JPS636519B2 - - Google Patents

Info

Publication number
JPS636519B2
JPS636519B2 JP55043262A JP4326280A JPS636519B2 JP S636519 B2 JPS636519 B2 JP S636519B2 JP 55043262 A JP55043262 A JP 55043262A JP 4326280 A JP4326280 A JP 4326280A JP S636519 B2 JPS636519 B2 JP S636519B2
Authority
JP
Japan
Prior art keywords
film
substrate
pbtio
crystal
target material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55043262A
Other languages
Japanese (ja)
Other versions
JPS56138813A (en
Inventor
Heihachiro Hirai
Hiroyoshi Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4326280A priority Critical patent/JPS56138813A/en
Publication of JPS56138813A publication Critical patent/JPS56138813A/en
Publication of JPS636519B2 publication Critical patent/JPS636519B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 この発明は、チタン酸鉛(PbTiO3)薄膜の形
成方法に関し、特に高周波スパツタリングを利用
したPbTiO3単結晶薄膜の新しい形成方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a lead titanate (PbTiO 3 ) thin film, and in particular to a new method for forming a PbTiO 3 single crystal thin film using high frequency sputtering.

最近、強誘電体薄膜の光学的特性を利用して光
変調器や光スイツチ等の光ICを構成することが
提案されている。この場合の強誘電体薄膜は光導
波路を構成するものであるから、散乱等による光
の損失を避けるよう多結晶よりも単結晶の形で成
膜するのが望ましい。従来このような強誘電体単
結晶薄膜としては、例えばSrTiO3またはMgOの
単結晶基板上に高周波スパツタリングで形成した
PLZT〔(Pb、La)(Zr、Ti)O3〕のエピタキシ
ヤル膜等が報告されている。ところがかかる従来
の成膜技術では、ターゲツト材料の精製と準備に
手間がかかり、コスト高となつて量産に向かない
欠点があつた。
Recently, it has been proposed to utilize the optical properties of ferroelectric thin films to construct optical ICs such as optical modulators and optical switches. Since the ferroelectric thin film in this case constitutes an optical waveguide, it is preferable to form the film in the form of a single crystal rather than a polycrystal in order to avoid loss of light due to scattering or the like. Conventionally, such ferroelectric single-crystal thin films have been formed by high-frequency sputtering on, for example, SrTiO 3 or MgO single-crystal substrates.
Epitaxial films of PLZT [(Pb, La) (Zr, Ti) O 3 ] have been reported. However, such conventional film-forming techniques require time and effort to purify and prepare the target material, resulting in high costs and disadvantages that make them unsuitable for mass production.

この発明は、以上のような従来の状況から、こ
れまで薄膜状の単結晶としては成膜化の試みのな
されていない高屈折率のPbTiO3に着目し、当該
PbTiO3の単結晶薄膜を容易にかつ再現性良く形
成する手法を提供して、この種強誘電体薄膜を応
用した電子または光学部品の高性能化とコストの
低減を図ろうとするものである。
In view of the above-mentioned conventional situation, this invention focuses on PbTiO 3 , which has a high refractive index and has not been attempted to be formed into a thin single crystal film.
The aim is to provide a method for easily and reproducibly forming single-crystal thin films of PbTiO 3 in order to improve the performance and reduce costs of electronic or optical components that apply this type of ferroelectric thin film.

簡単に述べるとこの発明は、PbOとTiO2との
混合粉末をターゲツト材料として用いた高周波ス
パツタリングにより基板結晶上にPbTiO3のエピ
タキシヤル膜を形成することを骨子とするもので
ある。この場合基板結晶にはサフアイアが適し、
成膜条件としては基板温度を650℃以上に保つこ
とと、付着率を20Å/min以上に制御することが
肝要である。
Briefly stated, the gist of the present invention is to form an epitaxial film of PbTiO 3 on a substrate crystal by high frequency sputtering using a mixed powder of PbO and TiO 2 as a target material. In this case, sapphire is suitable as the substrate crystal.
As for film formation conditions, it is important to maintain the substrate temperature at 650°C or higher and to control the deposition rate to 20 Å/min or higher.

以下この発明によるPbTiO3エピタキシヤル薄
膜形成方法の好ましい実施例について説明する。
Preferred embodiments of the method for forming a PbTiO 3 epitaxial thin film according to the present invention will be described below.

第1図は高周波スパツタリング装置における基
板とターゲツト材料とのセツトされた状態を概念
的に示す模式図で、この場合サフアイアよりなる
基板結晶1はその(1102)面を表面としてプレ
ート側に設けられた基板ホルダ2に支持されてお
り、その後ろには該基板結晶1を加熱するための
ヒータ3が設置されている。他方、ターゲツト材
料4としては、形成すべきPbTiO3の化学量論的
組成比となるように秤量したPbOとTiO2の混合
粉末を用い、これを直径100mmの石英シヤーレ5
に入れた状態で水冷されたカソード7の上に別の
石英板6を介して載置してある。なお前記ターゲ
ツト材料の粉末4は真空中で充分にガス出し処理
を施されている。
FIG. 1 is a schematic diagram conceptually showing the set state of a substrate and target material in a high-frequency sputtering device. In this case, a substrate crystal 1 made of sapphire is provided on the plate side with its (1102) plane as the surface. It is supported by a substrate holder 2, and a heater 3 for heating the substrate crystal 1 is installed behind it. On the other hand, as the target material 4, a mixed powder of PbO and TiO 2 weighed to have the stoichiometric composition ratio of PbTiO 3 to be formed is used, and this is placed in a quartz shear plate 5 with a diameter of 100 mm.
The cathode 7 is placed on top of a water-cooled cathode 7 with another quartz plate 6 interposed therebetween. The target material powder 4 has been sufficiently degassed in a vacuum.

以上のごとく基板結晶1とターゲツト材料4と
をセツトし、それらの間隔を40mmに設定した状態
で、90%のArと10%のO2との混合ガス2×
10-2Torrの圧力で導入して高周波数スパツタリ
ングを試みた。そしてこの場合のスパツタ条件と
しては、基板温度520〜700℃、プレート電圧を
1.2〜2.2KV、プレート電流を120〜235mAの範
囲で可変するようにした。
With the substrate crystal 1 and the target material 4 set as described above and the distance between them set to 40 mm, a mixed gas of 90% Ar and 10% O 2
High frequency sputtering was attempted by introducing at a pressure of 10 -2 Torr. In this case, the sputtering conditions include a substrate temperature of 520 to 700℃ and a plate voltage of 520 to 700℃.
The plate current was varied in the range of 1.2 to 2.2 KV and 120 to 235 mA.

第2図はサフアイア基板(1102)面への成膜
時の基板温度と結晶構造との関係を示す図で、付
着率が略25Å/minとなるようプレート電圧を
1.8KVに設定して厚み0.7μmのPbTiO3膜を形成
した場合、基板温度650℃以上において結晶面
(111)に配向したペロブスカイト構造のエピタキ
シヤル膜の得られることが判明した。すなわち第
2図において基板温度550℃以下の領域におい
てはペロブスカイト構造とバイロクロア構造との
混晶形態で着膜し、550〜650℃の領域において
はペログスカイト構造の多結晶膜となり、650℃
以上700℃までの領域でペロブスカイト構造の
エピタキシヤル成長した単結晶膜が得られること
になる。但しこの場合の基板温度の上限は基板結
晶の特性や使用する装置により800℃程度までの
範囲で適宜定められる。ここでPbTiO3の結晶面
(111)の格子定数は基板結晶サフアイアの(11
02)面の格子定数に対してミスマツチが4.7%以
下と比較的小さいため、当該サフアイア基板上へ
のPbTiO3膜のエピタキシヤル成長が可能なわけ
である。なおサフアイアに限らずPbTiO3と格子
定数の近似した他の基板結晶の上にも同様のエピ
タキシヤル膜を形成することが可能である。
Figure 2 shows the relationship between the substrate temperature and crystal structure during film formation on the sapphire substrate (1102) surface.The plate voltage was adjusted so that the deposition rate was approximately 25 Å/min.
It was found that when a PbTiO 3 film with a thickness of 0.7 μm was formed at 1.8 KV, an epitaxial film with a perovskite structure oriented in the (111) crystal plane could be obtained at a substrate temperature of 650°C or higher. In other words, in Fig. 2, in the region where the substrate temperature is 550°C or less, the film is deposited in a mixed crystal form of perovskite structure and virochlore structure, and in the region of 550 to 650°C, it becomes a polycrystalline film with perovskite structure, and at 650°C
An epitaxially grown single crystal film with a perovskite structure can be obtained in the above temperature range up to 700°C. However, the upper limit of the substrate temperature in this case is appropriately determined within the range of about 800° C. depending on the characteristics of the substrate crystal and the equipment used. Here, the lattice constant of the crystal plane (111) of PbTiO 3 is the (11) of the substrate crystal sapphire.
02) Since the mismatch with respect to the lattice constant of the plane is relatively small at 4.7% or less, it is possible to epitaxially grow a PbTiO 3 film on the sapphire substrate. Note that it is possible to form a similar epitaxial film not only on sapphire but also on other substrate crystals whose lattice constants are similar to PbTiO 3 .

一方、本発明者等はサフアイア基板面での
PbTiO3膜のエピタキシヤル成長が基板温度依存
性のみならず、スパツタの付着率依存性をも示す
ことを見い出した。すなわちプレート電圧が
1.6KV以下となつて膜の付着率が20Å/min以下
になるとエピタキシヤル膜にならず、プレート電
圧を1.6KV以上に設定して付着率を20Å/minか
ら70Å/minの範囲に制御した場合において
(111)面に配向したペロブスカイト構造の高屈折
率エピタキシヤル膜の得られることが判明した。
これはPbTiO3膜のエピタキシヤル成長がスパツ
タ粒子のエネルギにも関係することを示している
が、プレート電圧が余り高くなりすぎて付着率が
70Å/minを越えると多結晶化が著しく、エピタ
キシヤル成長が不能となる。
On the other hand, the present inventors have discovered that
We have found that the epitaxial growth of PbTiO 3 film is not only dependent on the substrate temperature but also on the sputter deposition rate. That is, the plate voltage is
If the voltage is 1.6 KV or less and the film deposition rate is 20 Å/min or less, it will not form an epitaxial film, and if the plate voltage is set to 1.6 KV or higher and the deposition rate is controlled within the range of 20 Å/min to 70 Å/min. It was found that a high refractive index epitaxial film with a perovskite structure oriented in the (111) plane could be obtained.
This indicates that the epitaxial growth of the PbTiO 3 film is also related to the energy of the sputtered particles, but the plate voltage becomes too high and the deposition rate decreases.
If it exceeds 70 Å/min, polycrystalization will be significant and epitaxial growth will become impossible.

1例として、基板温度660℃、付着率25Å/
minでサフアイア(1102)面上に厚み0.7μmの
PbTiO3膜を形成した後、大気中750℃で30時間
熱処理したところ、着膜直後の格子間隙は2.290
Å、(111)面でのX線回折ピークの半値幅は0.47
〜0.52度のエピタキシヤル膜であつたのが、熱処
理後はそれぞれ格子間隙2.297Å、半値幅0.39〜
0.42度と結晶性が改善された。そしてこの
PbTiO3単結晶薄膜の屈折率は、5460Åの波長に
対して2.52で、基板サイフアイアの屈折率1.77よ
りも充分大きく、良好な光導波路を構成し得るこ
とを確認した。この屈折率値は従来のPLZT膜の
それよりも高く光導波路を構成するのにきわめて
有利である。
As an example, the substrate temperature is 660℃, the adhesion rate is 25Å/
The thickness of 0.7 μm was deposited on the saphire (1102) surface at min.
After forming the PbTiO 3 film, it was heat-treated at 750°C in the air for 30 hours, and the lattice gap immediately after the film was deposited was 2.290.
Å, the half width of the X-ray diffraction peak on the (111) plane is 0.47
The epitaxial film was ~0.52 degrees, but after heat treatment, the lattice gap was 2.297 Å and the half width was 0.39 ~
The crystallinity was improved to 0.42 degrees. and this
The refractive index of the PbTiO 3 single crystal thin film is 2.52 for a wavelength of 5460 Å, which is sufficiently larger than the refractive index of the substrate cipher, 1.77, and it was confirmed that it can form a good optical waveguide. This refractive index value is higher than that of conventional PLZT films and is extremely advantageous for constructing optical waveguides.

さて以上の説明から明らかなように、要するに
この発明は、高周波スパツタリングの手法を利用
してPbTiO3薄膜のエピタキシヤル成長を可能と
したものであり、ターゲツト材料としては原材料
の混合粉末を用いるやり方であるので準備が簡単
で従来のこの種強誘電体単結晶薄膜よりも安価に
再現性良く成膜することができる。そしてこの発
明によるPbTiO3のエピタキシヤル薄膜は、良好
な光学的特性を示すので、光変調器や光スイツチ
等の光ICにおける光導波路に利用できるのはも
ちろん弾性表面波素子の基板材料等にも広く応用
することが可能である。
Now, as is clear from the above explanation, in short, this invention makes it possible to epitaxially grow a PbTiO 3 thin film using a high frequency sputtering method, and uses a mixed powder of raw materials as the target material. Therefore, it is easy to prepare and can be formed at a lower cost and with better reproducibility than conventional ferroelectric single crystal thin films of this type. Since the PbTiO 3 epitaxial thin film according to the present invention exhibits good optical properties, it can be used not only as an optical waveguide in optical ICs such as optical modulators and optical switches, but also as a substrate material for surface acoustic wave devices. It can be widely applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施するための高周波スパ
ツタリング装置における基板結晶とターゲツト材
料とのセツト状態を模式的に示す図、第2図は基
板温度と結晶構造との関係を示す図である。 1:基板結晶(サフアイア)、2:基板ホルダ、
3:ヒータ、4:ターゲツト材料、5:石英シヤ
ーレ、6:石英板、7:カソード。
FIG. 1 is a diagram schematically showing a set state of a substrate crystal and a target material in a high-frequency sputtering apparatus for carrying out the present invention, and FIG. 2 is a diagram showing the relationship between substrate temperature and crystal structure. 1: Substrate crystal (sapphire), 2: Substrate holder,
3: heater, 4: target material, 5: quartz shear, 6: quartz plate, 7: cathode.

Claims (1)

【特許請求の範囲】[Claims] 1 PbOとTiO2との混合粉末をターゲツト材料
とし、かつ基板温度を650℃以上に保持した状態
で、20Å/minから70Å/minの付着率をもつて
高周波スパツタリングをなすことにより、サフア
イアよりなる基板結晶の(1102)面上に
PbTiO3のエピタキシヤル膜を形成するようにし
たことを特徴とするチタン酸鉛薄膜の形成方法。
1. Using a mixed powder of PbO and TiO 2 as the target material, and performing high frequency sputtering at a deposition rate of 20 Å/min to 70 Å/min while maintaining the substrate temperature at 650°C or higher, a material made of sapphire is produced. on the (1102) plane of the substrate crystal
A method for forming a lead titanate thin film, characterized in that an epitaxial film of PbTiO 3 is formed.
JP4326280A 1980-03-31 1980-03-31 Method of forming lead titanate thin film Granted JPS56138813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4326280A JPS56138813A (en) 1980-03-31 1980-03-31 Method of forming lead titanate thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4326280A JPS56138813A (en) 1980-03-31 1980-03-31 Method of forming lead titanate thin film

Publications (2)

Publication Number Publication Date
JPS56138813A JPS56138813A (en) 1981-10-29
JPS636519B2 true JPS636519B2 (en) 1988-02-10

Family

ID=12658930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4326280A Granted JPS56138813A (en) 1980-03-31 1980-03-31 Method of forming lead titanate thin film

Country Status (1)

Country Link
JP (1) JPS56138813A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186105A (en) * 1982-04-26 1983-10-31 松下電器産業株式会社 Ferrodielectric thin film and ferrodielectric element
JPS61274342A (en) * 1985-05-29 1986-12-04 Ube Ind Ltd Ferroelectric element and manufacture thereof

Also Published As

Publication number Publication date
JPS56138813A (en) 1981-10-29

Similar Documents

Publication Publication Date Title
US5650362A (en) Oriented conductive film and process for preparing the same
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
US3808674A (en) Epitaxial growth of thermically expandable films and particularly anisotropic ferro-electric films
US4219608A (en) Piezoelectric crystalline film of zinc oxide and method for making same
GB2026040A (en) Dielectric thin film
JPS6096599A (en) Production of superconductive thin film of oxide
JPS636519B2 (en)
US4099836A (en) Optical control device for integrated optical circuit
JPS6241311B2 (en)
JPH02258700A (en) Ferroelectric thin film and production thereof
JPS61185808A (en) Making process of orientation thin film for ferrodielectric compound
US4156050A (en) Piezoelectric crystalline films and method of preparing the same
Mitsuyu et al. Structures and Optical Properties of Rf‐Sputtered Bi12GeO20 Films
JPH05254991A (en) Thin-film laminated crystal body and production thereof
JP2718414B2 (en) Method for producing lead titanate thin film
JPS61135172A (en) Manufacture of ferroelectric compound thin-film
JP2006510566A (en) Method for manufacturing ferroelectric single crystal film structure using vapor deposition method
JPS593091A (en) Production of oxide single crystal
Neurgaonkar et al. EPITAXIAL GROWTH OF TUNGSTEN BRONZE PBN: 60 THIN FILMS FOR OPTICAL APPLICATIONS
JP2710973B2 (en) Manufacturing method of ferroelectric thin film
JPH0637352B2 (en) Manufacturing method of lithium oxide single crystal thin film
JPH0535563B2 (en)
Descamps et al. New generation of oxide target for the deposition of ferroelectric thin films by sputtering
JPS5824382B2 (en) germanium sambismuth hakumakuno seizouhouhou
JPH05347438A (en) Ferroelectric thin-film element