JPH0335247B2 - - Google Patents
Info
- Publication number
- JPH0335247B2 JPH0335247B2 JP57204550A JP20455082A JPH0335247B2 JP H0335247 B2 JPH0335247 B2 JP H0335247B2 JP 57204550 A JP57204550 A JP 57204550A JP 20455082 A JP20455082 A JP 20455082A JP H0335247 B2 JPH0335247 B2 JP H0335247B2
- Authority
- JP
- Japan
- Prior art keywords
- electro
- thin film
- optic
- present
- lanthanum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010409 thin film Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 13
- 229910052746 lanthanum Inorganic materials 0.000 claims description 9
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 238000010849 ion bombardment Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000005693 optoelectronics Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000382 optic material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、電気光学特性を有する薄膜の製造方
法に関するものであり、特に鉛、チタンおよびラ
ンタンの複合酸化物からなるオプトエレクトロニ
クス用の電気光学薄膜材料の製造方法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a thin film having electro-optic properties, and in particular to an electro-optic film for optoelectronics made of a composite oxide of lead, titanium and lanthanum. The present invention relates to a method for producing thin film materials.
(従来例の構成とその問題点)
従来、鉛、チタンおよびランタンの複合酸化物
からなる物質はセラミツクスの形態である。この
物質の大きい電気光学効果および透明度を利用し
て例えば光IC用の光スイツチを作る場合、本体
の厚さをμmオーダにする必要があるが、セラミ
ツクスをμmオーダに研磨、接着することは実際
には不可能である。(Structure of conventional example and its problems) Conventionally, a substance made of a composite oxide of lead, titanium, and lanthanum is in the form of ceramics. When making use of the large electro-optical effect and transparency of this material to make an optical switch for an optical IC, for example, the thickness of the main body must be on the order of micrometers, but it is actually difficult to polish and bond ceramics to the order of micrometers. It is impossible.
一方、蒸着法例えば真空蒸着法を用いると、材
料の薄型化に容易であると知られているが、本発
明にかかるような鉛、チタンおよびランタンの複
合酸化物材料の場合は、この種の蒸着法を用いて
も、薄膜材料において、これまで大きな電気光学
効果は得られなかつた。 On the other hand, it is known that it is easy to reduce the thickness of a material by using a vapor deposition method such as a vacuum vapor deposition method. Even when vapor deposition is used, it has not been possible to obtain large electro-optic effects in thin film materials.
しかるに、本発明者らは、イオン衝撃蒸着法例
えば高周波スパツタ蒸着法を用いて、上記複合酸
化物薄膜を形成すると、大きい電気光学効果を示
す薄膜が、スパツタ用ターゲツトの組成さえ選べ
ば、意外にも再現性よく形成され得ることを発見
した。 However, the present inventors have found that when the above composite oxide thin film is formed using an ion bombardment deposition method, such as a high frequency sputter deposition method, a thin film exhibiting a large electro-optical effect can be obtained unexpectedly as long as the composition of the sputter target is selected. It was also discovered that it can be formed with good reproducibility.
(発明の目的)
従つて、本発明は前記発見に基いてなされたも
のであつて、その目的は良好な電気光学特性を有
する鉛、チタンおよびランタンを含む複合酸化物
材料の薄膜を形成する方法を得ることにある。(Object of the Invention) Therefore, the present invention has been made based on the above discovery, and its object is to provide a method for forming a thin film of a composite oxide material containing lead, titanium, and lanthanum having good electro-optical properties. It's about getting.
(発明の構成)
本発明による電気光学薄膜材料の製造方法は、
少なくとも鉛、チタンおよびランタンの複合酸化
物からなるターゲツトを用いてイオン衝撃蒸着す
ることにより前記成分を含むペロブスカイト構造
の酸化物を形成することを特徴としている。(Structure of the Invention) The method for producing an electro-optic thin film material according to the present invention includes:
The present invention is characterized in that an oxide having a perovskite structure containing the aforementioned components is formed by ion bombardment deposition using a target consisting of a composite oxide of at least lead, titanium, and lanthanum.
また、この方法において、前記ターゲツト中の
鉛(Pb)、ランタン(La)の含有モル比率は、
0.2≦La/La+Pb≦0.35
で表わされる範囲に選択されるのがよい。 Further, in this method, the molar ratio of lead (Pb) and lanthanum (La) contained in the target is preferably selected within the range of 0.2≦La/La+Pb≦0.35.
電気光学効果のターゲツト組成による変化を第
1図の曲線11に示す。同図から、従来大きい電
気光学効果をもつと知られているLiNbO3単結晶
の特性値12より、上記の組成範囲では凌駕して
いることが確認され、この範囲のターゲツト組成
からスパツタ蒸着すると、従来にないすぐれた電
気光学薄膜材料が形成されることがわかる。 Curve 11 in FIG. 1 shows the variation of the electro-optic effect depending on the target composition. From the figure, it is confirmed that the above composition range exceeds the characteristic value 12 of LiNbO 3 single crystal, which is conventionally known to have a large electro-optic effect, and when sputter deposition is performed from a target composition in this range, It can be seen that an unprecedented electro-optic thin film material is formed.
なお、バルクのセラミツクスで構成された電気
光学材料として、所謂PLZTがあるが、これらの
セラミツクス材料では、本発明にかかる組成と同
じ範囲にあるものは、この種の大きい電気光学効
果を期待されていない領域のものである。本発明
にかかる電気光学効果の大きいスパツタ膜の組成
が、例えばセラミツクス材料と異なる理由の詳細
は明らかでないが、多分スパツタ蒸着法に代表さ
れる高エネルギー例えば数eV(数万度)の粒子の
基板上での付着による材料合成と、1000度前後の
熱平衡温度における焼結で代表されるセラミツク
ス形成プロセスとの差異にあると考えられる。な
お、本発明にかかる電気光学薄膜材料において、
イオン衝撃により、上述したターゲツトを蒸着す
ればよいから、必ずしもスパツタ蒸着に限定した
ものではない。 Note that so-called PLZT is an electro-optic material composed of bulk ceramics, but these ceramic materials having the same composition range as the present invention are not expected to have this kind of large electro-optic effect. It belongs to an area where there is no. The details of why the composition of the sputtered film with a large electro-optical effect according to the present invention is different from that of, for example, a ceramic material are not clear, but it is likely that the substrate is coated with particles of high energy, for example several eV (tens of thousands of degrees), as typified by the sputter deposition method. This is thought to be due to the difference between the material synthesis process using the above-mentioned deposition method and the ceramic formation process, which is typically sintered at a thermal equilibrium temperature of around 1000 degrees Celsius. In addition, in the electro-optic thin film material according to the present invention,
The above-mentioned target may be deposited by ion bombardment, so it is not necessarily limited to sputter deposition.
以下実施例により、本発明にかかる電気光学薄
膜材料の製造法を説明する。 The method for manufacturing the electro-optic thin film material according to the present invention will be explained below with reference to Examples.
(実施例の説明)
鉛、チタンおよびランタンの酸化物粉末を、鉛
とランタンの含有モル比率がLa/La+Pb=0.28
となるように配合した後、大気中700℃で焼結し
てターゲツト材料とした。このターゲツトを高周
波プレナーマグネトロンスパツタ装置でスパツタ
蒸着した。基板には、表面が平滑なサフアイアC
面単結晶板を用い、基板温度が580℃、スパツタ
ガス圧が6×10-2Torr(Ar/O23/2)のス
パツタ条件で、1時間スパツタすると、4000Åの
(111)面の単結晶膜が基板上に得られた。この薄
膜の電気光学効果を測ると、第2図に示すごと
く、印加電界に対して、2次曲線的な特性21を
示した。この場合、例えば電界が2kV/mmでは、
複屈折率変化は約10-3程度に達し、LiNbO3単結
晶の4倍であつた。(Explanation of Examples) Oxide powders of lead, titanium, and lanthanum were prepared with a molar content ratio of lead and lanthanum of La/La+Pb=0.28.
After blending so that This target was sputter deposited using a high frequency planar magnetron sputtering device. The substrate is made of sapphire C with a smooth surface.
Using a plane single crystal plate, sputtering for 1 hour under the conditions of a substrate temperature of 580°C and a sputtering gas pressure of 6×10 -2 Torr (Ar/O 2 3/2) produces a 4000 Å (111) plane single crystal. A film was obtained on the substrate. When the electro-optic effect of this thin film was measured, it showed a quadratic characteristic 21 with respect to the applied electric field, as shown in FIG. In this case, for example, if the electric field is 2kV/mm,
The change in birefringence reached approximately 10 -3 , which was four times that of LiNbO 3 single crystal.
(発明の効果)
本発明の効果によれば、本発明の電気光学薄膜
材料の製造法で形成された薄膜は、LiNbO3単結
晶より大きな電気光学効果を示すものであるの
で、高効率の電気光学デバイスの実現を可能にす
るとともに、薄膜固有の集積化の容易さという利
点を生かした、各種の光ICの実現を可能にする。(Effects of the Invention) According to the effects of the present invention, the thin film formed by the method for producing an electro-optic thin film material of the present invention exhibits a larger electro-optic effect than LiNbO 3 single crystal, so it can be used for highly efficient electricity production. In addition to making it possible to realize optical devices, it also makes it possible to realize various optical ICs by taking advantage of the ease of integration inherent in thin films.
第1図は、2kV/mmの電圧印加時の複屈折変化
を、ターゲツトの鉛、ランタンの含有比率La/
La+Pbに対しプロツトした図、第2図は、本発
明の実施例における電気光学薄膜材料の、印加電
圧に対する複屈折変化を示す図である。
11……ターゲツト材料の組成と、作成された
薄膜の2kV/mm印加時の複屈折変化の関係を示す
曲線、12……LiNbO3の2kV/mm印加時の複屈
折変化値、21……印加電圧と複屈折変化量の関
係を示す曲線。
Figure 1 shows the change in birefringence when a voltage of 2 kV/mm is applied, and the content ratio La/L of target lead and lanthanum.
FIG. 2, which is a diagram plotted against La+Pb, is a diagram showing birefringence changes with respect to applied voltage of an electro-optic thin film material in an example of the present invention. 11... Curve showing the relationship between the composition of the target material and the change in birefringence of the prepared thin film when applying 2 kV/mm, 12... Birefringence change value of LiNbO 3 when applying 2 kV/mm, 21... Application A curve showing the relationship between voltage and birefringence change.
Claims (1)
ランタン(La)を含む複合酸化物からなり、含
有モル比率が 0.2≦La/(La+Pb)≦0.35 の範囲であるターゲツトを用いて、イオン衝撃蒸
着することにより、前記成分を含むペロブスカイ
ト構造の酸化物の薄膜を形成することを特徴とす
る電気光学薄膜材料の製造方法。[Claims] 1. A target consisting of a composite oxide containing at least lead (Pb), titanium (Ti) and lanthanum (La), with a content molar ratio in the range of 0.2≦La/(La+Pb)≦0.35. 1. A method for producing an electro-optic thin film material, characterized in that a thin film of an oxide having a perovskite structure containing the above component is formed by ion bombardment deposition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20455082A JPS5997532A (en) | 1982-11-24 | 1982-11-24 | Manufacture of electrooptic thin film material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20455082A JPS5997532A (en) | 1982-11-24 | 1982-11-24 | Manufacture of electrooptic thin film material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5997532A JPS5997532A (en) | 1984-06-05 |
JPH0335247B2 true JPH0335247B2 (en) | 1991-05-27 |
Family
ID=16492354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20455082A Granted JPS5997532A (en) | 1982-11-24 | 1982-11-24 | Manufacture of electrooptic thin film material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5997532A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53116499A (en) * | 1977-03-23 | 1978-10-11 | Sharp Corp | Preparing high dielectric thin film |
-
1982
- 1982-11-24 JP JP20455082A patent/JPS5997532A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53116499A (en) * | 1977-03-23 | 1978-10-11 | Sharp Corp | Preparing high dielectric thin film |
Also Published As
Publication number | Publication date |
---|---|
JPS5997532A (en) | 1984-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Krupanidhi et al. | RF planar magnetron sputtering and characterization of ferroelectric Pb (Zr, Ti) O3 films | |
US4037176A (en) | Multi-layered substrate for a surface-acoustic-wave device | |
US3766041A (en) | Method of producing piezoelectric thin films by cathodic sputtering | |
US3846649A (en) | Piezoelectric transducer comprising oriented zinc oxide film and method of manufacture | |
US4631633A (en) | Thin film capacitors and method of making the same | |
JPS62205266A (en) | Ferroelectric thin film element and its production | |
JPH06317465A (en) | Pyroelectric infrared detector and fabrication thereof | |
Yogo et al. | Synthesis of highly oriented K (Ta, Nb) O3 (Ta: Nb= 65: 35) film using metal alkoxides | |
JPH0335247B2 (en) | ||
JPH0333680B2 (en) | ||
JPS6241311B2 (en) | ||
US5242707A (en) | System and method for producing electro-optic components integrable with silicon-on-sapphire circuits | |
JPS6124213A (en) | Method of forming bismuth substituted ferry magnetic garnet film | |
JPH045874A (en) | Ferroelectric thin-film and manufacture thereof | |
US4040927A (en) | Cadmium tellurite thin films | |
JPS5868726A (en) | Electrochromic display device | |
JPS5942474B2 (en) | Method for manufacturing piezoelectric thin film | |
KR950001294B1 (en) | Thin layer infrared ray sensor manufacturing method | |
JPS636519B2 (en) | ||
Krupanidhi et al. | RF magnetron sputtering of ferroelectric PZT films | |
JP3009520B2 (en) | Plastic substrate for thin film laminated device and thin film laminated device using the same | |
JPS5938169B2 (en) | Method for forming transparent ferroelectric thin film | |
JP2590505B2 (en) | Oriented crystal film | |
JPS58172234A (en) | Thin film of amorphous lithium tantalate-lithium niobate and its preparation | |
JPH0461334A (en) | Thin-film ferroelectric and its manufacturing |