JPH09321361A - Piezoelectric vibrator component and manufacture thereof - Google Patents

Piezoelectric vibrator component and manufacture thereof

Info

Publication number
JPH09321361A
JPH09321361A JP13044796A JP13044796A JPH09321361A JP H09321361 A JPH09321361 A JP H09321361A JP 13044796 A JP13044796 A JP 13044796A JP 13044796 A JP13044796 A JP 13044796A JP H09321361 A JPH09321361 A JP H09321361A
Authority
JP
Japan
Prior art keywords
film
single crystal
component
lead
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13044796A
Other languages
Japanese (ja)
Inventor
Ikuo Kato
郁夫 加藤
Hiroki Morikoshi
広樹 守越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP13044796A priority Critical patent/JPH09321361A/en
Publication of JPH09321361A publication Critical patent/JPH09321361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To expand the available range up to the high frequency band by using a Pb-contained Perovskite type ferroelectric single crystal film the c-axis of which is oriented in a direction perpendicular to the film surface for a piezoelectric material for making a piezoelectric vibrator component having a pair of electrodes opposed with this material inbetween. SOLUTION: A ferroelectric single crystal film 1 of a Pb-containing Perovskite type compd. is grown on a single crystal seed substrate 2 by dipping the substrate in a supersaturated melt of Pb-containing material. The substrate well matches the lattice const. of the film at an epitaxial growth temp., has a thermal expansion curve similar to that of the film and is little damaged by a soln. of this material. The compd. is shown by the formula (0<=a<x, x/y=0.8-1.1), and the spontaneous polarization (c-direction) is oriented perpendicular to the substrate surface. The film l is spontaneously polarized in c-axis, superior in dielectric property and formed from a melt below Curie point. Its baked product is usable in up to the high frequency band.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧電材料を用いた
高周波用圧電振動部品に係り、特に、圧電材料として鉛
含有ペロブスカイト型強誘電体単結晶膜を用いた圧電振
動部品及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency piezoelectric vibrating component using a piezoelectric material, and more particularly to a piezoelectric vibrating component using a lead-containing perovskite type ferroelectric single crystal film as a piezoelectric material and a method for manufacturing the same. .

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、圧電材料として焼結体を用いた圧電振動部品は広く
知られている。
2. Description of the Related Art Conventionally, a piezoelectric vibrating component using a sintered body as a piezoelectric material has been widely known.

【0003】この圧電振動部品としては、例えば、圧電
セラミックス基板の両面に対向する電極を形成し、前記
圧電セラミックス基板の厚み縦振動を利用した共振器が
挙げられる。このような共振器で共振周波数を80MH
z程度にするためには、基板の厚みを30μm程度にす
る必要があった。
An example of this piezoelectric vibration component is a resonator in which electrodes facing each other are formed on both sides of a piezoelectric ceramic substrate and the thickness longitudinal vibration of the piezoelectric ceramic substrate is utilized. With such a resonator, the resonance frequency is 80 MH
The thickness of the substrate had to be about 30 μm to achieve about z.

【0004】しかし、上記圧電材料として用いた焼結体
は、結晶粒界を有することや、空孔が存在することのた
めに、加工時に割れやクラックが発生するといった問題
があった。このため、上記のような高周波領域(60M
Hz程度以上の領域)に於いては、焼成体を用いた振動
部品の作製は不可能であった。
However, the sintered body used as the above-mentioned piezoelectric material has a problem that cracks or cracks are generated at the time of processing due to the presence of crystal grain boundaries and the existence of voids. Therefore, the high frequency range (60M
In the region above about Hz), it was impossible to manufacture a vibrating component using a fired body.

【0005】尚、圧電セラミックスを用いた共振周波数
80MHz程度の共振器を、第3次高調波を利用して作
製することはできるが、この場合、基板の厚みが、10
0μm程度になるので、共振器が大型化する。
A resonator having a resonance frequency of about 80 MHz using piezoelectric ceramics can be manufactured by utilizing the third harmonic, but in this case, the thickness of the substrate is 10
Since it is about 0 μm, the resonator becomes large.

【0006】従って、いずれにしても加工性の悪さや小
型化の問題は残されていた。
Therefore, in any case, problems of poor workability and miniaturization remain.

【0007】そこで、本発明は、圧電材料として鉛含有
ペロブスカイト型強誘電体単結晶膜を用い、焼成体では
不可能な高周波領域(焼成体の加工時に割れやクラック
が発生する高周波領域)まで使用可能で、小型化が容易
な圧電振動部品を提供することを目的とする。
Therefore, the present invention uses a lead-containing perovskite type ferroelectric single crystal film as a piezoelectric material and uses it even in a high frequency region (a high frequency region in which cracks or cracks occur during processing of the fired body) which is not possible with the fired body. An object of the present invention is to provide a piezoelectric vibrating component that is possible and easy to downsize.

【0008】尚、上記強誘電体単結晶膜は、鉛を含有
し、化学式ABO3(Aの部分(以下、Aサイトとい
う)に鉛を含有)で示さるペロブスカイト型結晶構造の
単結晶膜であり、顕著な誘電性、圧電性、光物性等を示
すことが知られている(セラミストのための電気物性入門、内
田老鶴圃、P.84(1990)・強誘電性と高温超伝導、P.52〜6
7、裳華房(1993))。上記誘電体としては、PbTiO3、(PbL
a)TiO3、Pb(TiZr)O3、(PbLa)(TiZr)O3等に代表される強
誘電体がある。これらの強誘電体は、その多くが、正方
晶の結晶構造を有し、c軸方向に自発分極するものであ
り、優れた誘電性、圧電性、光物性等を示す。
The ferroelectric single crystal film is a single crystal film containing lead and having a perovskite type crystal structure represented by the chemical formula ABO 3 (A part (hereinafter referred to as A site) contains lead). Yes, it is known to show remarkable dielectric properties, piezoelectric properties, optical properties, etc. (Introduction to electrical properties for ceramicists, Uchida Otsukaku, P.84 (1990) ・ Ferroelectricity and high temperature superconductivity, P.52 ~ 6
7, Yukabo (1993)). As the dielectric material, PbTiO 3 , (PbL
a) There are ferroelectric materials represented by TiO 3 , Pb (TiZr) O 3 , and (PbLa) (TiZr) O 3 . Most of these ferroelectrics have a tetragonal crystal structure and spontaneously polarize in the c-axis direction, and exhibit excellent dielectric properties, piezoelectric properties, optical properties, and the like.

【0009】これらの優れた特性を利用したデバイスと
しては、上述の圧電振動部品の他、誘電性を利用したコ
ンデンサ、圧電性を利用した圧電素子や振動子、光物性
を利用した光変調器や光スイッチ等が挙げられる。更
に、近年では誘電体メモリー素子への応用も検討されて
いる。又、この単結晶膜は、材料学的にも数々の利点を
有している(薄膜材料工学、P.4〜5、海文堂(1989))。
Devices utilizing these excellent characteristics include, in addition to the above-mentioned piezoelectric vibrating component, a capacitor utilizing dielectric properties, a piezoelectric element or oscillator utilizing piezoelectric properties, an optical modulator utilizing optical properties, and the like. An optical switch etc. are mentioned. Further, in recent years, application to a dielectric memory device has been studied. In addition, this single crystal film has many advantages in material science (thin film material engineering, P.4-5, Kaibundou (1989)).

【0010】しかし、これらのデバイスに於いて、良好
な特性を得るためには、膜質の良い強誘電体の単結晶膜
を形成する必要があるが、それには以下の問題があっ
た。
However, in order to obtain good characteristics in these devices, it is necessary to form a ferroelectric single crystal film of good film quality, which has the following problems.

【0011】上記強誘電体からなる膜の製造方法として
は、スパッタ法などの気相法やゾル・ゲル法などの液相
法が一般的であるが、これにより製造された膜は一般に
多結晶状態であるため、強誘電体にみられる自発分極の
方向は個々の結晶粒毎に異なり、全体として分極方向が
ランダムとなり、強誘電性をほとんど示さない。従っ
て、スパッタ法などの気相法やゾル・ゲル法などの液相
法で強誘電単結晶膜を形成した場合には、上記デバイス
に応用しても十分な特性を発揮することができなかっ
た。
As a method of producing a film made of the above ferroelectric substance, a vapor phase method such as a sputtering method or a liquid phase method such as a sol-gel method is generally used. The film produced by this method is generally polycrystalline. Since it is in the state, the direction of spontaneous polarization observed in the ferroelectric substance is different for each crystal grain, and the polarization direction is random as a whole, and almost no ferroelectric property is exhibited. Therefore, when a ferroelectric single crystal film was formed by a vapor phase method such as a sputtering method or a liquid phase method such as a sol-gel method, sufficient characteristics could not be exhibited even when applied to the above device. .

【0012】又、この改善策として、膜に垂直な方向に
電界印加等を行い、結晶粒のc軸方向を強制的に揃える
こと(以後これを分極操作と記す)がある。しかし、この
分極操作により結晶粒のc軸方向を強制的に揃えた場
合、結晶格子の変形による応力が発生し、膜内部にクラ
ックが発生したり、基板と膜とが剥離することがあり、
薄膜材料として上記デバイスに用いることができなかっ
た。
As a countermeasure for this, there is a method of applying an electric field in a direction perpendicular to the film to forcibly align the c-axis directions of the crystal grains (hereinafter referred to as polarization operation). However, when the c-axis directions of the crystal grains are forcibly aligned by this polarization operation, stress is generated due to the deformation of the crystal lattice, cracks may occur inside the film, or the substrate and the film may separate.
It could not be used as a thin film material in the above device.

【0013】又、J.J.A.P、vol.30、No.9B、P.2145〜2148
(1991)に於いては、MgO基板等を用いてスパッタ法等に
よりPbTiO3膜を成膜する場合に、成膜時の基板温度と成
膜された膜のキュリー点との温度差や、基板と膜との格
子定数差によって、膜面に平行に働く圧縮応力が発生
し、この圧縮応力によって膜面に垂直な方向に大部分の
c軸成分が向いている多結晶膜が得られることが示され
ている。
Also, JJAP, vol.30, No.9B, P.2145 ~ 2148
In (1991), when a PbTiO 3 film is formed by a sputtering method or the like using an MgO substrate or the like, the temperature difference between the substrate temperature during film formation and the Curie point of the formed film, the substrate The compressive stress acting in parallel to the film surface is generated due to the difference in lattice constant between the film and the film, and this compressive stress can provide a polycrystalline film in which most of the c-axis component is oriented in the direction perpendicular to the film surface. It is shown.

【0014】そして、J.Mat.Sci.Lett.、No.14、P.629〜6
32(1995)に於いては、上記圧縮応力が、成膜時の基板温
度と成膜された膜のキュリー点との温度差△Tが大きい
程強くなり、c軸配向度が大きくなることが示されてい
る。
And J. Mat. Sci. Lett., No. 14, P. 629-6.
32 (1995), the compressive stress increases as the temperature difference ΔT between the substrate temperature during film formation and the Curie point of the film formed increases, and the degree of c-axis orientation increases. It is shown.

【0015】しかし、上記デバイスに応用して良好な特
性を得るには、ほぼ100%のc軸配向度(以下、膜面
に垂直な方向にほぼ100%のc軸成分が向いている膜
をc軸配向膜という)が要求されるが、上記文献の記載
に従ってc軸配向膜を得るには、△Tを500℃程度に
する必要があり、この条件下で品質の良い膜を得ること
は困難である。
However, in order to obtain good characteristics when applied to the above-mentioned device, the degree of c-axis orientation is almost 100% (hereinafter, a film in which approximately 100% of the c-axis component is oriented in the direction perpendicular to the film surface is used. (referred to as a c-axis alignment film) is required, but in order to obtain a c-axis alignment film according to the description in the above document, it is necessary to set ΔT to about 500 ° C., and under this condition, a good quality film cannot be obtained. Have difficulty.

【0016】例えば、PbTiO3からなるc軸配向膜を成膜
する場合には、成膜時の基板温度を990℃という高温
にしなければならないが、この基板温度で成膜を行った
場合、成膜された膜からのPbOの再蒸発が著しくなり、
結晶完全性の高い膜を得ることができない。一方、結晶
完全性の高い、品質の良い膜が得られる基板温度は60
0℃程度とされるが、この基板温度ではc軸配向度がほ
ぼ100%のc軸配向膜を得ることができない。
For example, when forming a c-axis oriented film made of PbTiO 3 , the substrate temperature at the time of film formation must be as high as 990 ° C. When the film formation is performed at this substrate temperature, The re-evaporation of PbO from the deposited film becomes significant,
A film with high crystal perfection cannot be obtained. On the other hand, the substrate temperature at which a film with high crystal perfection and high quality is obtained is 60
Although it is set to about 0 ° C., a c-axis oriented film having a degree of c-axis orientation of almost 100% cannot be obtained at this substrate temperature.

【0017】以上述べたように鉛を含有するペロブスカ
イト型強誘電体で、完全なc軸配向膜を得ることは困難
であった。
As described above, it has been difficult to obtain a perfect c-axis oriented film with a perovskite type ferroelectric containing lead.

【0018】又、c軸配向度がほぼ100%のc軸配向
膜が得られたとしても、そのc軸配向膜が多結晶膜であ
れば、単結晶の場合ような高い特性が得られない(単結
晶(製造と展望)、内田老鶴圃、P.37〜40(1990))。例え
ば、多結晶膜を光デバイスに用いた場合、この多結晶膜
中を光が透過する際に、その結晶粒界における損失が大
きくなり、良好な特性が得られない。
Further, even if a c-axis oriented film having a c-axis oriented degree of almost 100% is obtained, if the c-axis oriented film is a polycrystalline film, high characteristics as in the case of a single crystal cannot be obtained. (Single crystal (manufacturing and prospect), Uchida Old Crane, P.37-40 (1990)). For example, when a polycrystalline film is used for an optical device, when light passes through the polycrystalline film, the loss at the crystal grain boundary becomes large, and good characteristics cannot be obtained.

【0019】又、一般に誘電体薄膜を基板上に形成する
場合に用いられるCVD、蒸着等の気相法、ゾル・ゲル
法、水熱合成法、液相エピタキシャル法、電着等の液相
法、スピンコート、ドクターブレード、スクリーン印刷
等の塗布法(固相法)についても以下に述べる問題があ
った。
Further, generally used for forming a dielectric thin film on a substrate, a vapor phase method such as CVD and vapor deposition, a sol-gel method, a hydrothermal synthesis method, a liquid phase epitaxial method, a liquid phase method such as electrodeposition. The coating method (solid-phase method) such as spin coating, doctor blade, and screen printing also has the following problems.

【0020】気相法(表面科学、vol.16、No.7、P.410〜414
(1995))によるものは、そのほとんどが結晶粒界をも
ち、単結晶ではなく、又、約1μm以上の膜厚の場合に
は、十分なc軸配向性をもったc軸配向膜が得られな
い。
Gas phase method (Surface science, vol.16, No.7, P.410-414
(1995)), most of them have a grain boundary, are not single crystals, and when the film thickness is about 1 μm or more, a c-axis oriented film having sufficient c-axis orientation is obtained. I can't.

【0021】ゾル・ゲル法では、得られる膜は多結晶状
になり、水熱合成法(J.J.A.P、vol.30、No.9B、P.2174〜21
77、(1991))では、微細な結晶の集合体しか得られてい
ない。
In the sol-gel method, the obtained film becomes polycrystalline, and the hydrothermal synthesis method (JJAP, vol. 30, No. 9B, P. 2174-21) is used.
77, (1991)), only aggregates of fine crystals were obtained.

【0022】塗布法(日本セラミックス協会学術論文誌103巻N
o.7、P.660〜663(1995))の場合も、得られる膜は多結晶
状になる。
Coating Method (Journal of the Ceramic Society of Japan, Volume 103 N
O.7, P.660 to 663 (1995)), the obtained film becomes polycrystalline.

【0023】ところで、液相エピタキシャル法による成
膜については液相−固相平衡に近い状態で成長がおこな
われるため、一般に高品質の単結晶膜が得られるとされ
ている(ELEMENTARY CRYSTAL GROWTH、Saan Publishers、
P.489〜520、(1994))。
By the way, in the film formation by the liquid phase epitaxial method, since the growth is performed in a state close to the liquid phase-solid phase equilibrium, it is generally said that a high quality single crystal film can be obtained (ELEMENTARY CRYSTAL GROWTH, Saan). Publishers,
P.489-520, (1994)).

【0024】この方法による酸化物単結晶膜の作製例と
しては、GGG(ガドリニウム・ガリウム・ガーネッ
ト)基板上のガーネットフェライト、LiNbO3又は
LiTaO3基板上のLiNbO3、LiTaO3(日本結
晶学会誌第31巻、P.105(1989))や、高温超伝導材料(App
l.Phys.Lett.、vol.66(11)、No.13、P.1421、1995)等が知ら
れている。
As an example of producing an oxide single crystal film by this method, garnet ferrite on a GGG (gadolinium gallium garnet) substrate, LiNbO 3 or LiTaO 3 on a LiNbO 3 or LiTaO 3 substrate (LiTaO 3 31 (P.105 (1989)) and high temperature superconducting materials (App
L. Phys. Lett., vol. 66 (11), No. 13, P. 1421, 1995) and the like are known.

【0025】しかし、この方法によってc軸配向膜であ
る鉛含有ペロブスカイト強誘電体単結晶膜を形成するに
は、以下の条件を満たす必要となるが、これら全ての条
件を満たすことは容易でなかった。
However, in order to form a lead-containing perovskite ferroelectric single crystal film which is a c-axis oriented film by this method, the following conditions must be met, but it is not easy to satisfy all of these conditions. It was

【0026】まず、得られる鉛ペロブスカイト強誘電体
のキュリー点以下の温度で成膜が可能なメルト(溶液又
は溶融液)を作製する(メルト組成を見いだす)必要が
ある。つまり、メルトの過冷却温度、つまり液相エピタ
キシャル法により成膜(エピタキシャル成長)を行うと
きの温度が、膜のキュリー点より低い温度でなければな
らない。
First, it is necessary to prepare (find the melt composition) a melt (solution or melt) capable of forming a film at a temperature below the Curie point of the obtained lead perovskite ferroelectric. That is, the supercooling temperature of the melt, that is, the temperature at which film formation (epitaxial growth) is performed by the liquid phase epitaxial method must be lower than the Curie point of the film.

【0027】しかし、一般に液相エピタキシャル法で
は、500℃以下での成膜が可能なメルト(溶液又は溶
融液)を作製すること(メルト組成を見いだすこと)が
困難である。それは、目的組成が生成するメルト組成
や、低温でエピタキシャル成長可能な範囲を示した状態
図はほとんどないため、この条件を満たすメルト組成の
検討することが困難なためである(日本結晶学会誌第20
巻、No.4、P.389(1993))。
However, in the liquid phase epitaxial method, it is generally difficult to prepare a melt (solution or melt) capable of forming a film at 500 ° C. or lower (to find out the melt composition). This is because it is difficult to study the melt composition satisfying this condition because there is almost no phase diagram showing the melt composition that the target composition produces and the range in which epitaxial growth can be performed at low temperatures (Journal of the Crystallographic Society of Japan, No. 20).
Vol. 4, No. 4, P. 389 (1993)).

【0028】尚、鉛ペロブスカイト強誘電体のキュリー
点以上の温度で成膜した場合、成膜後の冷却過程におい
て膜の結晶構造変化が起こり、その結果、大きな内部応
力によるクラックが発生する。又、基板に垂直な方向に
c軸成分とa軸成分の混在する90°ドメイン構造とな
り、完全なc軸配向とはならない。
When a film is formed at a temperature equal to or higher than the Curie point of the lead perovskite ferroelectric, the crystal structure of the film changes in the cooling process after the film formation, and as a result, cracks due to large internal stress occur. In addition, a 90 ° domain structure in which a c-axis component and an a-axis component are mixed in a direction perpendicular to the substrate, does not result in perfect c-axis orientation.

【0029】次に、液相エピタキシャル法による成膜
(エピタキシャル成長)に於いては、メルトと基板が高
温状態で接触するが、メルトはこの際に基板と反応しな
いものでなければならない(日本結晶学会誌 第31巻、P.1
05(1989))。
Next, in the film formation (epitaxial growth) by the liquid phase epitaxial method, the melt and the substrate come into contact with each other at a high temperature, but the melt must not react with the substrate at this time (The Crystallographic Society of Japan). Magazine Volume 31, P.1
05 (1989)).

【0030】しかし、一般的なフラックスを用いたメル
トでは、このフラックス成分により基板がメルト中で溶
解作用を受けるため(Journal of Crystal Growth、vol.
3 No.4、P.443〜444(1968))、フラックス成分についても
慎重に検討する必要がある。
However, in a melt using a general flux, the flux component causes the substrate to dissolve in the melt (Journal of Crystal Growth, vol.
3 No. 4, P.443-444 (1968)), it is also necessary to carefully consider the flux components.

【0031】又、本発明にかかる強誘電体のように鉛を
含有する化合物を必須の主成分とするものは、PbO、
PbF2、PbCl2等の自己フラックスを用いることが
望ましいが、これらは高温では蒸気圧が高いため、メル
ト組成が変化してしまい、液相の過冷却状態を維持する
ことが困難である。更に、鉛を含有するフラックスは基
板に対する浸食性が特に高いため、メルト中の基板の溶
解現象が顕著に現れてしまう。
Further, as the ferroelectric substance according to the present invention, a compound containing a lead-containing compound as an essential main component is PbO,
PbF 2, it is preferable to use a self-flux such as PbCl 2, since these high vapor pressure at high temperature, melt composition will vary, it is difficult to maintain the supercooled state of the liquid phase. Further, since the flux containing lead has a particularly high corrosiveness with respect to the substrate, the phenomenon of dissolution of the substrate in the melt appears remarkably.

【0032】以上に述べたように、優れた誘電性、圧電
性、光物性等を示す鉛含有ペロブスカイト強誘電体単結
晶膜を上記デバイスに利用するために、上記の問題を解
決する必要がある。この解決策として、本発明に於いて
は、鉛ペロブスカイト強誘電体のキュリー点以下の温度
で成膜が可能なメルト(溶液又は溶融液)組成を見いだ
し、そのメルトを用い液相エピタキシャル法により成膜
をおこなっている。
As described above, in order to use the lead-containing perovskite ferroelectric single crystal film exhibiting excellent dielectric properties, piezoelectric properties, optical properties and the like in the above device, it is necessary to solve the above problems. . As a solution to this problem, in the present invention, a melt (solution or melt) composition capable of forming a film at a temperature equal to or lower than the Curie point of a lead perovskite ferroelectric is found, and the melt is formed by a liquid phase epitaxial method. The film is made.

【0033】尚、この液相エピタキシャル法による成膜
は、成膜速度がMO-CVD法やスパッタ法に比して、
成膜速度が速い(10〜100倍程度)ため、工業化に
適している。
The film formation by the liquid phase epitaxial method has a film formation rate higher than that of the MO-CVD method or the sputtering method.
Since the film forming speed is fast (about 10 to 100 times), it is suitable for industrialization.

【0034】又、鉛ペロブスカイト強誘電体の圧電定数
(d33)は、セラミック材料の2〜3倍程度である。更
に、セラミック材料のように粒界やポアがないため加工
性にもすぐれている。
The piezoelectric constant (d 33 ) of the lead perovskite ferroelectric substance is about 2 to 3 times that of the ceramic material. Further, it has excellent workability because it does not have grain boundaries or pores unlike ceramic materials.

【0035】又、鉛ペロブスカイト強誘電体の電気光学
定数は、ニオブ酸リチウム(LiNbO3)の4から3倍程度
である。
The electro-optic constant of the lead perovskite ferroelectric is about 4 to 3 times that of lithium niobate (LiNbO 3 ).

【0036】[0036]

【課題を解決するための手段】請求項1記載の圧電振動
部品は、圧電材料と、該圧電材料を挟んで対向する少な
くとも1対の電極からなる圧電振動部品に於いて、前記
圧電材料が、c軸が膜面に垂直な方向に配向している鉛
含有ペロブスカイト型強誘電体単結晶膜であることを特
徴とするものである。
A piezoelectric vibrating component according to claim 1 is a piezoelectric vibrating component comprising a piezoelectric material and at least one pair of electrodes facing each other with the piezoelectric material sandwiched therebetween. It is a lead-containing perovskite-type ferroelectric single crystal film in which the c-axis is oriented in a direction perpendicular to the film surface.

【0037】請求項2記載の圧電振動部品は、請求項1
記載の圧電振動部品に於いて、上記強誘電体単結晶膜の
組成式が、 (Pbx-aM1a)M2yz であり、該組成式のM1は、アルカリ金属、アルカリ土
類金属、ビスマス又はランタンの少なくとも1種以上を
表し、M2は、チタン、ジルコン又はチタンとジルコン
の双方を主成分とする元素を表すことを特徴とするもの
である。
A piezoelectric vibrating component according to a second aspect is the first aspect.
In the piezoelectric vibrating component described above, the composition formula of the ferroelectric single crystal film is (Pb xa M1 a ) M2 y O z , and M1 of the composition formula is an alkali metal, an alkaline earth metal or bismuth. Alternatively, M2 represents at least one kind of lanthanum, and M2 represents titanium, zircon, or an element containing both titanium and zircon as a main component.

【0038】請求項3記載の圧電振動部品の製造方法
は、過冷却温度が成膜される強誘電体単結晶膜のキュリ
ー点以下であるメルト中で、単結晶種基板上に鉛含有ペ
ロブスカイト型強誘電体単結晶膜をエピタキシャル成長
させる工程と、前記単結晶種基板にエッチング処理を施
し、前記強誘電体単結晶膜の該単結晶種基板側の面を露
出させる工程と、前記強誘電体単結晶膜の両面に、対向
する少なくとも1対の電極を形成する工程とからなるこ
とを特徴とするものである。
According to a third aspect of the present invention, there is provided a method of manufacturing a piezoelectric vibrating component, wherein a perovskite-type lead-containing type is provided on a single crystal seed substrate in a melt having a supercooling temperature lower than the Curie point of a ferroelectric single crystal film to be formed. A step of epitaxially growing a ferroelectric single crystal film; a step of subjecting the single crystal seed substrate to an etching treatment to expose a surface of the ferroelectric single crystal film on the single crystal seed substrate side; And a step of forming at least one pair of electrodes facing each other on both sides of the crystal film.

【0039】請求項4記載の圧電振動部品の製造方法
は、請求項3記載の圧電振動部品の製造方法に於いて、
上記メルトが、酸化鉛とフッ化鉛を8:2〜4:6の範
囲で混合した鉛供給成分とチタン供給成分からなり、か
つ前記チタン供給成分を、前記鉛供給成分の鉛成分総モ
ル数に対して0.02〜0.15のモル比で含有するこ
とを特徴とするものである。
A method of manufacturing a piezoelectric vibrating component according to claim 4 is the same as the method of manufacturing a piezoelectric vibrating component according to claim 3,
The melt comprises a lead supply component and a titanium supply component in which lead oxide and lead fluoride are mixed in a range of 8: 2 to 4: 6, and the titanium supply component is the total number of moles of the lead component of the lead supply component. It is characterized in that it is contained in a molar ratio of 0.02 to 0.15.

【0040】請求項5記載の圧電振動部品の製造方法
は、請求項4記載の圧電振動部品の製造方法に於いて、
上記メルトが、アルカリ金属化合物、アルカリ土類金属
化合物、ジルコニウム化合物、ランタン化合物、希土類
元素化合物のうちの少なくとも1種類を、鉛供給成分の
鉛成分総モル数に対して0.01〜0.6のモル比で含
有することを特徴とするものである。
A method of manufacturing a piezoelectric vibrating component according to claim 5 is the same as the method of manufacturing a piezoelectric vibrating component according to claim 4.
The melt contains at least one kind selected from an alkali metal compound, an alkaline earth metal compound, a zirconium compound, a lanthanum compound, and a rare earth element compound in an amount of 0.01 to 0.6 with respect to the total number of moles of the lead component of the lead supply component. It is characterized in that it is contained in a molar ratio of.

【0041】請求項6記載の圧電振動部品の製造方法
は、請求項4記載の圧電振動部品の製造方法に於いて、
上記メルトが、ホウ素化合物、ビスマス化合物、アルカ
リ金属化合物、アルカリ土類金属化合物のうちの少なく
とも1種類を、鉛供給成分の鉛成分総モル数に対して
0.0125〜1.00のモル比で含有することを特徴
とするものである。
A method for manufacturing a piezoelectric vibrating component according to claim 6 is the same as the method for manufacturing a piezoelectric vibrating component according to claim 4.
The melt comprises at least one of a boron compound, a bismuth compound, an alkali metal compound and an alkaline earth metal compound in a molar ratio of 0.0125 to 1.00 with respect to the total number of moles of the lead component of the lead supplying component. It is characterized by containing.

【0042】請求項7記載の圧電振動部品の製造方法
は、請求項3乃至6記載のいずれかの圧電振動部品の製
造方法に於いて、上記単結晶種基板として、単位結晶格
子の少なくとも1辺の長さが、3.50〜4.30A又は
5.00〜6.00Aの範囲にあるものを用いることを
特徴とするものである。
According to a seventh aspect of the present invention, there is provided a method of manufacturing a piezoelectric vibrating component according to any one of the third to sixth aspects, wherein the single crystal seed substrate is at least one side of a unit crystal lattice. Is used in the range of 3.50 to 4.30 A or 5.00 to 6.00 A.

【0043】請求項8記載の圧電振動部品の製造方法
は、請求項3乃至6記載のいずれかの圧電振動部品の製
造方法に於いて、上記単結晶種基板として、チタン酸ス
トロンチウム(SrTiO3)、酸化マグネシウム(MgO)、アル
ミン酸ランタン(LaAlO3)、アルミン酸イットリウム(YAl
O3)、アルミン酸ネオジウム(NdAlO3)、ガリウム酸ラン
タン(LaGaO3)、ガリウム酸ネオジウム(NdGaO3)、ガリウ
ム酸プラセオジウム(PrGaO3)、ガリウム酸ストロンチウ
ムランタン(LaSrGaO4)、サファイア(Al2O3)等の単結晶
基板、又は、その構成元素の一部を他の元素で置換した
ものを用いることを特徴とするものである。
A method of manufacturing a piezoelectric vibrating component according to claim 8 is the method of manufacturing a piezoelectric vibrating component according to any one of claims 3 to 6, wherein the single crystal seed substrate is strontium titanate (SrTiO 3 ). , Magnesium oxide (MgO), lanthanum aluminate (LaAlO 3 ), yttrium aluminate (YAl
O 3 ), neodymium aluminate (NdAlO 3 ), lanthanum gallate (LaGaO 3 ), neodymium gallate (NdGaO 3 ), praseodymium gallate (PrGaO 3 ), strontium lanthanum gallate (LaSrGaO 4 ), sapphire (Al 2 O) 3 ) or the like, or a substrate obtained by substituting a part of its constituent elements with another element.

【0044】[0044]

【発明の実施の態様】本発明にかかる圧電振動部品は、
例えば、図1に示したように単結晶種基板2上に成膜さ
れた強誘電体単結晶膜1の表面に電極3a、裏面(単結
晶種基板側の面)に電極3bを形成した構成になってい
る。
BEST MODE FOR CARRYING OUT THE INVENTION A piezoelectric vibrating component according to the present invention comprises:
For example, as shown in FIG. 1, a structure in which an electrode 3a is formed on the front surface of the ferroelectric single crystal film 1 formed on the single crystal seed substrate 2 and an electrode 3b is formed on the back surface (surface on the single crystal seed substrate side). It has become.

【0045】次に、後述する液相エピタキシャル法によ
り単結晶種基板上に成膜した鉛含有ペロブスカイト型強
誘電体単結晶膜を用いて、圧電振動部品を作製する工程
について説明する。
Next, a process for producing a piezoelectric vibrating component using a lead-containing perovskite type ferroelectric single crystal film formed on a single crystal seed substrate by a liquid phase epitaxial method described later will be described.

【0046】まず、単結晶種基板2にエッチング加工を
施し、強誘電体単結晶膜1の裏面(単結晶種基板側の
面)を露出させる。次に、強誘電体単結晶膜1の表面と
裏面に、蒸着法又はスパッタリング法等により表面電極
3aと裏面電極3bを形成し、同時にこれらと接続する
引出電極3c、3dを振動領域外に設ける。
First, the single crystal seed substrate 2 is subjected to etching to expose the back surface (the surface on the single crystal seed substrate side) of the ferroelectric single crystal film 1. Next, the front surface electrode 3a and the back surface electrode 3b are formed on the front surface and the back surface of the ferroelectric single crystal film 1 by the vapor deposition method or the sputtering method, and at the same time, the extraction electrodes 3c and 3d connected to these are provided outside the vibration region. .

【0047】以上のような工程により、圧電振動部品を
容易に作製することができる次に、上記鉛含有ペロブス
カイト型強誘電体単結晶膜及びその製造方法について説
明する。
The piezoelectric vibrating component can be easily manufactured by the above steps. Next, the lead-containing perovskite type ferroelectric single crystal film and the manufacturing method thereof will be described.

【0048】[鉛含有ペロブスカイト型強誘電体単結晶
膜について]上記鉛含有ペロブスカイト型強誘電体単結
晶膜は、c軸配向度が高い、鉛を含有するペロブスカイ
ト型構造の単結晶膜である。ここで、ペロブスカイト型
構造とは、一般式ABOzで示される化合物のとる結晶構造
の1形式であって、代表的化合物として灰チタン石(CaT
iO3)が知られている。上記一般式において、A及びBは
陽イオンを表し、結晶が化学量論比を構成する場合は、
A/Bモル比は1であり、zは3である。
[Lead-Containing Perovskite-Type Ferroelectric Single Crystal Film] The lead-containing perovskite-type ferroelectric single crystal film is a lead-containing perovskite-type structure single crystal film having a high degree of c-axis orientation. Here, the perovskite structure is one type of the crystal structure of a compound represented by the general formula ABO z , and a typical compound is perovskite (CaT).
iO 3 ) is known. In the above general formula, A and B represent cations, and when the crystal constitutes a stoichiometric ratio,
The A / B molar ratio is 1 and z is 3.

【0049】しかし、通常は、正確にこのような組成比
となることは稀であるが、A/Bモル比が0.8〜1.1の
範囲から逸脱すると結晶品質が低下すると共に、絶縁性
の確保が困難となる。尚、zはA/Bモル比が決定すれ
ば、上記一般式で示される結晶中の総電荷量が0になる
ように決定される。
However, normally, it is rare that the composition ratio is exactly as described above, but when the A / B molar ratio deviates from the range of 0.8 to 1.1, the crystal quality is deteriorated and the insulating property is deteriorated. It becomes difficult to secure the sex. It should be noted that z is determined so that the total charge amount in the crystal represented by the above general formula becomes 0 when the A / B molar ratio is determined.

【0050】又、上記強誘電体単結晶膜は、鉛含有ペロ
ブスカイト型化合物であるため、その組成式は下記のよ
うに表わすことができる。
Since the ferroelectric single crystal film is a lead-containing perovskite type compound, its composition formula can be expressed as follows.

【0051】(Pbx-aM1a)M2yz・・・(1) この組成式(1)に於いて、a、xは0≦a<xの関係
を、x、yはx/y=0.8〜1.1の関係を満たす。
zは2.8〜3.2の範囲に含まれ、酸素原子の一部が
塩素原子やふっ素原子などのハロゲン原子で置換されて
いても良い。
(Pb xa M1 a ) M2 y O z (1) In this composition formula (1), a and x have a relationship of 0 ≦ a <x, and x and y have x / y = The relationship of 0.8 to 1.1 is satisfied.
z is included in the range of 2.8 to 3.2, and a part of oxygen atoms may be replaced with a halogen atom such as a chlorine atom or a fluorine atom.

【0052】又、M1は通常一価、二価、又は三価の元
素を表し、例えばアルカリ金属、アルカリ土類金属、ビ
スマス、ランタン等又はこれらの組合せが挙げられる
が、これらの中でリチウム、ナトリウム、バリウム、ス
トロンチウム、カルシウム、マグネシウム、ビスマス、
ランタンが好適である。
M1 usually represents a monovalent, divalent, or trivalent element, and examples thereof include alkali metals, alkaline earth metals, bismuth, lanthanum, and the like, or a combination thereof. Among these, lithium, Sodium, barium, strontium, calcium, magnesium, bismuth,
Lanthanum is preferred.

【0053】又、M2は、通常チタンであるが、その一
部がジルコニウム、スズ、ニオブ等で置換されていても
良い。
M2 is usually titanium, but part of it may be replaced with zirconium, tin, niobium or the like.

【0054】又、上記強誘電体単結晶膜は、自発分極方
位(c軸)が基板に垂直な方向に膜成長したものであっ
て、その膜厚は少なくとも2μm以上であり、成膜した
状態で後加工(表面加工)することなく平滑な表面を有
するものである。
The ferroelectric single crystal film is a film grown in a direction in which the spontaneous polarization azimuth (c-axis) is perpendicular to the substrate, and the film thickness is at least 2 μm or more. It has a smooth surface without post-processing (surface processing).

【0055】尚、膜厚については、実用性、経済性及び
膜形成の容易さなどの面から、膜厚は2〜100μmの
範囲が好ましく、特に5〜70μmの範囲が好適であ
る。ここで、前記膜厚は、膜形成後に膜の断面を顕微鏡
で観察し、0.1mm間隔で10点を測定して得た数値の
平均値である。
The film thickness is preferably in the range of 2 to 100 μm, and particularly preferably in the range of 5 to 70 μm from the viewpoints of practicality, economy and easiness of film formation. Here, the film thickness is the average value of the numerical values obtained by observing the cross section of the film with a microscope after forming the film and measuring 10 points at 0.1 mm intervals.

【0056】[鉛含有ペロブスカイト型強誘電体単結晶
膜の製造方法について]次に、液相エピタキシャル法に
よる上記鉛含有ペロブスカイト型強誘電体単結晶膜の製
造方法について説明する。ここで、液相エピタキシャル
法とは、過冷却状態もしくは過飽和状態にあるメルト
(溶液又は溶融液)中に単結晶種基板を浸漬し、この基
板上にエピタキシャルな結晶を成長させる方法である。
[Manufacturing Method of Lead-Containing Perovskite Type Ferroelectric Single Crystal Film] Next, a manufacturing method of the lead-containing perovskite type ferroelectric single crystal film by the liquid phase epitaxial method will be described. Here, the liquid phase epitaxial method is a method in which a single crystal seed substrate is immersed in a melt (solution or melt) in a supercooled state or a supersaturated state to grow an epitaxial crystal on this substrate.

【0057】上記単結晶種基板としては、エピタキシャ
ル成長温度における膜の格子定数との整合性が良く、か
つ熱膨張曲線も膜のそれに近いものであって、鉛含有原
料溶融液により損傷を受けにくいものが用いられる。
尚、膜の格子定数との整合性が良くない基板を用いる
と、膜が多結晶状になったり、全く成長しない場合があ
り、又、熱膨張曲線の差異が大きいと、熱膨脹の違いに
よる応力によって、膜クラックや剥離が生じることがあ
る。
The above-mentioned single crystal seed substrate has good conformity with the lattice constant of the film at the epitaxial growth temperature, has a thermal expansion curve close to that of the film, and is not easily damaged by the lead-containing raw material melt. Is used.
If a substrate that does not match the lattice constant of the film is used, the film may become polycrystalline or may not grow at all, and if the difference in the thermal expansion curves is large, the stress due to the difference in thermal expansion may May cause film cracking or peeling.

【0058】上記単結晶基板と膜の格子定数の整合をと
るためには、単位結晶格子a、b、cの少なくとも2辺の
長さが3.50〜4.30Aである単結晶種基板、又
は、その値に約20.5(2の平方根に近い値)をかけ
た、5.00〜6.00Aの範囲にある単結晶基板を用
いる必要がある。ここで、5.00〜6.00Aの範囲
にある単結晶基板を用いた場合には、膜の単位格子の対
角線との整合がとれ、エピタキシャル成長が可能にな
る。
In order to match the lattice constants of the single crystal substrate and the film, a single crystal seed substrate in which at least two sides of the unit crystal lattices a, b and c have a length of 3.50 to 4.30 A, Alternatively, it is necessary to use a single crystal substrate in the range of 5.00 to 6.00 A, which is obtained by multiplying the value by about 2 0.5 (a value close to the square root of 2). Here, when a single crystal substrate in the range of 5.00 to 6.00 A is used, it can be matched with the diagonal line of the unit cell of the film, and epitaxial growth can be performed.

【0059】ところで、結晶軸の方向を揃える場合、基
板に平行な方向にa軸を揃えるか、又はc軸を揃えれば
よいが、c軸が基板面に垂直な方向に配向しているもの
の方が、圧電素子等のデバイスに用いたときに、高い特
性が得られるため、上記単結晶種基板として、強誘電体
単結晶膜のa軸及びb軸と格子定数の近い基板を用いて
いる。かかる格子定数を有する基板を用いることによっ
て、強誘電体単結晶膜のc軸を、基板面に垂直な方向に
揃えることができる。
By the way, when the directions of the crystal axes are aligned, the a-axis may be aligned in the direction parallel to the substrate, or the c-axis may be aligned, but the one in which the c-axis is aligned in the direction perpendicular to the substrate surface. However, since high characteristics are obtained when used in a device such as a piezoelectric element, a substrate having a lattice constant close to that of the a-axis and the b-axis of the ferroelectric single crystal film is used as the single crystal seed substrate. By using the substrate having such a lattice constant, the c-axis of the ferroelectric single crystal film can be aligned in the direction perpendicular to the substrate surface.

【0060】具体的には、チタン酸ストロンチウム(SrT
iO3)、酸化マグネシウム(MgO)、アルミン酸ランタン(La
AlO3)、アルミン酸イットリウム(YAlO3)、アルミン酸ネ
オジウム(NdAlO3)、ガリウム酸ランタン(LaGaO3)、ガリ
ウム酸ネオジウム(NdGaO3)、ガリウム酸プラセオジウム
(PrGaO3)、ガリウム酸ストロンチウムランタン(LaSrGaO
4)、サファイア(Al2O3)等の単結晶種基板、又は、その
構成元素の一部を他の元素で置換したものを用いること
ができるが、チタン酸ストロンチウム(SrTiO3)、酸化マ
グネシウム(MgO)、アルミン酸ランタン(LaAlO3)の単結
晶種基板は、鉛原料溶融液による損傷を受けにくいた
め、鉛を含有する強誘電体単結晶膜を成膜する単結晶種
基板として好適である。
Specifically, strontium titanate (SrT
iO 3 ), magnesium oxide (MgO), lanthanum aluminate (La
AlO 3 ), yttrium aluminate (YAlO 3 ), neodymium aluminate (NdAlO 3 ), lanthanum gallate (LaGaO 3 ), neodymium gallate (NdGaO 3 ), praseodymium gallate
(PrGaO 3 ), strontium lanthanum gallate (LaSrGaO 3
4 ), a single crystal seed substrate such as sapphire (Al 2 O 3 ) or a substrate in which some of its constituent elements are replaced with other elements can be used, but strontium titanate (SrTiO 3 ) and magnesium oxide can be used. (MgO) and lanthanum aluminate (LaAlO 3 ) single crystal seed substrates are less likely to be damaged by the lead raw material melt, and thus are suitable as single crystal seed substrates for forming a ferroelectric single crystal film containing lead. is there.

【0061】次に、上記溶液又は溶融液(メルト)の作
製方法について説明する。
Next, a method for producing the above solution or melt will be described.

【0062】まず、液相エピタキシャル法により形成さ
れる強誘電体単結晶膜が、上記組成式(1)で示される
組成になるように、原料混合物を調製する方法について
説明する。この原料混合物は、通常、鉛供給成分とチタ
ン供給成分を基本成分とする。
First, a method of preparing the raw material mixture so that the ferroelectric single crystal film formed by the liquid phase epitaxial method has the composition represented by the above composition formula (1) will be described. This raw material mixture usually has a lead supply component and a titanium supply component as basic components.

【0063】上記鉛供給成分としては、例えば酸化鉛(P
bO、PbO2、Pb3O4等)とフッ化鉛(PbF2)の割合をPbのモ
ル比に換算して、(酸化鉛:フッ化鉛=)8:2から
4:6の範囲で含有するものを用いることができる。
As the lead supply component, for example, lead oxide (P
bO, PbO 2 , Pb 3 O 4 etc.) and lead fluoride (PbF 2 ) ratio converted to Pb molar ratio (lead oxide: lead fluoride =) in the range of 8: 2 to 4: 6. What is contained can be used.

【0064】上記チタン供給成分としては、例えば酸化
チタン(TiO2)を用いることができ、Ti原子の割合が鉛
供給成分に含まれるPbの総モル数に対して0.02か
ら0.15のモル比の範囲で含有されるように調製す
る。この割合が0.02未満では膜品質が低下し、実用
に供することが困難となり、0.15より大きい場合に
は、成膜時の温度(膜育成温度)が一般的な鉛系強誘電
体のキュリー点の上限である500℃を越え、c軸配向
膜が得られない。
As the titanium supply component, for example, titanium oxide (TiO 2 ) can be used, and the ratio of Ti atoms is 0.02 to 0.15 with respect to the total number of moles of Pb contained in the lead supply component. It is prepared so as to be contained in the range of molar ratio. If this ratio is less than 0.02, the film quality is deteriorated and it is difficult to put it into practical use. If it is more than 0.15, the temperature during film formation (film growth temperature) is a general lead-based ferroelectric. Above the upper limit of the Curie point of 500 ° C., a c-axis oriented film cannot be obtained.

【0065】又、上記鉛供給成分とチタン供給成分とか
ら成る基本組成に対し、所望により結晶育成を向上させ
るための成分や、結晶育成温度を制御(過冷却状態を制
御)するための成分(以下、結晶育成を向上させるため
や、結晶育成温度を制御するための成分を、結晶育成に
かかる成分という)を加えてもよい。
Further, with respect to the basic composition consisting of the lead supply component and the titanium supply component, a component for improving crystal growth and a component for controlling the crystal growth temperature (controlling the supercooled state) as desired ( Hereinafter, a component for improving crystal growth or controlling a crystal growth temperature may be added as a component relating to crystal growth).

【0066】上記結晶育成にかかる成分としては、酸化
ホウ素(B2O3)等を用いたホウ素供給成分、又は酸化ビ
スマス(Bi2O3)等を用いたビスマス供給成分が好適であ
るが、酸化カリウム(K2O)、フッ化カリウム(KF)(カリ
ウム供給成分)等のアルカリ金属化合物を用いたアルカ
リ金属供給成分、酸化カルシウム(CaO)(カルシウム供
給成分)等のアルカリ土類金属化合物を用いたアルカリ
土類金属供給成分を用いてもよい。又、これらの結晶育
成にかかる成分は、2種以上用いてもよい。
As the component for growing the crystal, a boron supplying component using boron oxide (B 2 O 3 ) or the like, or a bismuth supplying component using bismuth oxide (Bi 2 O 3 ) or the like is preferable. Alkali metal supply components using alkali metal compounds such as potassium oxide (K 2 O) and potassium fluoride (KF) (potassium supply component), alkaline earth metal compounds such as calcium oxide (CaO) (calcium supply component) The alkaline earth metal supply component used may be used. Further, two or more kinds of these components for crystal growth may be used.

【0067】上記結晶育成にかかる成分には、次に挙げ
るような作用効果がある。
The components relating to the crystal growth described above have the following effects.

【0068】上記ホウ素供給成分については、溶融液の
粘性を高める作用、鉛供給成分の蒸発を抑える作用、結
晶育成温度を低下させる作用、過冷却状態を安定化する
作用を有する。しかし、ホウ素供給成分を加える量によ
っては、メルトの粘性が過度に増大し、基板への溶質の
供給が妨げられ、好ましくない。
With respect to the above-mentioned boron supply component, it has the action of increasing the viscosity of the melt, the action of suppressing the evaporation of the lead supply component, the action of lowering the crystal growth temperature, and the action of stabilizing the supercooled state. However, depending on the amount of the boron supply component added, the viscosity of the melt excessively increases and the supply of solute to the substrate is hindered, which is not preferable.

【0069】このような場合に、ビスマス供給成分、ア
ルカリ金属供給成分、アルカリ土類供給成分は、粘性を
低下させる作用があるため、これらの成分を加えること
により過度に増大した粘性を、好ましい粘性に制御する
ことができる。
In such a case, since the bismuth supply component, the alkali metal supply component, and the alkaline earth supply component have an action of lowering the viscosity, the excessively increased viscosity due to the addition of these components can be reduced to a preferable viscosity. Can be controlled.

【0070】尚、上記結晶育成にかかる成分のうち、膜
中に取り込まれる成分については、その強誘電体単結晶
膜を用いる用途に応じて選択する必要がある。又、膜中
に結晶育成にかかる成分を含ませたくない場合には、膜
中に取り込まれない成分であるホウ素やカリウムからな
る成分用いればよい。ここで、ホウ素やカリウムが形成
された単結晶膜中には含まれないのは、ホウ素について
はイオン半径が極めて小さいためであり、又、カリウム
についてはPbに比べイオン半径が極めて大きいためと
考えられる。
Of the above-mentioned components for crystal growth, the components to be taken into the film must be selected according to the use of the ferroelectric single crystal film. Further, when it is not desired to include a component for crystal growth in the film, a component made of boron or potassium which is a component that is not incorporated in the film may be used. Here, it is considered that boron and potassium are not contained in the formed single crystal film because boron has an extremely small ionic radius, and potassium has an extremely large ionic radius as compared with Pb. To be

【0071】又、これらの結晶育成にかかる成分が、そ
の作用効果を有効に発揮するために、鉛供給成分に含ま
れるPbの総モル数に対するモル比が、(鉛供給成分に
含まれるPbの総モル数:結晶育成にかかる成分=)8
0:1から1:1の範囲であることが好ましく、より好
ましくは15:1から2:1の範囲である。
Further, in order that these components relating to crystal growth effectively exert their effects, the molar ratio of Pb contained in the lead supply component to the total number of moles is ((Pb contained in the lead supply component is Total number of moles: Crystal growth component =) 8
It is preferably in the range of 0: 1 to 1: 1 and more preferably in the range of 15: 1 to 2: 1.

【0072】尚、上記に於いては、結晶育成を向上させ
るためや、結晶育成温度を制御(過冷却状態を制御)す
るために、ホウ素供給成分、ビスマス供給成分、アルカ
リ金属供給成分、アルカリ土類供給成分をメルトに加え
たが、ペロブスカイト型結晶構造を有する強誘電体単結
晶膜のAサイト(Pb)やBサイト(Ti)の元素の一
部を、他の金属元素で置換するためにかかる金属元素の
化合物をメルトに加えてもよい。
In the above, in order to improve the crystal growth and to control the crystal growth temperature (control the supercooled state), the boron supply component, the bismuth supply component, the alkali metal supply component, the alkaline earth In order to replace a part of the elements of A site (Pb) and B site (Ti) of the ferroelectric single crystal film having the perovskite type crystal structure with other metal elements, a component supplying component was added to the melt. A compound of such a metal element may be added to the melt.

【0073】上記金属元素としては、アルカリ金属、ア
ルカリ土類金属、ジルコニウム、ランタン、希土類元素
等が挙げられ、化合物としては、LiCO3、SrCO3、MgCO3
等の炭酸化合物、Bi2O3、ZrO2、La2O3、Y2O3等の酸素化
合物、LiF、NaF、NaCl等のハロゲン化物が挙げられ、こ
れらは一種、又は2種以上を組み合わせて用いてもよ
い。又、これら化合物は、原料混合物中のPb供給成分
1モルに対し、0.01〜0.6モルの範囲で加えるこ
とが好ましく、より好ましくは0.01〜0.4モルの
範囲である。
[0073] Examples of the metal element, an alkali metal, alkaline earth metal, zirconium, lanthanum, rare earth elements, and examples of the compound, LiCO 3, SrCO 3, MgCO 3
And carbonic acid compounds such as Bi 2 O 3 , ZrO 2 , La 2 O 3 and Y 2 O 3 , and halides such as LiF, NaF and NaCl. These may be used alone or in combination of two or more. You may use it. Further, these compounds are preferably added in the range of 0.01 to 0.6 mol, and more preferably in the range of 0.01 to 0.4 mol, relative to 1 mol of the Pb supply component in the raw material mixture.

【0074】上記金属元素で、強誘電体単結晶膜のAサ
イト(Pb)やBサイト(Ti)の元素の一部を置換し
たものの代表例としては、PZT即ちPb(ZrTi)
3や、PLT即ち(PbLa)TiO3や、PLZT即
ち(PbLa)(ZrTi)O3がある。
A typical example of the metal element in which a part of the A site (Pb) or B site (Ti) element of the ferroelectric single crystal film is replaced is PZT, that is, Pb (ZrTi).
O 3 and PLT, that is, (PbLa) TiO 3 and PLZT, that is, (PbLa) (ZrTi) O 3 .

【0075】[0075]

【実施例】次に、液相エピタキシャル法によりMgO単
結晶基板上に成膜した、膜厚15μmのPb0.96Ca
0.04TiO3の強誘電体単結晶膜を用いて共振周波数1
60MHzの共振器を作製した場合について説明する。
尚、前記強誘電体単結晶膜の成膜方法については後述す
る。
EXAMPLE Next, a Pb 0.96 Ca film having a thickness of 15 μm was formed on a MgO single crystal substrate by a liquid phase epitaxial method.
Resonance frequency of 1 using 0.04 TiO 3 ferroelectric single crystal film
A case where a 60 MHz resonator is manufactured will be described.
The method for forming the ferroelectric single crystal film will be described later.

【0076】まず、Pb0.96Ca0.04TiO3の強誘電
体単結晶膜が成膜されたMgO単結晶基板に、リン酸溶
液を用いたエッチング加工を施し、強誘電体単結晶膜の
裏面を露出させた。
First, the MgO single crystal substrate on which the ferroelectric single crystal film of Pb 0.96 Ca 0.04 TiO 3 was formed was subjected to etching using a phosphoric acid solution to expose the back surface of the ferroelectric single crystal film. Let

【0077】次に、この強誘電体単結晶膜の表面と裏面
に、スパッタ法により、電極径200μmφの対向する
金電極を形成した。
Next, opposing gold electrodes having an electrode diameter of 200 μmφ were formed on the front surface and the back surface of this ferroelectric single crystal film by the sputtering method.

【0078】尚、共振器の動作確認を行ったところ、正
常に動作した。
When the operation of the resonator was confirmed, it worked normally.

【0079】上記鉛含有ペロブスカイト型強誘電体単結
晶膜の成膜方法について、以下の実施例で説明する。
A method for forming the lead-containing perovskite type ferroelectric single crystal film will be described in the following examples.

【0080】[実施例1]結晶育成にかかる成分として
ホウ素供給成分を用いた場合の実施例について説明す
る。
[Example 1] An example in which a boron supply component is used as a component for crystal growth will be described.

【0081】まず、鉛供給成分であるPbO、Pb
2、チタン供給成分であるTiO2及びホウ素供給成分
であるB23からなる原料を、 PbO:PbF2=5.5:4.5 TiO2:(PbO+PbF2+TiO2+B23)=
5:100 (PbO+PbF2):B2O3=7:1 のモル比で十分混合した。
First, PbO and Pb which are lead supply components
F 2, a raw material composed of B 2 O 3 is a TiO 2 and boron providing component is titanium feed component, PbO: PbF 2 = 5.5: 4.5 TiO 2: (PbO + PbF 2 + TiO 2 + B 2 O 3) =
5: 100 (PbO + PbF 2 ): B 2 O3 = 7: was thoroughly mixed with 1 molar ratio.

【0082】次に、この混合物を白金製ルツボに入れ、
電気炉を用いて毎時200〜400℃にて700℃に昇
温し、700℃で1時間保持し、更に700℃で保持し
た状態で、溶融した溶液を1時間攪拌(白金製の羽根を
用いて200r.p.mで攪拌)した。その後毎時100℃
にて降温し、450℃で保持した。
Next, this mixture was placed in a platinum crucible,
Using an electric furnace, the temperature is raised to 700 ° C. at 200 to 400 ° C./hour, the temperature is maintained at 700 ° C. for 1 hour, and the molten solution is stirred for 1 hour while using the blade made of platinum. And stirred at 200 r.p.m.). 100 ℃ every hour thereafter
The temperature was lowered at and kept at 450 ° C.

【0083】次に、この溶液に(100)面のSrTi
3単結晶基板を浸漬し、100r.p.mで基板を回転さ
せ、10分間の結晶育成後、基板を液面より上にひきあ
げ、その基板を500r.p.mで1分間回転し、溶液を振
り切った。 次に、この基板を毎分10℃〜200℃で
室温まで冷却した後、これを希硝酸中に浸漬し、その表
面に付着している原料溶液の固化物を取り除き、水洗い
した後に乾燥した。
Next, in this solution, SrTi of (100) plane was added.
The O 3 single crystal substrate was dipped, the substrate was rotated at 100 rpm to grow the substrate for 10 minutes, the substrate was pulled above the liquid surface, the substrate was rotated at 500 rpm for 1 minute, and the solution was shaken off. . Next, after cooling this substrate to room temperature at 10 ° C. to 200 ° C. per minute, it was immersed in dilute nitric acid to remove the solidified material of the raw material solution adhering to its surface, washed with water, and then dried.

【0084】このようにして形成された膜は透明であ
り、うすい黄色を呈し、表面には光沢があり、平滑であ
った。又、膜厚は全体に均一で、4μmであった。又、
蛍光X線分析により膜組成を調べたところ、PbOとT
iO2の比が1:1のPbTiO3であることが確認でき
た。ここで、図1に膜表面の微分干渉顕微鏡写真を示し
た。
The film thus formed was transparent, had a pale yellow color, and had a glossy and smooth surface. The film thickness was uniform throughout and was 4 μm. or,
When the film composition was examined by fluorescent X-ray analysis, it was found that PbO and T
It was confirmed that the ratio of iO 2 was PbTiO 3 of 1: 1. Here, FIG. 1 shows a differential interference microscope photograph of the film surface.

【0085】更に、背面ラウエ法により膜の結晶性を調
べたところ、図2に示すようなきれいな4回対称性のス
ポットがみられ、単結晶であることが確認できた。
Further, when the crystallinity of the film was examined by the back surface Laue method, spots having a clean 4-fold symmetry as shown in FIG. 2 were observed, and it was confirmed that the film was a single crystal.

【0086】又、X線回折で膜の結晶構造を測定したと
ころ、図3に示す様に膜の(00n)面のみのヒ゜ークがみ
られ、c軸配向した膜であることが確認できた。
When the crystal structure of the film was measured by X-ray diffraction, a peak only on the (00n) plane of the film was observed as shown in FIG. 3, and it was confirmed that the film was c-axis oriented.

【0087】又、偏光顕微鏡を用いて観察したときに、
基板面に垂直な方向にa軸を持つ領域の存在、つまり9
0°ドメインの存在は認められなかった。従って、基板
に垂直な方向にc軸が完全配向した膜であることが確認
できた。
When observed with a polarization microscope,
Existence of a region having an a axis in the direction perpendicular to the substrate surface, that is, 9
The presence of 0 ° domain was not observed. Therefore, it was confirmed that the film was a film in which the c-axis was perfectly oriented in the direction perpendicular to the substrate.

【0088】尚、上記X線回折により求めたc軸長さは
4.113Aであり、熱分析により求めたキュリー温度
は、481℃であった。従って、膜成長はキュリー温度
以下でおこなわれたことがわかる。
The c-axis length determined by X-ray diffraction was 4.113 A, and the Curie temperature determined by thermal analysis was 481 ° C. Therefore, it can be seen that the film growth was carried out below the Curie temperature.

【0089】次に膜の結晶性を評価するために、膜表面
をHF+希硝酸で化学エッチングしたところ、転位等の
結晶欠陥に起因するエッチピットがみられた。しかし、
欠陥密度は10〜102個/cm2と少なく、この欠陥密
度は市販の単結晶基板に匹敵する値であり、このことか
ら膜の品質は非常に良いことが確認できた。
Next, in order to evaluate the crystallinity of the film, the film surface was chemically etched with HF + dilute nitric acid, and etch pits due to crystal defects such as dislocations were observed. But,
The defect density was as low as 10 to 10 2 / cm 2, and this defect density was a value comparable to that of a commercially available single crystal substrate, which confirmed that the film quality was very good.

【0090】[実施例2]結晶育成にかかる成分として
ホウ素供給成分及びカルシウム供給成分(アルカリ土類
金属供給成分)を用いた場合の実施例について説明す
る。
[Example 2] An example in which a boron supply component and a calcium supply component (alkaline earth metal supply component) are used as components for crystal growth will be described.

【0091】まず、鉛供給成分であるPbO、Pb
2、チタン供給成分であるTiO2、ホウ素供給成分で
あるB23及びカルシウム供給成分であるCaCO3
らなる原料を、 PbO:PbF2=5.5:4.5 (PbO+PbF2):TiO2:CaCO3=500:
20:1 (PbO+PbF2):B23=6:1 のモル比で十分混合した。
First, PbO and Pb which are lead supply components
A raw material composed of F 2 , TiO 2 which is a titanium supply component, B 2 O 3 which is a boron supply component and CaCO 3 which is a calcium supply component is PbO: PbF 2 = 5.5: 4.5 (PbO + PbF 2 ): TiO 2 : CaCO 3 = 500:
They were mixed well in a molar ratio of 20: 1 (PbO + PbF 2 ): B 2 O 3 = 6: 1.

【0092】次に、この混合物を白金製ルツボに入れ、
電気炉を用いて毎時200〜400℃にて800℃に昇
温し、800℃で1時間保持し、更に800℃で保持し
た状態で、溶融した溶液を1時間攪拌(白金製の羽根を
用いて200r.p.mで攪拌)した。その後毎時100℃
にて降温し、400℃で保持した。
Next, this mixture was placed in a platinum crucible,
Using an electric furnace, the temperature was raised to 800 ° C. at 200 to 400 ° C./hour, held at 800 ° C. for 1 hour, and then the molten solution was stirred for 1 hour (using a blade made of platinum). And stirred at 200 r.p.m.). 100 ℃ every hour thereafter
The temperature was lowered at and kept at 400 ° C.

【0093】次に、この溶液に(100)面のMgO単
結晶基板を浸漬し、100r.p.mで基板を回転させ、1
0分間の結晶育成後、基板を液面より上にひきあげ、そ
の基板を500r.p.mで1分間回転し、溶液を振り切っ
た。 次に、この基板を毎分10℃〜200℃で室温ま
で冷却した後、これを希硝酸中に浸漬し、その表面に付
着している原料溶液の固化物を取り除き、水洗いした後
に乾燥した。
Next, a (100) plane MgO single crystal substrate was immersed in this solution, and the substrate was rotated at 100 rpm to give 1
After crystal growth for 0 minutes, the substrate was pulled above the liquid surface, the substrate was rotated at 500 rpm for 1 minute, and the solution was shaken off. Next, after cooling this substrate to room temperature at 10 ° C. to 200 ° C. per minute, it was immersed in dilute nitric acid to remove the solidified material of the raw material solution adhering to its surface, washed with water, and then dried.

【0094】このようにして形成された膜を顕微鏡によ
り測定したところ、基板上に約5μmの厚さで膜が形成
されていることが確認できた。又、膜は平滑な鏡面状で
あった。
When the film thus formed was measured by a microscope, it was confirmed that the film was formed with a thickness of about 5 μm on the substrate. The film had a smooth mirror surface.

【0095】又、この膜を蛍光X線で組成分析したとこ
ろ、およその組成はPb0.96Ca0.04TiO3であった
(但し、Caは、そのイオン半径より、すべてAサイト
に含まれるとして計算した)。
When the composition of this film was analyzed by fluorescent X-ray, the approximate composition was Pb 0.96 Ca 0.04 TiO 3 (however, it was calculated that Ca was all contained in the A site due to its ionic radius). ).

【0096】又、X線回折で膜の結晶構造を測定したと
ころ、(00n)面のみで構成され、90゜ドメインの
存在は認められなかった。従って、基板に垂直な方向に
c軸が完全配向した膜であることが確認できた。
When the crystal structure of the film was measured by X-ray diffraction, the film was composed of only the (00n) plane and no 90 ° domain was found. Therefore, it was confirmed that the film was a film in which the c-axis was perfectly oriented in the direction perpendicular to the substrate.

【0097】尚、X線回折により求めたc軸長さは4.
130Aであり、熱分析により求めたキュリー温度は、
447℃であった。従って、膜成長はキュリー温度以下
でおこなわれたことがわかる。
The c-axis length obtained by X-ray diffraction was 4.
130A, the Curie temperature obtained by thermal analysis is
It was 447 degreeC. Therefore, it can be seen that the film growth was carried out below the Curie temperature.

【0098】[実施例3]Aサイトの一部をランタンで
置換した場合の実施例について説明する。
[Example 3] An example in which a part of the A site is replaced with lanthanum will be described.

【0099】まず、鉛供給成分であるPbO、Pb
2、チタン供給成分であるTiO2、ホウ素供給成分で
あるB23及び置換成分であるLa23からなる原料
を、 PbO:PbF2=5.5:4.5 (PbO+PbF2):TiO2:La23=1000:
50:1 (PbO+PbF2):B23=6:1 のモル比で十分混合した。
First, PbO and Pb which are lead supply components
A raw material composed of F 2 , TiO 2 which is a titanium supply component, B 2 O 3 which is a boron supply component and La 2 O 3 which is a substitution component is PbO: PbF 2 = 5.5: 4.5 (PbO + PbF 2 ). : TiO 2: La 2 O 3 = 1000:
They were mixed well at a molar ratio of 50: 1 (PbO + PbF 2 ): B 2 O 3 = 6: 1.

【0100】次に、この混合物を白金製ルツボに入れ、
電気炉を用いて毎時200〜400℃にて800℃に昇
温し、800℃で1時間保持し、更に800℃で保持し
た状態で、溶融した溶液を1時間攪拌(白金製の羽根を
用いて200r.p.mで攪拌)した。その後毎時100℃
にて降温し、380℃で保持した。
Next, this mixture was placed in a platinum crucible,
Using an electric furnace, the temperature was raised to 800 ° C. at 200 to 400 ° C./hour, held at 800 ° C. for 1 hour, and then the molten solution was stirred for 1 hour (using a blade made of platinum). And stirred at 200 r.p.m.). 100 ℃ every hour thereafter
The temperature was lowered at and maintained at 380 ° C.

【0101】次に、この溶液に(100)面のSrTi
3単結晶基板を浸漬し、100r.p.mで基板を回転さ
せ、10分間の結晶育成後、基板を液面より上にひきあ
げ、その基板を500r.p.mで1分間回転し、溶液を振
り切った。 次に、この基板を毎分10℃〜200℃で
室温まで冷却した後、これを希硝酸中に浸漬し、その表
面に付着している原料溶液の固化物を取り除き、水洗い
した後に乾燥した。
Next, in this solution, SrTi of (100) plane was added.
The O 3 single crystal substrate was dipped, the substrate was rotated at 100 rpm to grow the substrate for 10 minutes, the substrate was pulled above the liquid surface, the substrate was rotated at 500 rpm for 1 minute, and the solution was shaken off. . Next, after cooling this substrate to room temperature at 10 ° C. to 200 ° C. per minute, it was immersed in dilute nitric acid to remove the solidified material of the raw material solution adhering to its surface, washed with water, and then dried.

【0102】このようにして形成された膜を顕微鏡によ
り測定したところ、基板上に約5μmの厚さで膜が形成
されていることが確認できた。又、膜は平滑な鏡面状で
あった。
When the film thus formed was measured with a microscope, it was confirmed that the film was formed on the substrate to a thickness of about 5 μm. The film had a smooth mirror surface.

【0103】又、この膜を蛍光X線で組成分析したとこ
ろ、およその組成はPb0.96La0.04TiO3であった
(但し、Laは、そのイオン半径より、すべてAサイト
に含まれるとして計算した)。
When the composition of this film was analyzed by fluorescent X-ray, the approximate composition was Pb 0.96 La 0.04 TiO 3 (however, La was calculated based on its ionic radius to be contained in all A sites). ).

【0104】又、X線回折で膜の結晶構造を測定したと
ころ、(00n)面のみで構成され、90゜ドメインの
存在は認められなかった。従って、基板に垂直な方向に
c軸が完全配向した膜であることが確認できた。
When the crystal structure of the film was measured by X-ray diffraction, it was composed of only the (00n) plane and no 90 ° domain was found. Therefore, it was confirmed that the film was a film in which the c-axis was perfectly oriented in the direction perpendicular to the substrate.

【0105】尚、X線回折により求めたc軸長さは4.
082Aであり、熱分析により求めたキュリー温度は、
417℃であった。従って、膜成長はキュリー温度以下
でおこなわれたことがわかる。
The c-axis length obtained by X-ray diffraction was 4.
The Curie temperature obtained by thermal analysis is
It was 417 degreeC. Therefore, it can be seen that the film growth was carried out below the Curie temperature.

【0106】[実施例4]Bサイト(化学式ABO3
示されるペロブスカイト型結晶構造を有する膜のBの部
分)の一部をジルコニウムで置換した場合の実施例につ
いて説明する。
[Example 4] An example in which a part of the B site (B portion of the film having the perovskite type crystal structure represented by the chemical formula ABO 3 ) is replaced with zirconium will be described.

【0107】まず、鉛供給成分であるPbO、Pb
2、チタン供給成分であるTiO2、ホウ素供給成分で
あるB23及び置換成分であるZrO2からなる原料
を、 PbO:PbF2=5.5:4.5 (PbO+PbF2):TiO2:ZrO2=100:
3:2 (PbO+PbF2):B23=7:1 のモル比で十分混合した。
First, PbO and Pb which are lead supply components
A raw material composed of F 2 , TiO 2 which is a titanium supply component, B 2 O 3 which is a boron supply component and ZrO 2 which is a substitution component is PbO: PbF 2 = 5.5: 4.5 (PbO + PbF 2 ): TiO 2 : ZrO 2 = 100:
The mixture was well mixed at a molar ratio of 3: 2 (PbO + PbF 2 ): B 2 O 3 = 7: 1.

【0108】次に、この混合物を白金製ルツボに入れ、
電気炉を用いて毎時200〜400℃にて800℃に昇
温し、800℃で1時間保持し、更に800℃で保持し
た状態で、溶融した溶液を1時間攪拌(白金製の羽根を
用いて200r.p.mで攪拌)した。その後毎時100℃
にて降温し、420℃で保持した。
Next, this mixture was placed in a platinum crucible,
Using an electric furnace, the temperature was raised to 800 ° C. at 200 to 400 ° C./hour, held at 800 ° C. for 1 hour, and then the molten solution was stirred for 1 hour (using a blade made of platinum). And stirred at 200 r.p.m.). 100 ℃ every hour thereafter
The temperature was lowered at and kept at 420 ° C.

【0109】次に、この溶液に(100)面のSrTi
3単結晶基板を浸漬し、100r.p.mで基板を回転さ
せ、10分間の結晶育成後、基板を液面より上にひきあ
げ、その基板を500r.p.mで1分間回転し、溶液を振
り切った。次に、この基板を毎分10℃〜200℃で室
温まで冷却した後、これを希硝酸中に浸漬し、その表面
に付着している原料溶液の固化物を取り除き、水洗いし
た後に乾燥した。
Next, in this solution, SrTi of (100) plane was added.
The O 3 single crystal substrate was dipped, the substrate was rotated at 100 rpm to grow the substrate for 10 minutes, the substrate was pulled above the liquid surface, the substrate was rotated at 500 rpm for 1 minute, and the solution was shaken off. . Next, after cooling this substrate to room temperature at 10 ° C. to 200 ° C. per minute, it was immersed in dilute nitric acid to remove the solidified material of the raw material solution adhering to its surface, washed with water, and then dried.

【0110】このようにして形成された膜を顕微鏡によ
り測定したところ、基板上に約5μmの厚さで膜が形成
されていることが確認できた。又、膜は平滑な鏡面状で
あった。
When the film thus formed was measured with a microscope, it was confirmed that the film was formed on the substrate in a thickness of about 5 μm. The film had a smooth mirror surface.

【0111】又、この膜を蛍光X線で組成分析したとこ
ろ、およその組成はPb(Ti0.88Zr0.12)O3であ
った(但し、Zrは、そのイオン半径より、すべてBサ
イトに含まれるとして計算した)。
Further, when the composition of this film was analyzed by fluorescent X-ray, the approximate composition was Pb (Ti 0.88 Zr 0.12 ) O 3 (however, Zr is all contained in the B site due to its ionic radius). Calculated as).

【0112】又、X線回折で膜の結晶構造を測定したと
ころ、(00n)面のみで構成され、90゜ドメインの
存在は認められなかった。従って、基板に垂直な方向に
c軸が完全配向した膜であることが確認できた。
When the crystal structure of the film was measured by X-ray diffraction, the film was composed of only the (00n) plane and no 90 ° domain was found. Therefore, it was confirmed that the film was a film in which the c-axis was perfectly oriented in the direction perpendicular to the substrate.

【0113】尚、X線回折により求めたc軸長さは4.
095Aであり、熱分析により求めたキュリー温度は、
455℃であった。従って、膜成長はキュリー温度以下
でおこなわれたことがわかる。
The c-axis length obtained by X-ray diffraction was 4.
The Curie temperature obtained by thermal analysis is 095 A.
It was 455 ° C. Therefore, it can be seen that the film growth was carried out below the Curie temperature.

【0114】尚、この結晶は一般にPZTといわれ、工
業的に広く使用される重要な圧電材料である。
This crystal is generally called PZT and is an important piezoelectric material widely used in industry.

【0115】[実施例5]Aサイトの一部をランタンで
置換し、Bサイトの一部をジルコニウムで置換した場合
の実施例について説明する。
[Example 5] An example in which a part of the A site is replaced with lanthanum and a part of the B site is replaced with zirconium will be described.

【0116】まず、鉛供給成分であるPbO、Pb
2、チタン供給成分であるTiO2、ホウ素供給成分で
あるB23及び置換成分であるZrO2からなる原料
を、 PbO:PbF2=5.5:4.5 (PbO+PbF2):TiO2:La23:ZrO2 =1000:25:0.5:25 (PbO+PbF2):B23=5:1 のモル比で十分混合した。
First, PbO and Pb which are lead supply components
F 2, a raw material composed of ZrO 2 is B 2 O 3 and substituted components TiO 2, a boron supply component is titanium feed component, PbO: PbF 2 = 5.5: 4.5 (PbO + PbF 2): TiO 2: La 2 O 3: ZrO 2 = 1000: 25: 0.5: 25 (PbO + PbF 2): B 2 O 3 = 5: was thoroughly mixed with 1 molar ratio.

【0117】次に、この混合物を白金製ルツボに入れ、
電気炉を用いて毎時200〜400℃にて800℃に昇
温し、800℃で1時間保持し、更に800℃で保持し
た状態で、溶融した溶液を1時間攪拌(白金製の羽根を
用いて200r.p.mで攪拌)した。その後毎時100℃
にて降温し、420℃で保持した。
Next, this mixture was put in a platinum crucible,
Using an electric furnace, the temperature was raised to 800 ° C. at 200 to 400 ° C./hour, held at 800 ° C. for 1 hour, and then the molten solution was stirred for 1 hour (using a blade made of platinum). And stirred at 200 r.p.m.). 100 ℃ every hour thereafter
The temperature was lowered at and kept at 420 ° C.

【0118】次に、この溶液に(100)面のSrTi
3単結晶基板を浸漬し、100r.p.mで基板を回転さ
せ、10分間の結晶育成後、基板を液面より上にひきあ
げ、その基板を500r.p.mで1分間回転し、溶液を振
り切った。次に、この基板を毎分10℃〜200℃で室
温まで冷却した後、これを希硝酸中に浸漬し、その表面
に付着している原料溶液の固化物を取り除き、水洗いし
た後に乾燥した。
Next, in this solution, SrTi of (100) plane was added.
The O 3 single crystal substrate was dipped, the substrate was rotated at 100 rpm to grow the substrate for 10 minutes, the substrate was pulled above the liquid surface, the substrate was rotated at 500 rpm for 1 minute, and the solution was shaken off. . Next, after cooling this substrate to room temperature at 10 ° C. to 200 ° C. per minute, it was immersed in dilute nitric acid to remove the solidified material of the raw material solution adhering to its surface, washed with water, and then dried.

【0119】このようにして形成された膜を顕微鏡によ
り測定したところ、基板上に約5μmの厚さで膜が形成
されていることが確認できた。又、膜は平滑な鏡面状で
あった。
When the film thus formed was measured by a microscope, it was confirmed that the film was formed on the substrate to a thickness of about 5 μm. The film had a smooth mirror surface.

【0120】又、この膜を蛍光X線で組成分析したとこ
ろ、およその組成は(Pb0.98La0.02)(Ti0.88
0.15)O3であった(但し、Laは、すべてAサイト
に、Zrは、すべてBサイトに含まれるとして計算し
た)。
When the composition of this film was analyzed by fluorescent X-ray, the approximate composition was (Pb 0.98 La 0.02 ) (Ti 0.88 Z
r 0.15 ) O 3 (however, it was calculated that all of La was included in the A site and all of Zr was included in the B site).

【0121】又、X線回折で膜の結晶構造を測定したと
ころ、(00n)面のみで構成され、90゜ドメインの
存在は認められなかった。従って、基板に垂直な方向に
C軸が完全配向した膜であることが確認できた。
When the crystal structure of the film was measured by X-ray diffraction, the film was composed of only the (00n) plane and no 90 ° domain was found. Therefore, in the direction perpendicular to the substrate
It was confirmed that the C-axis was a perfectly oriented film.

【0122】尚、X線回折により求めたc軸長さは4.
108Aであり、熱分析により求めたキュリー温度は、
436℃であった。従って、膜成長はキュリー温度以下
でおこなわれたことがわかる。
The c-axis length obtained by X-ray diffraction was 4.
108A, and the Curie temperature determined by thermal analysis is
It was 436 ° C. Therefore, it can be seen that the film growth was carried out below the Curie temperature.

【0123】[実施例6]Aサイトの一部をナトリウム
で置換した場合の実施例について説明する。
[Example 6] An example in which a part of the A site is replaced with sodium will be described.

【0124】まず、鉛供給成分であるPbO、Pb
2、チタン供給成分であるTiO2、ホウ素供給成分で
あるB23及び置換成分であるNa2Oからなる原料
を、 PbO:PbF2=5.5:4.5 (PbO+PbF2):TiO2:Na2O =1000:25:2 (PbO+PbF2):B23=5:1 のモル比で十分混合した。
First, PbO and Pb which are lead supply components
A raw material composed of F 2 , TiO 2 which is a titanium supply component, B 2 O 3 which is a boron supply component and Na 2 O which is a substitution component is PbO: PbF 2 = 5.5: 4.5 (PbO + PbF 2 ): TiO 2 : Na 2 O = 1000: 25: 2 (PbO + PbF 2 ): B 2 O 3 = 5: 1 and mixed well.

【0125】次に、この混合物を白金製ルツボに入れ、
電気炉を用いて毎時200〜400℃にて800℃に昇
温し、800℃で1時間保持し、更に800℃で保持し
た状態で、溶融した溶液を1時間攪拌(白金製の羽根を
用いて200r.p.mで攪拌)した。その後毎時100℃
にて降温し、400℃で保持した。
Next, this mixture was put into a platinum crucible,
Using an electric furnace, the temperature was raised to 800 ° C. at 200 to 400 ° C./hour, held at 800 ° C. for 1 hour, and then the molten solution was stirred for 1 hour (using a blade made of platinum). And stirred at 200 r.p.m.). 100 ℃ every hour thereafter
The temperature was lowered at and kept at 400 ° C.

【0126】次に、この溶液に(100)面のLaAl
3単結晶基板を浸漬し、100r.p.mで基板を回転さ
せ、10分間の結晶育成後、基板を液面より上にひきあ
げ、その基板を500r.p.mで1分間回転し、溶液を振
り切った。 次に、この基板を毎分10℃〜200℃で
室温まで冷却した後、これを希硝酸中に浸漬し、その表
面に付着している原料溶液の固化物を取り除き、水洗い
した後に乾燥した。
Next, this solution was mixed with LaAl of (100) plane.
The O 3 single crystal substrate was dipped, the substrate was rotated at 100 rpm to grow the substrate for 10 minutes, the substrate was pulled above the liquid surface, the substrate was rotated at 500 rpm for 1 minute, and the solution was shaken off. . Next, after cooling this substrate to room temperature at 10 ° C. to 200 ° C. per minute, it was immersed in dilute nitric acid to remove the solidified material of the raw material solution adhering to its surface, washed with water, and then dried.

【0127】このようにして形成された膜を顕微鏡によ
り測定したところ、基板上に約5μmの厚さで膜が形成
されていることが確認できた。又、膜は平滑な鏡面状で
あった。
When the film thus formed was measured with a microscope, it was confirmed that the film was formed on the substrate with a thickness of about 5 μm. The film had a smooth mirror surface.

【0128】又、この膜を蛍光X線で組成分析したとこ
ろ、およその組成は(Pb0.99Na0.01)TiO3であ
った(但し、Naは、すべてAサイトに含まれるとして
計算した)。
When the composition of this film was analyzed by fluorescent X-ray, the approximate composition was (Pb 0.99 Na 0.01 ) TiO 3 (however, it was calculated that all Na was contained in the A site).

【0129】又、X線回折で膜の結晶構造を測定したと
ころ、(00n)面のみで構成され、90゜ドメインの
存在は認められなかった。従って、基板に垂直な方向に
c軸が完全配向した膜であることが確認できた。
When the crystal structure of the film was measured by X-ray diffraction, the film was composed of only the (00n) plane and no 90 ° domain was found. Therefore, it was confirmed that the film was a film in which the c-axis was perfectly oriented in the direction perpendicular to the substrate.

【0130】尚、X線回折により求めたC軸長さは4.
114Aであり、熱分析により求めたキュリー温度は、
451℃であった。従って、膜成長はキュリー温度以下
でおこなわれたことがわかる。
The C-axis length obtained by X-ray diffraction was 4.
114A, the Curie temperature determined by thermal analysis is
It was 451 ° C. Therefore, it can be seen that the film growth was carried out below the Curie temperature.

【0131】[実施例7]Aサイトの一部をビスマスで
置換した場合の実施例について説明する。
[Embodiment 7] An embodiment in which a part of the A site is replaced with bismuth will be described.

【0132】まず、鉛供給成分であるPbO、Pb
2、チタン供給成分であるTiO2、ホウ素供給成分で
あるB23及び置換成分であるBi23からなる原料
を、 PbO:PbF2=5.5:4.5 (PbO+PbF2):TiO2:Bi23=1000:
25:3 (PbO+PbF2):B23=5:1 のモル比で十分混合した。
First, PbO and Pb which are lead supply components
A raw material composed of F 2 , TiO 2 which is a titanium supply component, B 2 O 3 which is a boron supply component and Bi 2 O 3 which is a substitution component is PbO: PbF 2 = 5.5: 4.5 (PbO + PbF 2 ). : TiO 2: Bi 2 O 3 = 1000:
The mixture was well mixed at a molar ratio of 25: 3 (PbO + PbF 2 ): B 2 O 3 = 5: 1.

【0133】次に、この混合物を白金製ルツボに入れ、
電気炉を用いて毎時200〜400℃にて800℃に昇
温し、800℃で1時間保持し、更に800℃で保持し
た状態で、溶融した溶液を1時間攪拌(白金製の羽根を
用いて200r.p.mで攪拌)した。その後毎時100℃
にて降温し、400℃で保持した。
Next, this mixture was placed in a platinum crucible,
Using an electric furnace, the temperature was raised to 800 ° C. at 200 to 400 ° C./hour, held at 800 ° C. for 1 hour, and then the molten solution was stirred for 1 hour (using a blade made of platinum). And stirred at 200 r.p.m.). 100 ℃ every hour thereafter
The temperature was lowered at and kept at 400 ° C.

【0134】次に、この溶液に(100)面のSrTi
3単結晶基板を浸漬し、100r.p.mで基板を回転さ
せ、10分間の結晶育成後、基板を液面より上にひきあ
げ、その基板を500r.p.mで1分間回転し、溶液を振
り切った。 次に、この基板を毎分10℃〜200℃で
室温まで冷却した後、これを希硝酸中に浸漬し、その表
面に付着している原料溶液の固化物を取り除き、水洗い
した後に乾燥した。
Then, SrTi of (100) plane was added to this solution.
The O 3 single crystal substrate was dipped, the substrate was rotated at 100 rpm to grow the substrate for 10 minutes, the substrate was pulled above the liquid surface, the substrate was rotated at 500 rpm for 1 minute, and the solution was shaken off. . Next, after cooling this substrate to room temperature at 10 ° C. to 200 ° C. per minute, it was immersed in dilute nitric acid to remove the solidified material of the raw material solution adhering to its surface, washed with water, and then dried.

【0135】このようにして形成された膜を顕微鏡によ
り測定したところ、基板上に約5μmの厚さで膜が形成
されていることが確認できた。又、膜は平滑な鏡面状で
あった。
When the film thus formed was measured by a microscope, it was confirmed that the film was formed on the substrate in a thickness of about 5 μm. The film had a smooth mirror surface.

【0136】又、この膜を蛍光X線で組成分析したとこ
ろ、およその組成は(Pb0.97Bi0.03)TiO3であ
った(但し、Naは、すべてAサイトに含まれるとして
計算した)。
When the composition of this film was analyzed by fluorescent X-ray, the approximate composition was (Pb 0.97 Bi 0.03 ) TiO 3 (however, it was calculated that all Na was contained in the A site).

【0137】又、X線回折で膜の結晶構造を測定したと
ころ、(00n)面のみで構成され、90゜ドメインの
存在は認められなかった。従って、基板に垂直な方向に
c軸が完全配向した膜であることが確認できた。
When the crystal structure of the film was measured by X-ray diffraction, the film was composed of only the (00n) plane and no 90 ° domain was found. Therefore, it was confirmed that the film was a film in which the c-axis was perfectly oriented in the direction perpendicular to the substrate.

【0138】尚、X線回折により求めたc軸長さは4.
117Aであり、熱分析により求めたキュリー温度は、
462℃であった。従って、膜成長はキュリー温度以下
でおこなわれたことがわかる。
The c-axis length obtained by X-ray diffraction was 4.
The Curie temperature obtained by thermal analysis is 117 A.
It was 462 ° C. Therefore, it can be seen that the film growth was carried out below the Curie temperature.

【0139】[0139]

【発明の効果】本発明によれば、圧電材料として鉛含有
ペロブスカイト型強誘電体単結晶膜を用いため、圧電振
動部品の高周波化及び小型化を容易に実現できるように
なった。
According to the present invention, since the lead-containing perovskite type ferroelectric single crystal film is used as the piezoelectric material, it is possible to easily realize a high frequency and a small size of the piezoelectric vibration component.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる圧電振動部品の一例を示した
(a)平面図と(b)断面図((a)のAA’断面図)
である。
FIG. 1A is a plan view and FIG. 1B is a cross-sectional view showing an example of a piezoelectric vibrating component according to the present invention.
It is.

【図2】膜表面の顕微鏡写真(微分干渉顕微鏡写真)を
示す。
FIG. 2 shows a photomicrograph (differential interference photomicrograph) of the film surface.

【図3】背面ラウエ法により測定したX線写真である。FIG. 3 is an X-ray photograph measured by a back surface Laue method.

【図4】X線回折で膜の結晶構造を測定したX線回折図
を示す。
FIG. 4 shows an X-ray diffraction pattern obtained by measuring the crystal structure of the film by X-ray diffraction.

【符号の説明】[Explanation of symbols]

1 強誘電体単結晶膜 2 単結晶種基板 3a、3b 電極 3c、3d 引出電極 1 Ferroelectric Single Crystal Film 2 Single Crystal Seed Substrate 3a, 3b Electrodes 3c, 3d Extraction Electrode

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年2月21日[Submission date] February 21, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】以上述べたように鉛を含有するペロブスカ
イト型強誘電体結晶で、完全なc軸配向膜を得ることは
困難であった。
As described above, it has been difficult to obtain a perfect c-axis oriented film from a perovskite type ferroelectric crystal containing lead.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】まず、得られる鉛含有ペロブスカイト
誘電体のキュリー点以下の温度で成膜が可能なメルト
(溶液又は溶融液)を作製する(メルト組成を見いだ
す)必要がある。つまり、メルトの過冷却温度、つまり
液相エピタキシャル法により成膜(エピタキシャル成
長)を行うときの温度が、膜のキュリー点より低い温度
でなければならない。
First, it is necessary to prepare (find the melt composition) a melt (solution or melt) capable of forming a film at a temperature below the Curie point of the obtained lead- containing perovskite type ferroelectric. That is, the supercooling temperature of the melt, that is, the temperature at which film formation (epitaxial growth) is performed by the liquid phase epitaxial method must be lower than the Curie point of the film.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】尚、鉛含有ペロブスカイト強誘電体のキ
ュリー点以上の温度で成膜した場合、成膜後の冷却過程
において膜の結晶構造変化が起こり、その結果、大きな
内部応力によるクラックが発生する。又、基板に垂直な
方向にc軸成分とa軸成分の混在する90°ドメイン構
造となり、完全なc軸配向とはならない。
When a film is formed at a temperature equal to or higher than the Curie point of the lead- containing perovskite type ferroelectric, the crystal structure of the film changes in the cooling process after the film formation, and as a result, cracks due to large internal stress occur. . In addition, a 90 ° domain structure in which a c-axis component and an a-axis component are mixed in a direction perpendicular to the substrate, does not result in perfect c-axis orientation.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】以上に述べたように、優れた誘電性、圧電
性、光物性等を示す鉛含有ペロブスカイト強誘電体単
結晶膜を上記デバイスに利用するために、上記の問題を
解決する必要がある。この解決策として、本発明に於い
ては、鉛含有ペロブスカイト強誘電体のキュリー点以
下の温度で成膜が可能なメルト(溶液又は溶融液)組成
を見いだし、そのメルトを用い液相エピタキシャル法に
より成膜をおこなっている。
As described above, in order to use the lead-containing perovskite type ferroelectric single crystal film exhibiting excellent dielectric properties, piezoelectric properties, optical properties and the like in the above device, it is necessary to solve the above problems. is there. As a solution to this problem, in the present invention, a melt (solution or melt) composition capable of forming a film at a temperature below the Curie point of a lead- containing perovskite type ferroelectric is found, and a liquid phase epitaxial method using the melt is found. The film is formed by.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0034】又、鉛含有ペロブスカイト強誘電体単結
の圧電定数(d33)は、セラミック材料の2〜3倍程
度である。更に、セラミック材料のように粒界やポアが
ないため加工性にもすぐれている。
Further, a lead- containing perovskite type ferroelectric single crystal is used.
The piezoelectric constant (d33) of the crystal is about 2 to 3 times that of the ceramic material. Further, it has excellent workability because it does not have grain boundaries or pores unlike ceramic materials.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0035】又、鉛含有ペロブスカイト強誘電体単結
の電気光学定数は、ニオブ酸リチウム単結晶(LiNbO
3)の4から3倍程度である。
Further, a lead- containing perovskite type ferroelectric single crystal
Electrooptical constant of crystal is lithium niobate single crystal (LiNbO
It is about 4 to 3 times that of 3).

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0070[Name of item to be corrected] 0070

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0070】尚、上記結晶育成にかかる成分のうち、膜
中に取り込まれる成分については、その強誘電体単結晶
膜を用いる用途に応じて選択する必要がある。又、膜中
に結晶育成にかかる成分を含ませたくない場合には、膜
中に取り込まれない成分であるホウ素やカリウムからな
る成分用いればよい。ここで、ホウ素やカリウムが形
成された単結晶膜中には含まれないのは、ホウ素につい
てはイオン半径が極めて小さいためであり、又、カリウ
ムについてはPbに比べイオン半径が極めて大きいため
と考えられる。
Of the above-mentioned components for crystal growth, the components to be taken into the film must be selected according to the use of the ferroelectric single crystal film. Also, if you do not want to include a component according to the crystal growth in the film, may be used components consisting of boron and potassium is a component that is not incorporated into the film. Here, it is considered that boron and potassium are not contained in the formed single crystal film because boron has an extremely small ionic radius, and potassium has an extremely large ionic radius as compared with Pb. To be

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0139[Correction target item name]

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0139】[0139]

【発明の効果】本発明によれば、圧電材料として鉛含有
ペロブスカイト型強誘電体単結晶膜を用いため、圧電
振動部品の高周波化及び小型化を容易に実現できるよう
になった。
According to the present invention, since the Ru with lead-containing perovskite-type ferroelectric single crystal film as a piezoelectric material, adapted to the frequency and size of the piezoelectric vibration component can be easily realized.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H03H 3/02 H01L 41/18 101D 9/17 41/22 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication H03H 3/02 H01L 41/18 101D 9/17 41/22 Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧電材料と、該圧電材料を挟んで対向す
る少なくとも1対の電極からなる圧電振動部品に於い
て、前記圧電材料が、c軸が膜面に垂直な方向に配向し
ている鉛含有ペロブスカイト型強誘電体単結晶膜である
ことを特徴とする圧電振動部品。
1. A piezoelectric vibrating component comprising a piezoelectric material and at least one pair of electrodes facing each other with the piezoelectric material sandwiched therebetween, wherein the piezoelectric material has a c-axis oriented in a direction perpendicular to a film surface. A piezoelectric vibrating component, which is a perovskite type ferroelectric single crystal film containing lead.
【請求項2】 請求項1記載の圧電振動部品に於いて、
上記強誘電体単結晶膜の組成式が、 (Pbx-aM1a)M2yz であり、該組成式のM1は、アルカリ金属、アルカリ土
類金属、ビスマス又はランタンの少なくとも1種以上を
表し、M2は、チタン、ジルコン又はチタンとジルコン
の双方を主成分とする元素を表すことを特徴とする圧電
振動部品。
2. The piezoelectric vibrating component according to claim 1, wherein
The compositional formula of the ferroelectric single crystal film is (Pb xa M1 a ) M2 y O z , and M1 in the compositional formula represents at least one of alkali metal, alkaline earth metal, bismuth, and lanthanum. , M2 represents titanium, zircon, or an element containing both titanium and zircon as a main component.
【請求項3】 過冷却温度が成膜される強誘電体単結晶
膜のキュリー点以下であるメルト中で、単結晶種基板上
に鉛含有ペロブスカイト型強誘電体単結晶膜をエピタキ
シャル成長させる工程と、前記単結晶種基板にエッチン
グ処理を施し、前記強誘電体単結晶膜の該単結晶種基板
側の面を露出させる工程と、前記強誘電体単結晶膜の両
面に、対向する少なくとも1対の電極を形成する工程と
からなることを特徴とする圧電振動部品の製造方法。
3. A step of epitaxially growing a lead-containing perovskite type ferroelectric single crystal film on a single crystal seed substrate in a melt having a supercooling temperature equal to or lower than the Curie point of the ferroelectric single crystal film to be formed. Etching the single crystal seed substrate to expose a surface of the ferroelectric single crystal film on the single crystal seed substrate side, and at least one pair facing each other on both surfaces of the ferroelectric single crystal film. And a step of forming electrodes of the same.
【請求項4】 請求項3記載の圧電振動部品の製造方法
に於いて、上記メルトが、酸化鉛とフッ化鉛を8:2〜
4:6の範囲で混合した鉛供給成分とチタン供給成分か
らなり、かつ前記チタン供給成分を、前記鉛供給成分の
鉛成分総モル数に対して0.02〜0.15のモル比で
含有することを特徴とする圧電振動部品の製造方法。
4. The method of manufacturing a piezoelectric vibration component according to claim 3, wherein the melt contains lead oxide and lead fluoride in an amount of 8: 2.
It is composed of a lead supply component and a titanium supply component mixed in a range of 4: 6, and contains the titanium supply component in a molar ratio of 0.02 to 0.15 with respect to the total number of moles of the lead component of the lead supply component. A method for manufacturing a piezoelectric vibrating component, comprising:
【請求項5】 請求項4記載の圧電振動部品の製造方法
に於いて、上記メルトが、アルカリ金属化合物、アルカ
リ土類金属化合物、ジルコニウム化合物、ランタン化合
物、希土類元素化合物のうちの少なくとも1種類を、鉛
供給成分の鉛成分総モル数に対して0.01〜0.6の
モル比で含有することを特徴とする圧電振動部品の製造
方法。
5. The method of manufacturing a piezoelectric vibrating component according to claim 4, wherein the melt contains at least one of an alkali metal compound, an alkaline earth metal compound, a zirconium compound, a lanthanum compound, and a rare earth element compound. A method for manufacturing a piezoelectric vibrating component, characterized in that the lead supplying component is contained in a molar ratio of 0.01 to 0.6 with respect to the total number of moles of the lead supplying component.
【請求項6】 請求項4記載の圧電振動部品の製造方法
に於いて、上記メルトが、ホウ素化合物、ビスマス化合
物、アルカリ金属化合物、アルカリ土類金属化合物のう
ちの少なくとも1種類を、鉛供給成分の鉛成分総モル数
に対して0.0125〜1.00のモル比で含有するこ
とを特徴とする圧電振動部品の製造方法。
6. The method for manufacturing a piezoelectric vibrating component according to claim 4, wherein the melt contains at least one of a boron compound, a bismuth compound, an alkali metal compound and an alkaline earth metal compound as a lead supply component. The method for producing a piezoelectric vibrating component, wherein the lead component is contained in a molar ratio of 0.0125 to 1.00 with respect to the total number of moles of the lead component.
【請求項7】 請求項3乃至6記載のいずれかの圧電振
動部品の製造方法に於いて、上記単結晶種基板として、
単位結晶格子の少なくとも1辺の長さが、3.50〜
4.30A又は5.00〜6.00Aの範囲にあるものを
用いることを特徴とする圧電振動部品の製造方法。
7. The method of manufacturing a piezoelectric vibrating component according to claim 3, wherein the single crystal seed substrate comprises:
The length of at least one side of the unit crystal lattice is 3.50 to
4. A method of manufacturing a piezoelectric vibrating component, which uses a material in the range of 4.30 A or 5.00 to 6.00 A.
【請求項8】 請求項3乃至6記載のいずれかの圧電振
動部品の製造方法に於いて、上記単結晶種基板として、
チタン酸ストロンチウム(SrTiO3)、酸化マグネシウム(M
gO)、アルミン酸ランタン(LaAlO3)、アルミン酸イット
リウム(YAlO3)、アルミン酸ネオジウム(NdAlO3)、ガリ
ウム酸ランタン(LaGaO3)、ガリウム酸ネオジウム(NdGaO
3)、ガリウム酸プラセオジウム(PrGaO3)、ガリウム酸ス
トロンチウムランタン(LaSrGaO4)、サファイア(Al2O3)
等の単結晶基板、又は、その構成元素の一部を他の元素
で置換したものを用いることを特徴とする圧電振動部品
の製造方法。
8. The method for manufacturing a piezoelectric vibrating component according to claim 3, wherein the single crystal seed substrate comprises:
Strontium titanate (SrTiO 3 ), magnesium oxide (M
gO), lanthanum aluminate (LaAlO 3 ), yttrium aluminate (YAlO 3 ), neodymium aluminate (NdAlO 3 ), lanthanum gallate (LaGaO 3 ), neodymium gallate (NdGaO)
3 ), praseodymium gallate (PrGaO 3 ), strontium lanthanum gallate (LaSrGaO 4 ), sapphire (Al 2 O 3 ).
A method for manufacturing a piezoelectric vibrating component, characterized in that a single crystal substrate such as or the like, or one in which a part of its constituent elements is replaced with another element is used.
JP13044796A 1996-05-27 1996-05-27 Piezoelectric vibrator component and manufacture thereof Pending JPH09321361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13044796A JPH09321361A (en) 1996-05-27 1996-05-27 Piezoelectric vibrator component and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13044796A JPH09321361A (en) 1996-05-27 1996-05-27 Piezoelectric vibrator component and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09321361A true JPH09321361A (en) 1997-12-12

Family

ID=15034464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13044796A Pending JPH09321361A (en) 1996-05-27 1996-05-27 Piezoelectric vibrator component and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09321361A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214762A (en) * 1998-01-22 1999-08-06 Seiko Epson Corp Piezoelectric element and ink jet-type recorder head using the same
JP2001094373A (en) * 1999-07-29 2001-04-06 Lucent Technol Inc Thin film resonator and method for manufacturing it
JP2002299714A (en) * 2001-03-30 2002-10-11 Seiko Epson Corp Piezoelectric element and electric equipment using the same
US6534902B2 (en) * 1999-05-24 2003-03-18 Murata Manufacturing Co., Ltd. Piezoelectric device
JP2011044705A (en) * 1999-01-12 2011-03-03 Ngimat Co Epitaxial thin film
CN106575957A (en) * 2014-06-06 2017-04-19 阿库斯蒂斯有限公司 Integrated circuit configured with crystal acoustic resonator device
CN109196672A (en) * 2016-06-21 2019-01-11 前进材料科技株式会社 Film structure and its manufacturing method
US10211804B2 (en) 2014-06-06 2019-02-19 Akoustis, Inc. Method of manufacturing integrated circuit configured with two or more single crystal acoustic resonator devices
KR20190043498A (en) * 2017-09-22 2019-04-26 안후이 아누키 테크놀러지 컴퍼니 리미티드 Piezo resonator manufacturing method and piezoelectric resonator
US10319898B2 (en) 2014-06-06 2019-06-11 Akoustis, Inc. Resonance circuit with a single crystal capacitor dielectric material
US11031989B2 (en) 2016-03-11 2021-06-08 Akoustis, Inc. Front end module for 5.2 GHz Wi-Fi acoustic wave resonator RF filter circuit
US11177868B2 (en) 2016-03-11 2021-11-16 Akoustis, Inc. Front end module for 6.5 GHz Wi-Fi acoustic wave resonator RF filter circuit
US11184079B2 (en) 2016-03-11 2021-11-23 Akoustis, Inc. Front end module for 5.5 GHz Wi-Fi acoustic wave resonator RF filter circuit
US11245382B2 (en) 2016-03-11 2022-02-08 Akoustis, Inc. Method and structure for single crystal acoustic resonator devices using thermal recrystallization
US11316496B2 (en) 2016-03-11 2022-04-26 Akoustis, Inc. Method and structure for high performance resonance circuit with single crystal piezoelectric capacitor dielectric material
US11356071B2 (en) 2016-03-11 2022-06-07 Akoustis, Inc. Piezoelectric acoustic resonator with improved TCF manufactured with piezoelectric thin film transfer process
US11394451B2 (en) 2016-03-11 2022-07-19 Akoustis, Inc. Front end module for 6.1 GHz Wi-Fi acoustic wave resonator RF filter circuit
US11418169B2 (en) 2016-03-11 2022-08-16 Akoustis, Inc. 5G n41 2.6 GHz band acoustic wave resonator RF filter circuit
US11424728B2 (en) 2016-03-11 2022-08-23 Akoustis, Inc. Piezoelectric acoustic resonator manufactured with piezoelectric thin film transfer process
US11456723B2 (en) 2016-03-11 2022-09-27 Akoustis, Inc. Acoustic wave resonator RF filter circuit device
US11476825B2 (en) 2016-03-11 2022-10-18 Akoustis, Inc. 5.5 GHz Wi-Fi coexistence acoustic wave resonator RF filter circuit
US11496108B2 (en) 2020-08-17 2022-11-08 Akoustis, Inc. RF BAW resonator filter architecture for 6.5GHz Wi-Fi 6E coexistence and other ultra-wideband applications
US11495734B2 (en) 2014-06-06 2022-11-08 Akoustis, Inc. Method of manufacture for single crystal capacitor dielectric for a resonance circuit
US11558023B2 (en) 2016-03-11 2023-01-17 Akoustis, Inc. Method for fabricating an acoustic resonator device
US11621698B2 (en) 2016-03-11 2023-04-04 Akoustis, Inc. 5.5 GHz Wi-Fi 5G coexistence acoustic wave resonator RF filter circuit
US11637545B2 (en) 2016-03-11 2023-04-25 Akoustis, Inc. Acoustic wave resonator RF filter circuit and system
US11652469B2 (en) 2018-08-27 2023-05-16 Akoustis, Inc. High power bulk acoustic wave resonator filter devices
US11671067B2 (en) 2016-03-11 2023-06-06 Akoustis, Inc. Piezoelectric acoustic resonator manufactured with piezoelectric thin film transfer process
US11677372B2 (en) 2016-03-11 2023-06-13 Akoustis, Inc. Piezoelectric acoustic resonator with dielectric protective layer manufactured with piezoelectric thin film transfer process
US11683021B2 (en) 2016-03-11 2023-06-20 Akoustis, Inc. 4.5G 3.55-3.7 GHz band bulk acoustic wave resonator RF filter circuit
US11736177B2 (en) 2016-03-11 2023-08-22 Akoustis Inc. Front end modules for 5.6 GHz and 6.6 GHz Wi-Fi acoustic wave resonator RF filter circuits
US11881831B2 (en) 2016-03-11 2024-01-23 Akoustis, Inc. Method of manufacture for single crystal acoustic resonator devices using micro-vias
US11901880B2 (en) 2021-01-18 2024-02-13 Akoustis, Inc. 5 and 6 GHz Wi-Fi coexistence acoustic wave resonator RF diplexer circuit
US12102010B2 (en) 2020-03-05 2024-09-24 Akoustis, Inc. Methods of forming films including scandium at low temperatures using chemical vapor deposition to provide piezoelectric resonator devices and/or high electron mobility transistor devices

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214762A (en) * 1998-01-22 1999-08-06 Seiko Epson Corp Piezoelectric element and ink jet-type recorder head using the same
JP2011044705A (en) * 1999-01-12 2011-03-03 Ngimat Co Epitaxial thin film
US6534902B2 (en) * 1999-05-24 2003-03-18 Murata Manufacturing Co., Ltd. Piezoelectric device
KR100438467B1 (en) * 1999-07-29 2004-07-03 루센트 테크놀러지스 인크 Thin film resonator apparatus and method of making same
JP2001094373A (en) * 1999-07-29 2001-04-06 Lucent Technol Inc Thin film resonator and method for manufacturing it
JP4629896B2 (en) * 2001-03-30 2011-02-09 セイコーエプソン株式会社 Piezoelectric element and electric device using the same
JP2002299714A (en) * 2001-03-30 2002-10-11 Seiko Epson Corp Piezoelectric element and electric equipment using the same
CN106575957B (en) * 2014-06-06 2019-12-17 阿库斯蒂斯有限公司 Integrated circuit provided with a crystal acoustic resonator device
CN106575957A (en) * 2014-06-06 2017-04-19 阿库斯蒂斯有限公司 Integrated circuit configured with crystal acoustic resonator device
US10211804B2 (en) 2014-06-06 2019-02-19 Akoustis, Inc. Method of manufacturing integrated circuit configured with two or more single crystal acoustic resonator devices
US11496109B2 (en) 2014-06-06 2022-11-08 Akoustis, Inc. Method of manufacturing integrated circuit configured with two or more single crystal acoustic resonator devices
US10319898B2 (en) 2014-06-06 2019-06-11 Akoustis, Inc. Resonance circuit with a single crystal capacitor dielectric material
US11495734B2 (en) 2014-06-06 2022-11-08 Akoustis, Inc. Method of manufacture for single crystal capacitor dielectric for a resonance circuit
US11646718B2 (en) 2016-03-11 2023-05-09 Akoustis, Inc. Acoustic wave resonator, RF filter circuit device and system
US11611386B2 (en) 2016-03-11 2023-03-21 Akoustis, Inc. Front end module for 6.1 GHz wi-fi acoustic wave resonator RF filter circuit
US11177868B2 (en) 2016-03-11 2021-11-16 Akoustis, Inc. Front end module for 6.5 GHz Wi-Fi acoustic wave resonator RF filter circuit
US11184079B2 (en) 2016-03-11 2021-11-23 Akoustis, Inc. Front end module for 5.5 GHz Wi-Fi acoustic wave resonator RF filter circuit
US11245382B2 (en) 2016-03-11 2022-02-08 Akoustis, Inc. Method and structure for single crystal acoustic resonator devices using thermal recrystallization
US11316496B2 (en) 2016-03-11 2022-04-26 Akoustis, Inc. Method and structure for high performance resonance circuit with single crystal piezoelectric capacitor dielectric material
US11356071B2 (en) 2016-03-11 2022-06-07 Akoustis, Inc. Piezoelectric acoustic resonator with improved TCF manufactured with piezoelectric thin film transfer process
US11394451B2 (en) 2016-03-11 2022-07-19 Akoustis, Inc. Front end module for 6.1 GHz Wi-Fi acoustic wave resonator RF filter circuit
US11418169B2 (en) 2016-03-11 2022-08-16 Akoustis, Inc. 5G n41 2.6 GHz band acoustic wave resonator RF filter circuit
US11424728B2 (en) 2016-03-11 2022-08-23 Akoustis, Inc. Piezoelectric acoustic resonator manufactured with piezoelectric thin film transfer process
US11456723B2 (en) 2016-03-11 2022-09-27 Akoustis, Inc. Acoustic wave resonator RF filter circuit device
US11456724B2 (en) 2016-03-11 2022-09-27 Akoustis, Inc. Acoustic wave resonator RF filter circuit device
US11476825B2 (en) 2016-03-11 2022-10-18 Akoustis, Inc. 5.5 GHz Wi-Fi coexistence acoustic wave resonator RF filter circuit
US11881831B2 (en) 2016-03-11 2024-01-23 Akoustis, Inc. Method of manufacture for single crystal acoustic resonator devices using micro-vias
US11804819B2 (en) 2016-03-11 2023-10-31 Akoustis, Inc. Method and structure for high performance resonance circuit with single crystal piezoelectric capacitor dielectric material
US11736177B2 (en) 2016-03-11 2023-08-22 Akoustis Inc. Front end modules for 5.6 GHz and 6.6 GHz Wi-Fi acoustic wave resonator RF filter circuits
US11558023B2 (en) 2016-03-11 2023-01-17 Akoustis, Inc. Method for fabricating an acoustic resonator device
US11031989B2 (en) 2016-03-11 2021-06-08 Akoustis, Inc. Front end module for 5.2 GHz Wi-Fi acoustic wave resonator RF filter circuit
US11616490B2 (en) 2016-03-11 2023-03-28 Akoustis, Inc. RF filter circuit including BAW resonators
US11621698B2 (en) 2016-03-11 2023-04-04 Akoustis, Inc. 5.5 GHz Wi-Fi 5G coexistence acoustic wave resonator RF filter circuit
US11637545B2 (en) 2016-03-11 2023-04-25 Akoustis, Inc. Acoustic wave resonator RF filter circuit and system
US11646710B2 (en) 2016-03-11 2023-05-09 Akoustis, Inc. Piezoelectric acoustic resonator manufactured with piezoelectric thin film transfer process
US11646717B2 (en) 2016-03-11 2023-05-09 Akoustis, Inc. Acoustic wave resonator, RF filter circuit device and system
US11711064B2 (en) 2016-03-11 2023-07-25 Akoustis, Inc. Acoustic wave resonator, RF filter circuit and system
US11646719B2 (en) 2016-03-11 2023-05-09 Akoustis, Inc. Acoustic wave resonator RF filter circuit and system
US11689186B2 (en) 2016-03-11 2023-06-27 Akoustis, Inc. 5.5 GHz Wi-Fi 5G coexistence acoustic wave resonator RF filter circuit
US11671067B2 (en) 2016-03-11 2023-06-06 Akoustis, Inc. Piezoelectric acoustic resonator manufactured with piezoelectric thin film transfer process
US11677372B2 (en) 2016-03-11 2023-06-13 Akoustis, Inc. Piezoelectric acoustic resonator with dielectric protective layer manufactured with piezoelectric thin film transfer process
US11683021B2 (en) 2016-03-11 2023-06-20 Akoustis, Inc. 4.5G 3.55-3.7 GHz band bulk acoustic wave resonator RF filter circuit
CN109196672A (en) * 2016-06-21 2019-01-11 前进材料科技株式会社 Film structure and its manufacturing method
KR20190043498A (en) * 2017-09-22 2019-04-26 안후이 아누키 테크놀러지 컴퍼니 리미티드 Piezo resonator manufacturing method and piezoelectric resonator
JP2019535148A (en) * 2017-09-22 2019-12-05 安徽安努奇科技有限公司Anhuianuki Technologies Co., Ltd. Method for manufacturing piezoelectric resonator and piezoelectric resonator
US11652469B2 (en) 2018-08-27 2023-05-16 Akoustis, Inc. High power bulk acoustic wave resonator filter devices
US12102010B2 (en) 2020-03-05 2024-09-24 Akoustis, Inc. Methods of forming films including scandium at low temperatures using chemical vapor deposition to provide piezoelectric resonator devices and/or high electron mobility transistor devices
US11496108B2 (en) 2020-08-17 2022-11-08 Akoustis, Inc. RF BAW resonator filter architecture for 6.5GHz Wi-Fi 6E coexistence and other ultra-wideband applications
US11901880B2 (en) 2021-01-18 2024-02-13 Akoustis, Inc. 5 and 6 GHz Wi-Fi coexistence acoustic wave resonator RF diplexer circuit

Similar Documents

Publication Publication Date Title
JPH09321361A (en) Piezoelectric vibrator component and manufacture thereof
Messing et al. Templated grain growth of textured piezoelectric ceramics
Dong et al. High-temperature solution growth and characterization of the piezo-/ferroelectric (1− x) Pb (Mg1/3Nb2/3) O3–xPbTiO3 [PMNT] single crystals
Mulvihill et al. The role of processing variables in the flux growth of lead zinc niobate-lead titanate relaxor ferroelectric single crystals
Akishige et al. New ferroelectric BaTi2O5
Saito et al. Pulsed laser deposition of high-quality (K, Na) NbO3 thin films on SrTiO3 substrate using high-density ceramic targets
Ravez The inorganie fluoride and oxyfluoride ferroelectrics
Zhang et al. Flux growth and characterization of the relaxor-based Pb [(Zn1/3Nb2/3) 1− xTix] O3 [PZNT] piezocrystals
Fu et al. Crystal growth and piezoelectricity of BaTiO3–CaTiO3 solid solution
KR20100117565A (en) Method of making ternary piezoelectric crystals
US9738990B2 (en) Method of liquid-phase epitaxial growth of lead zirconate titanate single crystals
JPH09221393A (en) Lead-containing perovskite type ferroelectric single crystal film and its production
Fuierer et al. Nonepitaxial orientation in sol–gel bismuth titanate films
JP4658773B2 (en) Piezoelectric single crystal element
JP3963404B2 (en) Laminated body and film forming method thereof
JP3594061B2 (en) Layered crystal structure oxide and method for producing the same
JPH09321570A (en) Surface acoustic wave device and its manufacture
JP4272830B2 (en) Method for producing BaTiO3-PbTiO3-based piezoelectric single crystal
Yi et al. Electrical properties of layer-structured Pb2Bi4Ti5O18 single crystals
Kakimoto et al. Growth morphology and crystal orientation of KNbO3 film on SrTiO3 by liquid phase epitaxy
JP2004002051A (en) Piezoelectric ceramic composition, piezoelectric ceramic element, and method of producing the piezoelectric ceramic composition
Xu et al. Morphology and defect structures of novel relaxor ferroelectric single crystals Pb (Mg1/3Nb2/3) O3− PbTiO3
JPH0987092A (en) Lead-containing perovskite type dielectric single crystal film and its production
JP4977640B2 (en) Functional oxide structure and method for producing functional oxide structure
JP2006131497A (en) Method for forming ferroelectric thin film, and substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070418