JPH0335247B2 - - Google Patents

Info

Publication number
JPH0335247B2
JPH0335247B2 JP57204550A JP20455082A JPH0335247B2 JP H0335247 B2 JPH0335247 B2 JP H0335247B2 JP 57204550 A JP57204550 A JP 57204550A JP 20455082 A JP20455082 A JP 20455082A JP H0335247 B2 JPH0335247 B2 JP H0335247B2
Authority
JP
Japan
Prior art keywords
electro
thin film
optic
present
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57204550A
Other languages
Japanese (ja)
Other versions
JPS5997532A (en
Inventor
Hideaki Adachi
Kenzo Ochi
Kentaro Setsune
Takao Kawaguchi
Kyotaka Wasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20455082A priority Critical patent/JPS5997532A/en
Publication of JPS5997532A publication Critical patent/JPS5997532A/en
Publication of JPH0335247B2 publication Critical patent/JPH0335247B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気光学特性を有する薄膜の製造方
法に関するものであり、特に鉛、チタンおよびラ
ンタンの複合酸化物からなるオプトエレクトロニ
クス用の電気光学薄膜材料の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a thin film having electro-optic properties, and in particular to an electro-optic film for optoelectronics made of a composite oxide of lead, titanium and lanthanum. The present invention relates to a method for producing thin film materials.

(従来例の構成とその問題点) 従来、鉛、チタンおよびランタンの複合酸化物
からなる物質はセラミツクスの形態である。この
物質の大きい電気光学効果および透明度を利用し
て例えば光IC用の光スイツチを作る場合、本体
の厚さをμmオーダにする必要があるが、セラミ
ツクスをμmオーダに研磨、接着することは実際
には不可能である。
(Structure of conventional example and its problems) Conventionally, a substance made of a composite oxide of lead, titanium, and lanthanum is in the form of ceramics. When making use of the large electro-optical effect and transparency of this material to make an optical switch for an optical IC, for example, the thickness of the main body must be on the order of micrometers, but it is actually difficult to polish and bond ceramics to the order of micrometers. It is impossible.

一方、蒸着法例えば真空蒸着法を用いると、材
料の薄型化に容易であると知られているが、本発
明にかかるような鉛、チタンおよびランタンの複
合酸化物材料の場合は、この種の蒸着法を用いて
も、薄膜材料において、これまで大きな電気光学
効果は得られなかつた。
On the other hand, it is known that it is easy to reduce the thickness of a material by using a vapor deposition method such as a vacuum vapor deposition method. Even when vapor deposition is used, it has not been possible to obtain large electro-optic effects in thin film materials.

しかるに、本発明者らは、イオン衝撃蒸着法例
えば高周波スパツタ蒸着法を用いて、上記複合酸
化物薄膜を形成すると、大きい電気光学効果を示
す薄膜が、スパツタ用ターゲツトの組成さえ選べ
ば、意外にも再現性よく形成され得ることを発見
した。
However, the present inventors have found that when the above composite oxide thin film is formed using an ion bombardment deposition method, such as a high frequency sputter deposition method, a thin film exhibiting a large electro-optical effect can be obtained unexpectedly as long as the composition of the sputter target is selected. It was also discovered that it can be formed with good reproducibility.

(発明の目的) 従つて、本発明は前記発見に基いてなされたも
のであつて、その目的は良好な電気光学特性を有
する鉛、チタンおよびランタンを含む複合酸化物
材料の薄膜を形成する方法を得ることにある。
(Object of the Invention) Therefore, the present invention has been made based on the above discovery, and its object is to provide a method for forming a thin film of a composite oxide material containing lead, titanium, and lanthanum having good electro-optical properties. It's about getting.

(発明の構成) 本発明による電気光学薄膜材料の製造方法は、
少なくとも鉛、チタンおよびランタンの複合酸化
物からなるターゲツトを用いてイオン衝撃蒸着す
ることにより前記成分を含むペロブスカイト構造
の酸化物を形成することを特徴としている。
(Structure of the Invention) The method for producing an electro-optic thin film material according to the present invention includes:
The present invention is characterized in that an oxide having a perovskite structure containing the aforementioned components is formed by ion bombardment deposition using a target consisting of a composite oxide of at least lead, titanium, and lanthanum.

また、この方法において、前記ターゲツト中の
鉛(Pb)、ランタン(La)の含有モル比率は、 0.2≦La/La+Pb≦0.35 で表わされる範囲に選択されるのがよい。
Further, in this method, the molar ratio of lead (Pb) and lanthanum (La) contained in the target is preferably selected within the range of 0.2≦La/La+Pb≦0.35.

電気光学効果のターゲツト組成による変化を第
1図の曲線11に示す。同図から、従来大きい電
気光学効果をもつと知られているLiNbO3単結晶
の特性値12より、上記の組成範囲では凌駕して
いることが確認され、この範囲のターゲツト組成
からスパツタ蒸着すると、従来にないすぐれた電
気光学薄膜材料が形成されることがわかる。
Curve 11 in FIG. 1 shows the variation of the electro-optic effect depending on the target composition. From the figure, it is confirmed that the above composition range exceeds the characteristic value 12 of LiNbO 3 single crystal, which is conventionally known to have a large electro-optic effect, and when sputter deposition is performed from a target composition in this range, It can be seen that an unprecedented electro-optic thin film material is formed.

なお、バルクのセラミツクスで構成された電気
光学材料として、所謂PLZTがあるが、これらの
セラミツクス材料では、本発明にかかる組成と同
じ範囲にあるものは、この種の大きい電気光学効
果を期待されていない領域のものである。本発明
にかかる電気光学効果の大きいスパツタ膜の組成
が、例えばセラミツクス材料と異なる理由の詳細
は明らかでないが、多分スパツタ蒸着法に代表さ
れる高エネルギー例えば数eV(数万度)の粒子の
基板上での付着による材料合成と、1000度前後の
熱平衡温度における焼結で代表されるセラミツク
ス形成プロセスとの差異にあると考えられる。な
お、本発明にかかる電気光学薄膜材料において、
イオン衝撃により、上述したターゲツトを蒸着す
ればよいから、必ずしもスパツタ蒸着に限定した
ものではない。
Note that so-called PLZT is an electro-optic material composed of bulk ceramics, but these ceramic materials having the same composition range as the present invention are not expected to have this kind of large electro-optic effect. It belongs to an area where there is no. The details of why the composition of the sputtered film with a large electro-optical effect according to the present invention is different from that of, for example, a ceramic material are not clear, but it is likely that the substrate is coated with particles of high energy, for example several eV (tens of thousands of degrees), as typified by the sputter deposition method. This is thought to be due to the difference between the material synthesis process using the above-mentioned deposition method and the ceramic formation process, which is typically sintered at a thermal equilibrium temperature of around 1000 degrees Celsius. In addition, in the electro-optic thin film material according to the present invention,
The above-mentioned target may be deposited by ion bombardment, so it is not necessarily limited to sputter deposition.

以下実施例により、本発明にかかる電気光学薄
膜材料の製造法を説明する。
The method for manufacturing the electro-optic thin film material according to the present invention will be explained below with reference to Examples.

(実施例の説明) 鉛、チタンおよびランタンの酸化物粉末を、鉛
とランタンの含有モル比率がLa/La+Pb=0.28
となるように配合した後、大気中700℃で焼結し
てターゲツト材料とした。このターゲツトを高周
波プレナーマグネトロンスパツタ装置でスパツタ
蒸着した。基板には、表面が平滑なサフアイアC
面単結晶板を用い、基板温度が580℃、スパツタ
ガス圧が6×10-2Torr(Ar/O23/2)のス
パツタ条件で、1時間スパツタすると、4000Åの
(111)面の単結晶膜が基板上に得られた。この薄
膜の電気光学効果を測ると、第2図に示すごと
く、印加電界に対して、2次曲線的な特性21を
示した。この場合、例えば電界が2kV/mmでは、
複屈折率変化は約10-3程度に達し、LiNbO3単結
晶の4倍であつた。
(Explanation of Examples) Oxide powders of lead, titanium, and lanthanum were prepared with a molar content ratio of lead and lanthanum of La/La+Pb=0.28.
After blending so that This target was sputter deposited using a high frequency planar magnetron sputtering device. The substrate is made of sapphire C with a smooth surface.
Using a plane single crystal plate, sputtering for 1 hour under the conditions of a substrate temperature of 580°C and a sputtering gas pressure of 6×10 -2 Torr (Ar/O 2 3/2) produces a 4000 Å (111) plane single crystal. A film was obtained on the substrate. When the electro-optic effect of this thin film was measured, it showed a quadratic characteristic 21 with respect to the applied electric field, as shown in FIG. In this case, for example, if the electric field is 2kV/mm,
The change in birefringence reached approximately 10 -3 , which was four times that of LiNbO 3 single crystal.

(発明の効果) 本発明の効果によれば、本発明の電気光学薄膜
材料の製造法で形成された薄膜は、LiNbO3単結
晶より大きな電気光学効果を示すものであるの
で、高効率の電気光学デバイスの実現を可能にす
るとともに、薄膜固有の集積化の容易さという利
点を生かした、各種の光ICの実現を可能にする。
(Effects of the Invention) According to the effects of the present invention, the thin film formed by the method for producing an electro-optic thin film material of the present invention exhibits a larger electro-optic effect than LiNbO 3 single crystal, so it can be used for highly efficient electricity production. In addition to making it possible to realize optical devices, it also makes it possible to realize various optical ICs by taking advantage of the ease of integration inherent in thin films.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、2kV/mmの電圧印加時の複屈折変化
を、ターゲツトの鉛、ランタンの含有比率La/
La+Pbに対しプロツトした図、第2図は、本発
明の実施例における電気光学薄膜材料の、印加電
圧に対する複屈折変化を示す図である。 11……ターゲツト材料の組成と、作成された
薄膜の2kV/mm印加時の複屈折変化の関係を示す
曲線、12……LiNbO3の2kV/mm印加時の複屈
折変化値、21……印加電圧と複屈折変化量の関
係を示す曲線。
Figure 1 shows the change in birefringence when a voltage of 2 kV/mm is applied, and the content ratio La/L of target lead and lanthanum.
FIG. 2, which is a diagram plotted against La+Pb, is a diagram showing birefringence changes with respect to applied voltage of an electro-optic thin film material in an example of the present invention. 11... Curve showing the relationship between the composition of the target material and the change in birefringence of the prepared thin film when applying 2 kV/mm, 12... Birefringence change value of LiNbO 3 when applying 2 kV/mm, 21... Application A curve showing the relationship between voltage and birefringence change.

Claims (1)

【特許請求の範囲】 1 少なくとも、鉛(Pb)、チタン(Ti)および
ランタン(La)を含む複合酸化物からなり、含
有モル比率が 0.2≦La/(La+Pb)≦0.35 の範囲であるターゲツトを用いて、イオン衝撃蒸
着することにより、前記成分を含むペロブスカイ
ト構造の酸化物の薄膜を形成することを特徴とす
る電気光学薄膜材料の製造方法。
[Claims] 1. A target consisting of a composite oxide containing at least lead (Pb), titanium (Ti) and lanthanum (La), with a content molar ratio in the range of 0.2≦La/(La+Pb)≦0.35. 1. A method for producing an electro-optic thin film material, characterized in that a thin film of an oxide having a perovskite structure containing the above component is formed by ion bombardment deposition.
JP20455082A 1982-11-24 1982-11-24 Manufacture of electrooptic thin film material Granted JPS5997532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20455082A JPS5997532A (en) 1982-11-24 1982-11-24 Manufacture of electrooptic thin film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20455082A JPS5997532A (en) 1982-11-24 1982-11-24 Manufacture of electrooptic thin film material

Publications (2)

Publication Number Publication Date
JPS5997532A JPS5997532A (en) 1984-06-05
JPH0335247B2 true JPH0335247B2 (en) 1991-05-27

Family

ID=16492354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20455082A Granted JPS5997532A (en) 1982-11-24 1982-11-24 Manufacture of electrooptic thin film material

Country Status (1)

Country Link
JP (1) JPS5997532A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116499A (en) * 1977-03-23 1978-10-11 Sharp Corp Preparing high dielectric thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116499A (en) * 1977-03-23 1978-10-11 Sharp Corp Preparing high dielectric thin film

Also Published As

Publication number Publication date
JPS5997532A (en) 1984-06-05

Similar Documents

Publication Publication Date Title
Krupanidhi et al. RF planar magnetron sputtering and characterization of ferroelectric Pb (Zr, Ti) O3 films
US4037176A (en) Multi-layered substrate for a surface-acoustic-wave device
US3766041A (en) Method of producing piezoelectric thin films by cathodic sputtering
US3846649A (en) Piezoelectric transducer comprising oriented zinc oxide film and method of manufacture
US4631633A (en) Thin film capacitors and method of making the same
JPS62205266A (en) Ferroelectric thin film element and its production
JPH06317465A (en) Pyroelectric infrared detector and fabrication thereof
Yogo et al. Synthesis of highly oriented K (Ta, Nb) O3 (Ta: Nb= 65: 35) film using metal alkoxides
JPH0335247B2 (en)
JPH0333680B2 (en)
JPS6241311B2 (en)
US5242707A (en) System and method for producing electro-optic components integrable with silicon-on-sapphire circuits
JPS6124213A (en) Method of forming bismuth substituted ferry magnetic garnet film
JPH045874A (en) Ferroelectric thin-film and manufacture thereof
US4040927A (en) Cadmium tellurite thin films
JPS5868726A (en) Electrochromic display device
JPS5942474B2 (en) Method for manufacturing piezoelectric thin film
KR950001294B1 (en) Thin layer infrared ray sensor manufacturing method
JPS636519B2 (en)
Krupanidhi et al. RF magnetron sputtering of ferroelectric PZT films
JP3009520B2 (en) Plastic substrate for thin film laminated device and thin film laminated device using the same
JPS5938169B2 (en) Method for forming transparent ferroelectric thin film
JP2590505B2 (en) Oriented crystal film
JPS58172234A (en) Thin film of amorphous lithium tantalate-lithium niobate and its preparation
JPH0461334A (en) Thin-film ferroelectric and its manufacturing