the material of the present invention hardly progressed. As explained above, in the present invention, a hot rolled steel material having an intermediate stage structure within the above composition range is directly charged into an annealing furnace and subjected to spheroidizing annealing at a temperature of 650°C or higher and lower than the A1 transformation point. As mentioned above, it has various advantages and is extremely useful industrially.

利点 1.球状化焼鈍前の冷間引抜加工や熱処理工程を
省略することができる。
Advantages 1. Cold drawing and heat treatment steps before spheroidizing annealing can be omitted.

利点 2. 鋼中の炭化物は短時間で球状化し生産能率が良い。Advantages 2. Carbides in steel become spheroidized in a short time, resulting in good production efficiency.

利点 3. 球状化した炭化物は適度の大きさを有しかつ鋼中に均一
に分布するため優れた冷間加工性を有する0利点 4. 低温で短時間のうちに球状化するため鋼材表面における
脱炭はほとんど進行しない。
Advantages 3. The spheroidal carbide has an appropriate size and is uniformly distributed in the steel, so it has excellent cold workability. 0 Advantages: 4. Since the steel material becomes spheroidized in a short time at low temperatures, decarburization on the surface of the steel material hardly progresses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、球状化焼鈍時間と球状化率の関係を示す図、
第2図は球状化焼鈍時間と冷間加工性の関係を示す図で
ある。
Figure 1 is a diagram showing the relationship between spheroidization annealing time and spheroidization rate;
FIG. 2 is a diagram showing the relationship between spheroidizing annealing time and cold workability.

Claims (1)

【特許請求の範囲】 1 炭素0.20〜0.50%、クロム0.50〜1.
50%、酸可溶Al0.005〜0.100%を含む鋼
材を、熱間仕上圧延後550℃〜Ms点の温度範囲に急
冷し中間段階組織としたものを素材として用いて、65
0℃〜A_1変態点の温度範囲で焼鈍することにより鋼
中の炭化物を均一に球状化させることを特徴とする冷間
加工性の良い鋼材の製造方法。 2 炭素0.20〜0.50%、クロム0.50〜1.
50%、酸可溶Al0.005〜0.100%、更にモ
リブデン0.5%以下を含む鋼材を熱間仕上圧延後、5
50℃〜Ms点の温度範囲に急冷し中間段階組織とした
ものを素材として用いて、650℃〜A_1変態点の温
度範囲で焼鈍することにより鋼中の炭化物を均一に球状
化させることを特徴とする冷間加工性の良い鋼材の製造
方法。
[Claims] 1. Carbon 0.20-0.50%, chromium 0.50-1.
A steel material containing 50% and 0.005 to 0.100% of acid-soluble Al was rapidly cooled to a temperature range of 550°C to Ms point after hot finish rolling to form an intermediate stage structure.
A method for producing a steel material with good cold workability, characterized in that carbides in the steel are uniformly spheroidized by annealing at a temperature range of 0° C. to A_1 transformation point. 2 Carbon 0.20-0.50%, chromium 0.50-1.
After hot finish rolling a steel material containing 50% acid-soluble Al, 0.005 to 0.100% acid-soluble Al, and 0.5% or less molybdenum,
It is characterized by uniformly spheroidizing the carbides in the steel by using a material that has been rapidly cooled to a temperature range of 50°C to Ms point to form an intermediate stage structure and annealing it at a temperature range of 650°C to A_1 transformation point. A method for manufacturing steel materials with good cold workability.
JP6884680A 1980-05-26 1980-05-26 Manufacturing method for steel materials with good cold workability Expired JPS5935410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6884680A JPS5935410B2 (en) 1980-05-26 1980-05-26 Manufacturing method for steel materials with good cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6884680A JPS5935410B2 (en) 1980-05-26 1980-05-26 Manufacturing method for steel materials with good cold workability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1746675A Division JPS5192719A (en) 1975-02-13 1975-02-13 Reikankakoseino yoikozaino seizohoho

Publications (2)

Publication Number Publication Date
JPS5635721A JPS5635721A (en) 1981-04-08
JPS5935410B2 true JPS5935410B2 (en) 1984-08-28

Family

ID=13385451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6884680A Expired JPS5935410B2 (en) 1980-05-26 1980-05-26 Manufacturing method for steel materials with good cold workability

Country Status (1)

Country Link
JP (1) JPS5935410B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156201A (en) * 1984-08-24 1986-03-20 Ube Ind Ltd Surface treatment of magnetic metallic powder

Also Published As

Publication number Publication date
JPS5635721A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
JP4435954B2 (en) Bar wire for cold forging and its manufacturing method
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP4435953B2 (en) Bar wire for cold forging and its manufacturing method
JP3879459B2 (en) Manufacturing method of high hardenability high carbon hot rolled steel sheet
JP2938101B2 (en) Manufacturing method of steel for cold forging
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
KR20210108002A (en) A wire rod free from heat treament having high toughness for cold forging and method for manufacturing the same
JP3554506B2 (en) Manufacturing method of hot-rolled wire and bar for machine structure
JP3172075B2 (en) Graphite uniformly dispersed steel excellent in toughness and method for producing the same
JPS589921A (en) Manufacture of seamless steel pipe for petroleum industry
JP4622609B2 (en) Method for producing soft high workability high carbon hot rolled steel sheet with excellent stretch flangeability
JPS6250411A (en) Production of rolled steel material having excellent homogeneity
JPS5935410B2 (en) Manufacturing method for steel materials with good cold workability
KR100328039B1 (en) A Method Manufacturing Wire Rods for cold Heading
JPH0217608B2 (en)
JPH0112815B2 (en)
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JPH0570685B2 (en)
JPS6137333B2 (en)
US1835667A (en) Process of hardening copper containing steels for structural and similar purposes
JPH1060540A (en) Production of high carbon cold rolled steel strip
JPH0116887B2 (en)
JPH1088237A (en) Production of cold rolled high carbon steel strip
JPH08269619A (en) High carbon hot rolled steel sheet excellent in hardenability and cold workability
KR940007365B1 (en) Method of manufacturing steel rod