JPS5935098A - Ferroelectric thin film - Google Patents

Ferroelectric thin film

Info

Publication number
JPS5935098A
JPS5935098A JP57142518A JP14251882A JPS5935098A JP S5935098 A JPS5935098 A JP S5935098A JP 57142518 A JP57142518 A JP 57142518A JP 14251882 A JP14251882 A JP 14251882A JP S5935098 A JPS5935098 A JP S5935098A
Authority
JP
Japan
Prior art keywords
thin film
electro
ferroelectric thin
ferroelectric
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57142518A
Other languages
Japanese (ja)
Other versions
JPH0333680B2 (en
Inventor
Hideaki Adachi
秀明 足立
Kenzo Ochi
謙三 黄地
Takao Kawaguchi
隆夫 川口
Kentaro Setsune
瀬恒 謙太郎
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57142518A priority Critical patent/JPS5935098A/en
Publication of JPS5935098A publication Critical patent/JPS5935098A/en
Publication of JPH0333680B2 publication Critical patent/JPH0333680B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To improve the electro-optical effect of a ferroelectric thin film for opto-electronic use composed of oxides of Pb, Ti and La, by setting the molar ratio of Pb to Ti within a specific range. CONSTITUTION:Powdery oxides of Pb, Ti and La are mixed together, calcined, and sputtered by using the powder as the target to form a thin film on a substrate such as the C-face of sapphire. In the above process, the molar ratio of Pb to Ti is adjusted to 0.65<Pb/Ti<0.90. The electro-optical effect of the resultant ferroelectric single crystal thin film can be improved, and a film suitable as a light-switching material can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、強誘電的特性を有する薄膜に関するものであ
り、特に鉛、チタンおよびランタンの酸化物からなるオ
プトエレクトロニクス用の強誘電性薄膜に関している。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to thin films with ferroelectric properties, and in particular to ferroelectric thin films for optoelectronics made of oxides of lead, titanium and lanthanum.

従来例の構成とその問題点 従来、鉛、チタンおよびランタンの酸化物からなる強誘
電体はセラミックスの形態である。この物質の有する大
きい電気光学効果および透明度を利用して例えば光Xa
用の光スィッチを作る場合、本体の厚さをμmオーダに
する必要がある。−セラ2ミツクスをμ1mオーダに研
摩、接続することは実際には不可能である。
Conventional Structure and Problems Conventionally, ferroelectric materials made of oxides of lead, titanium, and lanthanum are in the form of ceramics. For example, by utilizing the large electro-optic effect and transparency of this substance,
When making an optical switch for use in electronic devices, the thickness of the main body must be on the order of μm. - It is actually impossible to polish and connect Ceramics to a μ1m order.

発明者等は、この種の強誘電体を薄膜化することにより
、従来のセラミックス拐料の問題を解決し9、例えば光
集積回路用の導波路材料として応用することに成功した
The inventors solved the problems of conventional ceramic nanomaterials by making this type of ferroelectric material thin, and succeeded in applying it, for example, as a waveguide material for optical integrated circuits.

発明のト1的 本発明の目的は、強誘電的特性を有する、鉛。The key to invention The object of the invention is lead, which has ferroelectric properties.

チタンおよびランタンからなるオプトエレクトロニクス
用の薄膜材料を提供するものである。
The present invention provides thin film materials for optoelectronics made of titanium and lanthanum.

発明の構成 本発明による強誘電性薄膜は、少なくとも鉛。Composition of the invention The ferroelectric thin film according to the invention contains at least lead.

チタンおよびランタンの酸化物からなり、薄膜の組成と
しては、モル比率p b、、カ。・65くp舛□く0.
90の範囲にあるものである。第1図はPb/Tiの比
率を変えたときの電気光学効果の実測値を示す。すなわ
ち、第1図において、曲線11は、鉛。
It is composed of oxides of titanium and lanthanum, and the composition of the thin film has a molar ratio of pb, .・65kp□ku0.
It is in the range of 90. FIG. 1 shows the measured values of the electro-optic effect when the Pb/Ti ratio was changed. That is, in FIG. 1, curve 11 represents lead.

チタンおよびランタンの酸化物薄膜の電気光学効果の組
成による変化(2%、の比率の変化)を示す。比較のた
めに、曲線12に現在この種の光IC用vJIIで広く
用いられているLiNb03単結晶の特性を示す。同図
から、P!/T工の比率が0.66<P? 、 ff’
、−Q、90 (7)範F−cはLiNbO3にりも大
きい1 電気光学効果が得ら#Lることかわかり、実用上右下で
あるから実用性に欠く。なお従来のセラミックス椿・1
においては、この0.66<、’与Vも、90範囲の組
成領域では大きな電気光学効果は期待されておらず、I
f111定データもなかった。発明者ら幻1、この組成
範囲を含む領域で薄膜化を試み、第1図に示すような、
セラミックス拐刺では予想されなかった大きな電気光学
効果を持つ領域を発見し、それに基ついて電気光学効果
の大きいオプトエレクトロニクス用の強誘電性薄膜の発
明を行なった。
Figure 2 shows changes in the electro-optic effect of titanium and lanthanum oxide thin films depending on composition (change in ratio of 2%). For comparison, curve 12 shows the characteristics of LiNb03 single crystal, which is currently widely used in vJII for this type of optical IC. From the same figure, P! /T ratio is 0.66<P? , ff'
, -Q, 90 (7) The range F-c is also larger than that of LiNbO3.1 It can be seen that the electro-optic effect is obtained by #L, and it is practically impractical because it is at the lower right. In addition, conventional ceramics Tsubaki・1
, this 0.66<,' given V is not expected to have a large electro-optic effect in the composition range of 90, and I
There was also no f111 constant data. The inventors attempted to create a thin film in a region that included this composition range, and as shown in Figure 1,
We discovered a region with a large electro-optic effect that was not expected in ceramics, and based on this we invented a ferroelectric thin film for optoelectronics that has a large electro-optic effect.

また発明者らは、この種のオグトエレクトoニクス用薄
膜材料の基板拐料、結晶構造についての詳細を調べた結
果、最適の基板材料および結晶方位が存在することを確
認した。この種の薄膜の成長面としては、(111)面
、(11o)而あるいは(10Q)面がある。この場合
、電気光学効果は必ずしも(111)面がもっとも大き
い値を示すと姐通常考えらhないが、発明者らはこの(
111)面が第1図に示すような、大きな電気光学効果
を示すことを確認した。さらに、この種の薄膜を例えは
ザク147C面基板上に形成しようとすると、薄膜の(
111)面とサファイアC面の格子適合性がそれ程良く
ないにもがかわらず薄膜の(111)面が成長しゃす−
ことを発見し、これにもとづきこの種の薄膜拐料の基板
にサファイアC面が最適であることを発明者らは確認し
た。
In addition, the inventors investigated the details of the substrate material and crystal structure of this type of thin film material for electronics, and as a result, confirmed that an optimal substrate material and crystal orientation exist. The growth plane of this type of thin film includes the (111) plane, the (11o) plane, and the (10Q) plane. In this case, although it is not usually considered that the electro-optic effect necessarily exhibits the largest value on the (111) plane, the inventors
It was confirmed that the 111) surface exhibited a large electro-optic effect as shown in FIG. Furthermore, when trying to form this type of thin film on a Zaku 147C surface substrate, for example, the thin film (
Although the lattice compatibility between the 111) plane and the sapphire C plane is not so good, the (111) plane of the thin film grows.
Based on this discovery, the inventors confirmed that the sapphire C-plane is optimal as a substrate for this type of thin film coating material.

実施例の説FJJ−1 以下具体的な実施例−基いて本発明を説明する1、鉛、
チタンおよびランタンの酸化物粉末を、それぞれのモル
比率が鉛(pb)対ランタン(La)対チタン(Ti)
を0.72 :0.28 :0.93になるように秤I
ry L、混合、焼成した後、その粉末を皿に盛ったも
のをターゲットとしてスパッター蒸着を行なう。基板に
はサファイアC面を用い、基板温度を580℃、基板−
ターゲノト間隔を3.5c1rLとする。まだ混合ガス
比は、アルゴン対酸素を3対2とし、ガス圧を5 X 
10 Torr としてマグネトロンスパ、ター装置に
より1時間スパッター蒸着を行なうと、約4000にの
厚さの薄膜が形成された。
DESCRIPTION OF EMBODIMENTS FJJ-1 Below, the present invention will be explained based on specific examples. 1. Lead,
Titanium and lanthanum oxide powders were prepared in a molar ratio of lead (PB) to lanthanum (La) to titanium (Ti).
Scale I so that it becomes 0.72 : 0.28 : 0.93
After mixing and firing, the powder is placed on a plate and used as a target for sputter deposition. A sapphire C-plane was used for the substrate, the substrate temperature was 580℃, and the substrate temperature was 580℃.
The target interval is set to 3.5c1rL. The mixed gas ratio is still argon to oxygen 3 to 2, and the gas pressure is 5
Sputter deposition was carried out using a magnetron sputtering apparatus at 10 Torr for 1 hour to form a thin film with a thickness of about 4,000 Torr.

薄膜結晶性は、X線回折、電子線回折により調ベゾこと
ころ、(111)面が成長した学結晶薄膜であることが
確認された。薄膜の組成は、X線マイクロアナライザー
によると、P%i=o、76であった。電気光学効果の
評価は、電圧を印加したときの複屈折変化を測定して行
ない2KV/lnmの印加に対し、複屈折変化は9×1
0となり、これd。
The crystallinity of the thin film was confirmed by X-ray diffraction and electron beam diffraction to be an academic crystal thin film with a (111) plane grown. The composition of the thin film was P%i=o, 76, according to an X-ray microanalyzer. The electro-optic effect was evaluated by measuring the change in birefringence when a voltage was applied.The change in birefringence was 9×1 when a voltage of 2KV/lnm was applied.
It becomes 0, which is d.

LiNb03の約4培の値であった。−に記電気光学効
゛果の測定における、電圧対複屈折変化の関係を第2図
に示す。すなわち第2図において、曲線21は印加電圧
に対する複屈折変化を示すが、とれより電圧に対して2
乗依存の様相を現わしていることがわかった。
The value was about 4 times that of LiNb03. Figure 2 shows the relationship between voltage and birefringence change in the measurement of the electro-optic effect described in -. In other words, in FIG. 2, curve 21 shows the change in birefringence with respect to applied voltage;
It was found that there is an aspect of power dependence.

発明の効果 以上のように本発明においては、従来のセラミックスあ
るいは薄膜で得られ々かった領域において、大きな電気
光学効果を示す薄膜を作製することに成功した。このよ
う−な特性をもつ薄膜は、光スイッチ相料としてすぐれ
ており、光集積回路の実現を可能とするものである。
Effects of the Invention As described above, the present invention has succeeded in producing a thin film that exhibits a large electro-optic effect in areas that have been difficult to obtain with conventional ceramics or thin films. Thin films with such characteristics are excellent as optical switch materials and make it possible to realize optical integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は薄膜の組成P!3/T□に対して21V、珈l
の電圧印加時の複屈折変化を示したもので、比較のため
LiNb0.の値も示している。第2図は本発明の実施
例における強誘電性薄膜の、印加電圧に対する複屈折変
化を示す図である。 11・・・・・薄膜の組成対2KV/ytm印、加時の
複屈折変化値承す曲゛線、12・・・・・・LiNb0
3の2KV/mtx印加IL’1’の複屈折変化値、2
1・・・・・・印加電圧吉複屈折変化Mの関係を示す曲
線。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 Fb1丁、  モ ノし 比率
Figure 1 shows the composition of the thin film P! 3/21V for T□, C
This figure shows the change in birefringence when a voltage is applied to LiNb0. The value of is also shown. FIG. 2 is a diagram showing changes in birefringence with respect to applied voltage of a ferroelectric thin film in an example of the present invention. 11...Thin film composition vs. 2KV/ytm application, curve line that accepts the birefringence change value when applied, 12...LiNb0
3. Birefringence change value of 2KV/mtx applied IL'1', 2
1...Curve showing the relationship between applied voltage and birefringence change M. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure Fb1 piece, mono ratio

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも、鉛、チタンおよびランタンの酸化物
からなり、かつ鉛(pb)とチタン(Ti)のモル比率
Pb/Tiが 0.66 < Pb/Ti < 0.90の範囲にある
ことを特徴とする強誘電性薄膜。
(1) It is made of at least oxides of lead, titanium, and lanthanum, and the molar ratio of lead (pb) and titanium (Ti), Pb/Ti, is in the range of 0.66 < Pb/Ti < 0.90. Characteristic ferroelectric thin film.
(2)強誘電性薄膜の表面が(111)面であるこ躯 とを特徴とする特許請求の惰囲第1項記載の強誘電性簿
膜。
(2) The ferroelectric thin film according to claim 1, characterized in that the surface of the ferroelectric thin film is a (111) plane.
(3)−強誘電性薄膜がサファイアC面基板上に形成さ
れていることを特徴とする特許請求の範囲第1項記載の
強誘電性薄膜。
(3) - The ferroelectric thin film according to claim 1, wherein the ferroelectric thin film is formed on a sapphire C-plane substrate.
JP57142518A 1982-08-17 1982-08-17 Ferroelectric thin film Granted JPS5935098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142518A JPS5935098A (en) 1982-08-17 1982-08-17 Ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142518A JPS5935098A (en) 1982-08-17 1982-08-17 Ferroelectric thin film

Publications (2)

Publication Number Publication Date
JPS5935098A true JPS5935098A (en) 1984-02-25
JPH0333680B2 JPH0333680B2 (en) 1991-05-17

Family

ID=15317217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142518A Granted JPS5935098A (en) 1982-08-17 1982-08-17 Ferroelectric thin film

Country Status (1)

Country Link
JP (1) JPS5935098A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274342A (en) * 1985-05-29 1986-12-04 Ube Ind Ltd Ferroelectric element and manufacture thereof
US4927513A (en) * 1988-01-09 1990-05-22 Leybold Aktiengesellschaft Method and arrangement for fabricating magneto-optical, storable, and/or deletable data carriers
US5070026A (en) * 1989-06-26 1991-12-03 Spire Corporation Process of making a ferroelectric electronic component and product
US5368915A (en) * 1991-08-30 1994-11-29 Sharp Kabushiki Kaisha Active matrix substrate
US10697090B2 (en) 2017-06-23 2020-06-30 Panasonic Intellectual Property Management Co., Ltd. Thin-film structural body and method for fabricating thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274342A (en) * 1985-05-29 1986-12-04 Ube Ind Ltd Ferroelectric element and manufacture thereof
US4927513A (en) * 1988-01-09 1990-05-22 Leybold Aktiengesellschaft Method and arrangement for fabricating magneto-optical, storable, and/or deletable data carriers
US5070026A (en) * 1989-06-26 1991-12-03 Spire Corporation Process of making a ferroelectric electronic component and product
US5368915A (en) * 1991-08-30 1994-11-29 Sharp Kabushiki Kaisha Active matrix substrate
US10697090B2 (en) 2017-06-23 2020-06-30 Panasonic Intellectual Property Management Co., Ltd. Thin-film structural body and method for fabricating thereof

Also Published As

Publication number Publication date
JPH0333680B2 (en) 1991-05-17

Similar Documents

Publication Publication Date Title
Ravez The inorganie fluoride and oxyfluoride ferroelectrics
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
JPH09321361A (en) Piezoelectric vibrator component and manufacture thereof
Okuyama et al. Ferroelectric PbTiO3 thin films and their application
JPS5935098A (en) Ferroelectric thin film
Yogo et al. Synthesis of highly oriented K (Ta, Nb) O3 (Ta: Nb= 65: 35) film using metal alkoxides
Prasadarao et al. Fabrication of Sr2Nb2O7 thin films by sol-gel processing
de Bretteville Jr et al. Dielectric Studies in the System CdO‐Nb2O5
JPS6096599A (en) Production of superconductive thin film of oxide
JPH045874A (en) Ferroelectric thin-film and manufacture thereof
JPS6241311B2 (en)
Mitsuyu et al. Structures and Optical Properties of Rf‐Sputtered Bi12GeO20 Films
JPS60172103A (en) Ferrodielectric thin film
JPH053439B2 (en)
JP2583882B2 (en) Oriented perovskite-type compound laminated film
JPH0196368A (en) Manufacture of thin film of ferroelectric substance
Yogo et al. Synthesis of Oriented Ba2NaNb5O15 (BNN) Thin Films from an Alkoxy‐derived Precursor
Teowee et al. Effect of PbO content on the properties of sol-gel derived PZT films
JPS61232299A (en) Substrate for optical device
JPS636519B2 (en)
JPH09321570A (en) Surface acoustic wave device and its manufacture
JPH0335247B2 (en)
JPH0774341B2 (en) Method for producing bismuth layered structure compound thin film
JPS60175308A (en) Ferrodielectric thin film
JPS5821880A (en) Manufacture of oxide superconductive thin film