JPS61232299A - Substrate for optical device - Google Patents

Substrate for optical device

Info

Publication number
JPS61232299A
JPS61232299A JP7216885A JP7216885A JPS61232299A JP S61232299 A JPS61232299 A JP S61232299A JP 7216885 A JP7216885 A JP 7216885A JP 7216885 A JP7216885 A JP 7216885A JP S61232299 A JPS61232299 A JP S61232299A
Authority
JP
Japan
Prior art keywords
substrate
single crystal
film
ktn
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7216885A
Other languages
Japanese (ja)
Other versions
JPH0530800B2 (en
Inventor
Yoichi Miyasaka
洋一 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7216885A priority Critical patent/JPS61232299A/en
Publication of JPS61232299A publication Critical patent/JPS61232299A/en
Publication of JPH0530800B2 publication Critical patent/JPH0530800B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:A substrate for optical devices, obtained by forming a dielectric layer consisting of potassium tantalate niobate (KTN) through an insulator film on a silicon single crystal substrate, and capable of giving optical switches, optical modulators, etc., having low driving voltage and improved stability of characteristics. CONSTITUTION:An insulator film 2, e.g. epitaxial film of magnesium aluminate spinel, on a silicon single crystal substrate 1 by the epitaxial growth method, etc. A dielectric layer 3 having a composition expressed by the formula (0<=x<=1) is formed thereon by the epitaxial growth method to give the aimed substrate for optical devices. As a specific method for forming the dielectric layer 3 to be cited, raw materials, e.g. K2CO3, Ta2O5 and Nb2O5, are weighed to give K2CO3 in a molar amount of about 10mol% excess of the theoretical amount and mixed, and the resultant mixture is calcined to afford a powdery target, which is used to carry out sputtering in a mixed gas of Ar and O2, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体層と絶縁体層からなり、光スィッチ、光
変調器などの光デバイスに用いられる光デバイス用基板
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical device substrate comprising a semiconductor layer and an insulating layer and used for optical devices such as optical switches and optical modulators.

(従来技術) 光スィッチ、光変調器などの光デバイスは光通信あるい
は光情報処理装置において極めて重要なものである。こ
れらのデバイスには、高速性等の観点から一般に、電気
光学効果を有する材料(以下電気光学材料と呼ぶ)が用
いられる。電気光学効果は複屈折の変化が電界強度に比
例するポッケルス効果と、電界強度の2乗に比例するカ
ー効果とに分類される。現在一般に使用されているのは
ポッケルス効果を有するニオブ酸リチウム(L I N
b0) Sり:y タに酸リチウA (LiTaO,)
などの単結晶電気光学材料であるが、駆動電圧の低減化
のためにはカー効果を有する電気光学材料を使用する方
が有利である。
(Prior Art) Optical devices such as optical switches and optical modulators are extremely important in optical communication or optical information processing equipment. These devices generally use materials having an electro-optic effect (hereinafter referred to as electro-optic materials) from the viewpoint of high speed and the like. The electro-optic effect is classified into the Pockels effect, in which the change in birefringence is proportional to the electric field intensity, and the Kerr effect, in which the change in birefringence is proportional to the square of the electric field intensity. Lithium niobate (LIN), which has the Pockels effect, is currently commonly used.
b0) S: y Tani acid lithium A (LiTaO,)
However, in order to reduce the driving voltage, it is more advantageous to use an electro-optic material having the Kerr effect.

大きなカー効果を示す材料として代表的なものは一般式
がKTa xNb、−xO,で表わされるものである。
A typical material exhibiting a large Kerr effect is one represented by the general formula KTa xNb, -xO.

この材料には一般的にKTNの略称が使用されるので以
下KTNと呼ぶ。特にX=0.65すなり チKT a
 O,65N b O,350sの組成の材料は他の材
料に比べて非常に大きなカー効果を示すことが知られて
いる。たとえばジャーナル、オブ、アプライド、フイジ
クス(J、kppl、Phys)37巻、1号、196
6年、388〜398ページに [LightModu
Jation   and   Beam  Defl
ecttonWith Potassium Tant
alate−NiobateCrystalsJ  と
題して発表された論文において、KTNの単結晶を用い
ることにより低電圧で駆動することが可能な光変調器、
光偏向器を構成できることが述べられている。
Since this material is generally abbreviated as KTN, it will be referred to hereinafter as KTN. Especially when X=0.65 ChiKT a
It is known that a material having a composition of O,65N b O,350s exhibits a much larger Kerr effect than other materials. For example, Journal of Applied Physics (J, KPPL, Phys) Volume 37, No. 1, 196
6, pages 388-398 [LightModu
Jation and Beam Defl
ecttonWith Potassium Tant
In a paper published entitled Alate-NiobateCrystalsJ, an optical modulator that can be driven at low voltage by using a KTN single crystal,
It is stated that an optical deflector can be constructed.

(従来技術の問題点) 以上のようにKTNの単結晶は極めて有用な電気光学材
料であるが、均一な単結晶を作製することが困難である
ために実用にはなっていない。
(Problems with the Prior Art) As described above, the single crystal of KTN is an extremely useful electro-optic material, but it has not been put to practical use because it is difficult to produce a uniform single crystal.

KTNの単結晶は一般に原料の融液からの引上げ法によ
って作製されるが、KTNは全率固溶結晶であるため結
晶を一定量の融液から育成してゆくと、固化した結晶の
Xが除々に小さい方向に変化して不均一になるためであ
る。
A single crystal of KTN is generally produced by a pulling method from a raw material melt, but since KTN is a completely solid solution crystal, when a crystal is grown from a certain amount of melt, the X of the solidified crystal is This is because it gradually changes in a smaller direction and becomes non-uniform.

さらに、より低電圧化ならびに集積化を行なうためには
バルクの単結晶よりも、適当な基板上に電気光学材料の
薄膜を形成した導波路形の光デバイスが望ましい。
Furthermore, in order to achieve lower voltage and higher integration, a waveguide-type optical device in which a thin film of electro-optic material is formed on a suitable substrate is preferable to a bulk single crystal.

(発明の目的) 本発明は、上記従来技術の欠点を改善するもので、低電
圧駆動ならびに集積化が可能で、かつ特性の均一性に優
れた光デバイス用基板を提供することを目的とする。
(Objective of the Invention) The present invention improves the drawbacks of the above-mentioned prior art, and aims to provide a substrate for an optical device that is capable of low-voltage driving and integration, and has excellent uniformity of characteristics. .

(発明の構成) すなわち本発明は、シリコン単結晶基板上に絶縁体膜が
形成され該絶縁体膜上に化学式がKTaxNb、、、x
Olで表わされる誘電体層が形成されていることを特徴
とする光デバイス用基板である◇(構成の詳細な説明) 光デバイスに使用するためにはKTNの薄膜はできるだ
け単結晶に近いエピタキシャル膜である必要がある。エ
ピタキシャル膜を形成するにはKTNの対称性、格子定
数に適した基板が必要であり、マグネシアスピネル(M
gA ’204 ) 、マグネシア(MgO)が考えら
れる。これらの単結晶は大口径のものを安価に製造する
ことは困難であるが、シリコン単結晶基板上に単結晶薄
膜をエピタキシャル成長させることができる。シリコン
単結晶基板は今日では非常に大口径のものが容易に入手
できるから、基板として本発明に主張するようにシリコ
ン単結晶基板上にMgA1.O,あるいは、MgOなど
のエピタキシャル薄膜を形成したものを使用し、この上
にKTNの薄膜を形成した光デバイス用基板は実用上そ
の意砂が非常に大きい。
(Structure of the Invention) That is, in the present invention, an insulating film is formed on a silicon single crystal substrate, and a chemical formula of KTaxNb, , x
This is an optical device substrate characterized by forming a dielectric layer represented by Ol. It must be. To form an epitaxial film, a substrate suitable for the symmetry and lattice constant of KTN is required, and magnesia spinel (M
gA'204) and magnesia (MgO) are considered. Although it is difficult to manufacture these single crystals with a large diameter at low cost, it is possible to epitaxially grow a single crystal thin film on a silicon single crystal substrate. Since silicon single crystal substrates with very large diameters are easily available today, as claimed in the present invention, MgA1. An optical device substrate in which an epitaxial thin film of O, MgO, or the like is formed, and a KTN thin film is formed thereon is of great practical significance.

この場合、MgOは本出願人が提案(特願昭57−22
9033)L、ているようにシリコン単結晶基板に直接
成長するよりもシリコン基板上にMgAl、 qを介し
て形成した方が良質の単結晶膜が形成できる。従って絶
縁体単結晶膜として2層構造のものでも良い。また、本
出願人はシリコン基板上に形成したMgAl、04エピ
タキシヤル膜は成長後MgAl!O,膜を通してシリコ
ン基板を熱酸化することによってMgA 1.0. /
8 io、 /S i構造にすることをすでに提案(特
願昭56−103967)L、ている。従って絶縁体膜
としてシリコン単結晶基板上に非晶質8i0.を介した
ような構造のものでも良い。
In this case, MgO was proposed by the present applicant (Japanese Patent Application No. 57-22
9033) L, a single crystal film of better quality can be formed by forming it on a silicon substrate via MgAl, q, than by directly growing it on a silicon single crystal substrate. Therefore, the insulating single crystal film may have a two-layer structure. In addition, the applicant has also discovered that the MgAl, 04 epitaxial film formed on a silicon substrate is MgAl! O, MgA 1.0. by thermally oxidizing the silicon substrate through the film. /
8 io, /S i structure has already been proposed (Japanese Patent Application No. 103967/1983). Therefore, an amorphous 8i0. It is also possible to have a structure such as through.

マグネシア、スビネ/l/ (MgAlt Oa ) 
、マグネシア(MgO)の屈折率は約1.758i0.
の屈折率は約1.5であり、いずれもKTNの屈折率(
約2.2)よりも大きい、従ってシリコン基板上に形成
したMg本1,0いMgO18i0.  などからなる
絶縁体層の上に形成したKTN薄膜に光を導波させるこ
とが可能であり、種々の導波路形デバイスを作製するこ
とができる。
Magnesia, subine/l/ (MgAlt Oa)
, the refractive index of magnesia (MgO) is approximately 1.758i0.
The refractive index of KTN is approximately 1.5, and both of them are
(approximately 2.2), therefore MgO18i0. It is possible to guide light through a KTN thin film formed on an insulator layer made of, etc., and various waveguide devices can be fabricated.

KTNエピタキシャル薄膜の形成はスパッタリング、イ
オンブレーティングなどの物理蒸着あるいはCVDなど
の化学蒸着を用いて行なうことができる。これらの方法
で薄膜の成長を行なう場合には、従来のバルク単結晶の
育成の場合のような融液すなわち液相からの結晶成長で
なく気相からの結晶成長であるから、既述のようなバル
ク単結晶において問題であった全率固溶体であることに
基づく組成変化による不均一性という問題は生じない。
The KTN epitaxial thin film can be formed using physical vapor deposition such as sputtering or ion blating, or chemical vapor deposition such as CVD. When growing thin films using these methods, crystal growth is not from a melt or liquid phase as in conventional bulk single crystal growth, but from a gas phase, so as mentioned above, There is no problem of non-uniformity due to compositional changes due to the fact that it is a complete solid solution, which was a problem in bulk single crystals.

例えばスパッタリングの場合について言えば各成分元素
のスパッタ率及び吸着率が異なるためターゲットの組成
と形成された薄膜の組成とは一般に若干具なるが目的の
組成の薄膜となるようにターゲットの組成を選んでおけ
ば安定して均一な組成の薄膜を形成することができる。
For example, in the case of sputtering, since the sputtering rate and adsorption rate of each component element are different, the composition of the target and the composition of the thin film formed are generally slightly different, but the composition of the target is selected so that the thin film has the desired composition. If this is done, a thin film with a stable and uniform composition can be formed.

またに’l’a、−5CNbx01  においてカー効
果に注目すればX=0.65   が望ましいがこれ以
外の0くXく1.0 の範囲において有用な用途があり
優れた基板を構成しうる。
Also, if we pay attention to the Kerr effect in 'l'a, -5CNbx01, it is desirable that X = 0.65, but any other range of 0 x 1.0 has useful uses and can constitute an excellent substrate.

以下実施例によって具体的に説明する。This will be explained in detail below using examples.

(実施例1) 面方位が(100)のシリコン単結晶基板上に膜厚1μ
mのマグネシア、スピネル(MgAl* 04 )をエ
ピタキシャル成長し、その上に膜厚2μmのKTN 薄
膜をスパッタ法で形成した。第1図は本実施例の説明図
で、1は(100)8i単結晶基板2は気相成長法で成
長したMgA1,0.エピタキシャル膜、3はスパッタ
法で形成したKTNの単結晶膜である。MgA1.O,
の気相成長は、本出願人がすでに提案(特願昭57−1
36051)L、ている方 ′法で成長した。すなわち
反応ガスとしてMgC1!、AIにHCIガスを反応さ
せて生成したAlCl、、co、 、H,ガスを用い、
キャリアガスとしてN、ガスを用いた。MgA1.O,
の生成反応は、MgC1,+2AICI、+4CO□+
4為→MgA1.04+4CO+8HC1で表わされる
。成長温度950°Cで成長し、X線回折及び電子線回
折で(l OO)方位のMgA110.がエピタキシャ
ル成長していることを確認した。KTNのエピタキシャ
ル膜はRFマグネトロンスパッタ法で形成した。KtC
OsSatQNb、O,ヲ原料トしrKTaO,65N
bo、3s03の組成比よりもに、Co、が1θモル%
だけ過剰となるように秤量、混合、仮焼した粉末ターゲ
ットを用い、Arと0.の混合ガス中で基板温度600
°C〜8000Cでスパッタリングを行なった。
(Example 1) A film with a thickness of 1 μm was deposited on a silicon single crystal substrate with a plane orientation of (100).
Mg of magnesia and spinel (MgAl* 04 ) were epitaxially grown, and a 2 μm thick KTN thin film was formed thereon by sputtering. FIG. 1 is an explanatory diagram of this example, in which 1 is a (100)8i single crystal substrate 2 is MgA1,0. The epitaxial film 3 is a KTN single crystal film formed by sputtering. MgA1. O,
The present applicant has already proposed the vapor phase growth of
36051) L, grown using the `` method. That is, MgC1 as a reactive gas! , using AlCl, , co, , H, gas produced by reacting AI with HCI gas,
N gas was used as a carrier gas. MgA1. O,
The production reaction is MgC1, +2AICI, +4CO□+
4 → MgA1.04 + 4CO + 8HC1. It was grown at a growth temperature of 950°C, and X-ray diffraction and electron diffraction revealed MgA110. with (l OO) orientation. was confirmed to be growing epitaxially. The KTN epitaxial film was formed by RF magnetron sputtering. KtC
OsSatQNb, O, raw material KTaO, 65N
Bo, 1θ mol% of Co is higher than the composition ratio of 3s03.
Using a powder target that has been weighed, mixed, and calcined so that the excess is Ar and 0. The substrate temperature is 600℃ in a mixed gas of
Sputtering was performed at °C to 8000C.

形成シタ膜ノ組成ハKT a O,65N b O,3
50sであり、X線回折と電子線回折によって(100
)方位に配向したエピタキシャル膜であることを確認し
た。
The composition of the formed film is KT a O,65N b O,3
50s, and by X-ray diffraction and electron diffraction (100
) It was confirmed that it was an epitaxial film oriented in the direction.

(実施例2) (Zoo)S i単結晶基板上にエピタキシャル成長し
た膜厚0.2μmのMgAl、O,膜を通して8i基板
を熱酸化し、MgA1.O,膜と8i基板の間に膜厚0
.8μmノ8 io、を形成した後に、MgAl、O,
xピタキシャル膜上に膜厚2μmKTNをエピタキシャ
ル成長させた。第2図は本実施例の工程図である。
(Example 2) (Zoo) An 8i substrate was thermally oxidized through a 0.2 μm thick MgAl, O, film epitaxially grown on a Si single crystal substrate. O, film thickness 0 between film and 8i substrate
.. After forming 8 μm of 8 io, MgAl, O,
A KTN film having a thickness of 2 μm was epitaxially grown on the x-pitaxial film. FIG. 2 is a process diagram of this example.

4は8i基板、5はMgA1. O,エピタキシャル膜
6はSiO,,7はKTNのエピタキシャル膜である0
第2図(a)はMgA1.04のエピタキシャル成長工
程Φ)は8i0.の形成、(C1はKTNのエビタキシ
ャ滅長工程を示す。MgA1.04の形成は実施例1と
全く同様に行ない、8i0.の形成は1100°Cでの
水蒸気酸化に・より行なった。熱酸化によってMgAl
、O,の結晶性は損なわれず、むしろX線ロッキングカ
ーブの半値幅は30%はど減少し結晶性は改善された。
4 is an 8i substrate, 5 is MgA1. O, epitaxial film 6 is SiO, 7 is KTN epitaxial film 0
FIG. 2(a) shows the epitaxial growth process of MgA1.04 Φ) of 8i0. (C1 indicates the KTN epitaxial growth process. The formation of MgA1.04 was carried out in exactly the same manner as in Example 1, and the formation of 8i0. was carried out by steam oxidation at 1100 ° C. Thermal oxidation by MgAl
The crystallinity of ,O, was not impaired, but rather the half width of the X-ray rocking curve was reduced by 30% and the crystallinity was improved.

実施例1と同様のターゲット及びスパッタ条件を用いて
スパッタリングを行ない、KTaQ、65Nb0.35
03のエピタキシャル膜が得られた。
Sputtering was performed using the same target and sputtering conditions as in Example 1, and KTaQ, 65Nb0.35
An epitaxial film of No. 03 was obtained.

(実施例3) (xoo)si単結晶基板上に膜厚0.2μmのMgA
ol、 O,を実施例1と同様の方法でエピタキシャル
成長させ、その上に気相成長法で膜厚0.8μmのMg
Oをエピタキシャル成長させた。その上にさらに実施例
1と同様にスパッタ法で膜厚2μmのKTaO,65N
b0.350gのzビター+シャ#膜ヲ成長させた。第
3図は本実施例による光デバイス用基板の説明図である
。8は8i単結晶基板、9はMgAl、O,エピタキシ
ャル膜、10はMgOエピタキシャル膜、11はKTN
エピタキシャル膜である。
(Example 3) MgA film with a thickness of 0.2 μm on a (xoo)si single crystal substrate
ol, O, was epitaxially grown in the same manner as in Example 1, and Mg with a thickness of 0.8 μm was grown on top of it by vapor phase growth.
O was grown epitaxially. On top of that, a 2 μm thick film of KTaO and 65N was further applied by sputtering in the same manner as in Example 1.
A 0.350 g z-bitter+sha# film was grown. FIG. 3 is an explanatory diagram of the optical device substrate according to this embodiment. 8 is 8i single crystal substrate, 9 is MgAl, O, epitaxial film, 10 is MgO epitaxial film, 11 is KTN
It is an epitaxial film.

(発明の効果) 以上のように本発明によればシリコン単結晶基板上の絶
縁体膜上にKTa1xNbxO8(KTN)のエピタキ
シャル薄膜を形成した光デバイス用基板が得られる。本
発明によるKTN薄膜は均一性に優れたものであり、ま
たシリコン単結晶基板は大口径で良質のものが容易に入
手できるところから、本発明により大口径の光デバイス
用基板が得られるものである。本発明によれば低駆動W
EEで特性の安定性に優れた光スィッチ、光変調器など
のデバイスの量産が可能であり、その工業的価値は大き
い。
(Effects of the Invention) As described above, according to the present invention, an optical device substrate can be obtained in which an epitaxial thin film of KTa1xNbxO8 (KTN) is formed on an insulating film on a silicon single crystal substrate. The KTN thin film according to the present invention has excellent uniformity, and silicon single crystal substrates with large diameters and high quality are easily available, so the present invention can provide substrates for large diameter optical devices. be. According to the present invention, the low drive W
With EE, it is possible to mass produce devices such as optical switches and optical modulators with excellent characteristic stability, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本発明による基板の実施例を示す説明図で
ある。 1、4.8・・・8i単結晶基板、2.5.9・・・M
gA1,0.エピタキシャルill、3.7.11・・
・KTNエピタキシャル展、第1 図 第2図 (b) 73図
1 to 3 are explanatory diagrams showing embodiments of the substrate according to the present invention. 1, 4.8...8i single crystal substrate, 2.5.9...M
gA1,0. Epitaxial ill, 3.7.11...
・KTN Epitaxial Exhibition, Figure 1 Figure 2 (b) Figure 73

Claims (4)

【特許請求の範囲】[Claims] (1)シリコン単結晶基板上に絶縁体膜が形成され、該
絶縁体膜上に化学式がKTa_xNb_1_−_xO_
3(ただし0≦x≦1.0)で表わされる誘電体層が形
成されていることを特徴とする光デバイス用基板。
(1) An insulating film is formed on a silicon single crystal substrate, and the chemical formula KTa_xNb_1_-_xO_
1. A substrate for an optical device, characterized in that a dielectric layer represented by 3 (0≦x≦1.0) is formed.
(2)シリコン単結晶基板上に形成される絶縁体膜がマ
グネシウム・アルミネート・スピネル)(MgAl_2
O_4)エピタキシャル膜である特許請求の範囲第1項
記載の光デバイス用基板。
(2) The insulator film formed on the silicon single crystal substrate is magnesium aluminate spinel) (MgAl_2
O_4) The optical device substrate according to claim 1, which is an epitaxial film.
(3)シリコン単結晶基板上に形成される絶縁体膜がマ
グネシウム・アルミネート・スピネル(MgAl_2O
_4)エピタキシャル膜と、さらにその上に形成される
マグネシア(MgO)エピタキシャル膜である特許請求
の範囲第1項記載の光デバイス用基板。
(3) The insulator film formed on the silicon single crystal substrate is made of magnesium aluminate spinel (MgAl_2O
_4) The optical device substrate according to claim 1, which comprises an epitaxial film and a magnesia (MgO) epitaxial film formed thereon.
(4)シリコン単結晶基板上に形成される絶縁体膜は該
シリコン基板表面に形成される二酸化シリコン(SiO
_2)層とこの上に形成される絶縁体エピタキシャル膜
とからなる特許請求の範囲第1項記載の光デバイス用基
板。
(4) The insulator film formed on the silicon single crystal substrate is silicon dioxide (SiO2) formed on the surface of the silicon substrate.
_2) The substrate for an optical device according to claim 1, comprising a layer and an insulator epitaxial film formed thereon.
JP7216885A 1985-04-05 1985-04-05 Substrate for optical device Granted JPS61232299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7216885A JPS61232299A (en) 1985-04-05 1985-04-05 Substrate for optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7216885A JPS61232299A (en) 1985-04-05 1985-04-05 Substrate for optical device

Publications (2)

Publication Number Publication Date
JPS61232299A true JPS61232299A (en) 1986-10-16
JPH0530800B2 JPH0530800B2 (en) 1993-05-10

Family

ID=13481437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7216885A Granted JPS61232299A (en) 1985-04-05 1985-04-05 Substrate for optical device

Country Status (1)

Country Link
JP (1) JPS61232299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068235A1 (en) * 2003-01-27 2004-08-12 Fujitsu Limited Optical deflection device, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068235A1 (en) * 2003-01-27 2004-08-12 Fujitsu Limited Optical deflection device, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0530800B2 (en) 1993-05-10

Similar Documents

Publication Publication Date Title
US6846428B2 (en) Thin film lithium niobate and method of producing the same
US6208453B1 (en) Oriented niobate ferroelectric thin films for electrical and optical devices
JPH06244407A (en) Multilayer structural body with (111) orientation buffer layer
US5209917A (en) Lithium niobate single crystal thin film and production method thereof
US5315432A (en) Thin film of lithium niobate single crystal
US5371812A (en) Waveguide type optical directional coupler
Demkov et al. Si-integrated ferroelectrics for photonics and optical computing
US6747787B2 (en) Optically functional device, single crystal substrate for the device and method for its use
US20020033993A1 (en) Optically functional device, single crystal substrate for the device and method for its use
JPS61232299A (en) Substrate for optical device
Ye et al. Highly c-axis oriented LiNbO3 thin film grown on SiO2/Si substrates by pulsed laser deposition
JPS6241311B2 (en)
Hiskes et al. Electro-optic materials by solid source MOCVD
JP4179452B2 (en) LiNbO3 oriented thin film forming method
CA1302848C (en) Process for making homogeneous lithium niobate
Mitsuyu et al. Rf-sputtered epitaxial films of Bi12TiO20 on Bi12GeO20 for optical waveguiding
JPH0333680B2 (en)
Akazawa Trials to achieve high-quality c-axis-oriented LiNbO3 thin films: Sputter-deposition on a-SiO2, ZnO/SiO2, quartz (0001), and SrTiO3 (111) substrates
JP2860800B2 (en) Method for producing lithium niobate single crystal thin film
Yogo et al. Synthesis of Oriented Ba2NaNb5O15 (BNN) Thin Films from an Alkoxy‐derived Precursor
Fukunishi et al. Properties of LiNbO3 Thin Films Fabricated by RF Sputtering
JPS5919915B2 (en) Liquid phase epitaxial growth method for electro-optic crystals
Furukawa et al. Improved properties of stoichiometric LiNbO3 for Electro-optic applications
JP3121361B2 (en) Ti-containing lithium niobate thin film and method for producing the same
JPH03218997A (en) Production of thin film of lithium niobate single crystal