JPH0637352B2 - Manufacturing method of lithium oxide single crystal thin film - Google Patents

Manufacturing method of lithium oxide single crystal thin film

Info

Publication number
JPH0637352B2
JPH0637352B2 JP22213688A JP22213688A JPH0637352B2 JP H0637352 B2 JPH0637352 B2 JP H0637352B2 JP 22213688 A JP22213688 A JP 22213688A JP 22213688 A JP22213688 A JP 22213688A JP H0637352 B2 JPH0637352 B2 JP H0637352B2
Authority
JP
Japan
Prior art keywords
single crystal
thin film
lithium oxide
substrate
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22213688A
Other languages
Japanese (ja)
Other versions
JPH0269395A (en
Inventor
宏典 松永
公隆 大野
康成 岡本
義晴 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP22213688A priority Critical patent/JPH0637352B2/en
Publication of JPH0269395A publication Critical patent/JPH0269395A/en
Publication of JPH0637352B2 publication Critical patent/JPH0637352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、リチウム酸化物系単結晶薄膜の製法に関
し、ことに光デバイス用基板に用いられる。
TECHNICAL FIELD The present invention relates to a method for producing a lithium oxide single crystal thin film, and is particularly used for an optical device substrate.

(ロ)従来の技術 リチウム酸化物系単結晶LiNb1-xTaxO3(0≦x≦1)は、そ
の優れた多くの特性を利用して様々のデバイスへの応用
開発に利用されており、例えば電気機械結合係数が大き
い事を利用した表面弾性波(SAW)デバイス、電気光
学効果、非線型光学効果等を利用した光導波路、光スイ
ッチ、光変調器、光結合器、波長変換器等の光集積回路
用基板材料、外場の変化に敏感に対応する屈折率変化を
利用した光ICセンサー、更にはFe等の不純物ドープ
により生じる光損傷効果を利用した光メモリーや3次元
ホログラム材料等、応用研究の分野は広範囲におよんで
いる。
(B) Conventional technology Lithium oxide single crystal LiNb 1-x Ta x O 3 (0 ≦ x ≦ 1) is used for application development in various devices by utilizing its many excellent characteristics. For example, a surface acoustic wave (SAW) device utilizing the fact that the electromechanical coupling coefficient is large, an optical waveguide utilizing the electro-optical effect, the nonlinear optical effect, etc., an optical switch, an optical modulator, an optical coupler, a wavelength converter. Substrate materials for optical integrated circuits, such as optical IC sensors that utilize the change in refractive index that is sensitive to changes in the external field, and optical memories and three-dimensional hologram materials that utilize the optical damage effect caused by doping impurities such as Fe. The field of applied research covers a wide range.

従来、このようなLiNb1-xTaxO3(0≦x≦1)は、一般に引
き上げ法により作製されたバルク単結晶から、特定の結
晶面を持ったウェハーを切り出して使用している。しか
し、多くのデバイスでは実際に機能するのは結晶表面の
十数ミクロン厚の領域にすぎない事から、高価なバルク
単結晶に代わって望みの結晶面方位を持った単結晶薄膜
を製造する方法が従来より検討されており、例えばLiNb
1-xTaxO3(0≦x≦1)の薄膜化方法としては、スパッタリ
ング法、イオンプレーティング法、液相エピタキシャル
法、CVD法、ゾル・ゲル法等が報告されている。単結
晶薄膜化の成否には、基板材料の選択が重要な要素であ
り、これまで用いられている基板材料としては、LiNb
1-xTaxO3(0≦x≦1)単結晶、水晶(Z面)、サファイヤ
(R面、Y面、Z面)、酸化マグネシウム((111)面)
等がある。これらの内、異種材料基板を用いるヘテロエ
ピタキシャル結晶成長には、LiNb1-xTaxO3(0≦x≦1)と
結晶構造が類似したサファイヤ単結晶が最も多く用いら
れている。中でも、サファイヤの(102)結晶格子
面は、LiNb1-xTaxO3(0≦x≦1)単結晶の格子不整合が6.
7〜8.3%であり、他の結晶面に比較して小さい事からヘ
テロエピタキシャル結晶成長に適していると考えられ
る。このサファイヤ単結晶(102)結晶格子面上へ
のLiNb1-xTaxO3(0≦x≦1)単結晶薄膜のヘテロエピタキ
シャル成長は、例えばスパッタリング法では(10
0)結晶格子面のLiNb1-xTaxO3(0≦x≦1)が成長し(特
公昭59-5560号公報)一方、イオンプレーティング法、
ゾル・ゲル法では、基板と同じ(102)結晶格子
(R面結晶格子面)が成長すると報告されている。
Conventionally, such LiNb 1-x Ta x O 3 (0 ≦ x ≦ 1) is generally used by cutting out a wafer having a specific crystal plane from a bulk single crystal produced by a pulling method. However, in many devices, it is only the tens of microns thick region of the crystal surface that actually functions, so a method for producing a single crystal thin film with a desired crystal plane orientation instead of an expensive bulk single crystal. Has been studied for a long time, and for example, LiNb
As a thinning method for 1-x Ta x O 3 (0 ≦ x ≦ 1), a sputtering method, an ion plating method, a liquid phase epitaxial method, a CVD method, a sol-gel method, etc. have been reported. The choice of substrate material is an important factor in the success or failure of thinning of single crystals, and LiNb has been used as the substrate material used so far.
1-x Ta x O 3 (0 ≦ x ≦ 1) single crystal, quartz (Z plane), sapphire (R plane, Y plane, Z plane), magnesium oxide ((111) plane)
Etc. Among these, a sapphire single crystal having a crystal structure similar to that of LiNb 1-x Ta x O 3 (0 ≦ x ≦ 1) is most often used for heteroepitaxial crystal growth using a different material substrate. Among them, in the (102) crystal lattice plane of sapphire, lattice mismatch of LiNb 1-x Ta x O 3 (0 ≦ x ≦ 1) single crystal is 6.
It is considered to be suitable for heteroepitaxial crystal growth because it is 7 to 8.3%, which is smaller than other crystal planes. The heteroepitaxial growth of a LiNb 1-x Ta x O 3 (0 ≦ x ≦ 1) single crystal thin film on the sapphire single crystal (102) crystal lattice plane is performed by, for example, sputtering (10).
0) LiNb 1-x Ta x O 3 (0 ≦ x ≦ 1) on the crystal lattice plane grows (Japanese Patent Publication No. 59-5560), while the ion plating method,
In the sol-gel method, it is reported that the same (102) crystal lattice (R-plane crystal lattice plane) as the substrate grows.

(ハ)発明が解決しようとする課題 しかし、上記サファイヤ基板上へのリチウム酸化物系単
結晶のヘテロエピタキシャル成長技術は、まだ確立され
ているとは言い難く、その結晶性が低く、光学的な応用
面に十分適用できるまでには至っていない。
(C) Problems to be Solved by the Invention However, it is difficult to say that the technique for heteroepitaxial growth of a lithium oxide-based single crystal on a sapphire substrate is yet to be established, and its crystallinity is low, and optical application It has not reached the point where it can be sufficiently applied to the surface.

この発明は、このような問題を解決するためになされた
ものであり、例えば光デバイス用基板に使用可能な結晶
性の高いリチウム酸化物系単結晶薄膜の製法を提供しよ
うとするものである。
The present invention has been made to solve such a problem, and an object thereof is to provide a method for producing a highly crystalline lithium oxide single crystal thin film that can be used as a substrate for an optical device, for example.

(ニ)課題を解決するための手段 そこで、この発明者らはイオンプレーティング法による
サファイヤ基板を用いたリチウム酸化物系単結晶薄膜の
結晶性向上について鋭意研究を行った結果、上記ヘテロ
エピタキシーにおいて、 (a)リチウム酸化物系単結晶の(102)結晶格子面
をサファイヤ基板の(102)結晶格子面と平行にし
たとき、リチウム酸化物系単結晶の[110]方向は
サファイヤの[110]方向と平行になり、かつ (b)リチウム酸化物系単結晶の結晶性の向上に伴い、リ
チウム酸化物系単結晶のR面結晶格子面((102)結
晶格子面)が、サファイヤ基板の((102)結晶格
子面に対して[110]方向を回転軸とし[10
0]方向へ傾斜してゆく、 という事実を見出し、この発明に至った。
(D) Means for Solving the Problems Therefore, the inventors of the present invention have conducted diligent research on the crystallinity improvement of the lithium oxide based single crystal thin film using the sapphire substrate by the ion plating method, and as a result, in the above heteroepitaxy. , (A) When the (102) crystal lattice plane of the lithium oxide single crystal is parallel to the (102) crystal lattice plane of the sapphire substrate, the [110] direction of the lithium oxide single crystal is [110] of the sapphire substrate. In parallel with the (b) direction, and (b) the crystallinity of the lithium oxide single crystal is improved, the R-plane crystal lattice plane ((102) crystal lattice plane) of the lithium oxide single crystal becomes ( The rotation axis is [110] with respect to the (102) crystal lattice plane, and [10]
The present invention has been achieved by finding the fact that it is inclined in the [0] direction.

この発明によれば、サファイヤ単結晶表面をその(1
02)結晶格子面に対して[112]方向を回転軸と
し[100]方向へ1゜〜4゜傾斜した面に加工して
サファイヤ単結晶基板となし、上記加工した基板面上に
式LiNb1-xTaxO3ただし、 0≦x≦1)で表わされるリチ
ウム酸化物系の単結晶をエピタキシャル成長させ、上記
基板表面に平行にR面結晶格子面を有するリチウム酸化
物系単結晶薄膜を作製することを特徴とするリチウム酸
化物系単結晶薄膜の製法が提供される。
According to this invention, the sapphire single crystal surface is
02) A sapphire single crystal substrate was obtained by processing a plane tilted from the crystal lattice plane in the [100] direction by 1 ° to 4 ° with the [112] direction as the axis of rotation, and the formula LiNb 1 was formed on the processed substrate surface. -x Ta x O 3 However, a lithium oxide single crystal represented by 0 ≦ x ≦ 1) is epitaxially grown to prepare a lithium oxide single crystal thin film having an R-plane crystal lattice plane parallel to the substrate surface. A method for producing a lithium oxide-based single crystal thin film is provided.

この発明においては、結晶面に対して特定の方向に特定
の角度範囲内で傾斜した表面を有するサファイヤ単結晶
基板を用いて、その表面にリチウム酸化物系単結晶を堆
積して単結晶薄膜を作製することを最大の特徴とする。
In the present invention, a sapphire single crystal substrate having a surface inclined in a specific angle range in a specific direction with respect to a crystal plane is used, and a lithium oxide based single crystal is deposited on the surface to form a single crystal thin film. The greatest feature is that it is manufactured.

上記サファイヤ単結晶基板の表面はサファイア基板の
(102)結晶格子面に対して[110]方向を回
転軸とし、[100]方向へ1゜〜4゜の範囲で傾斜
して形成するのが適しており、この中でも2゜〜3.5゜
が好ましく、とりわけ3゜が好ましい。この範囲を外れ
た場合は、この基板表面上にヘテロエピタキシーによっ
て作製されるリチウム酸化物系単結晶薄膜の結晶性が低
下し、例えば光デバイス用基板として用いるのに適さな
い。
It is suitable that the surface of the sapphire single crystal substrate is formed so as to be inclined with respect to the (102) crystal lattice plane of the sapphire substrate in the range of 1 ° to 4 ° with the [110] direction as a rotation axis. Among these, 2 ° to 3.5 ° is preferable, and 3 ° is particularly preferable. If it is out of this range, the crystallinity of the lithium oxide single crystal thin film formed on the surface of the substrate by heteroepitaxy is lowered, and it is not suitable for use as a substrate for optical devices, for example.

上記サファイヤ単結晶基板表面の加工は通常の切削、研
削及び研磨工程等によって行うことができ、その表面は
X線回折によって目的の表面と同定することができる。
The surface of the sapphire single crystal substrate can be processed by ordinary cutting, grinding and polishing steps, and the surface can be identified as the target surface by X-ray diffraction.

この単結晶薄膜の作製は、例えば通常のスパッタリング
法及びイオンプレーティング法等各種成膜手段を用いて
行うことができ、例えばイオンプレーティング法によっ
てこの発明のリチウム酸化物系単結晶薄膜を作製するに
は、電子ビーム加熱装置、クヌードセンセル及び高周波
プラズマ発生用ワーキングコイルを内部に装備した真空
チャンバーに上記特定の表面を有するサファイヤ基板を
設置し、まず真空チャンバー内1×10-8Torr以下まで真
空排気した後、酸素ガスを1×10-4〜5×10-4Torr導入
し高周波プラズマを発生させこの状態で、電子ビーム加
熱装置により金属Nb及び金属Taを、クヌードセンセ
ルにより金属Liを各々独立に所定の蒸発量となる様に
加熱温度を設定した後、 600〜800℃に加熱保持した上記サファイヤ基板表面上へ
同時蒸着して行うことができる。
The production of this single crystal thin film can be carried out by using various film forming means such as an ordinary sputtering method and an ion plating method. For example, the lithium oxide single crystal thin film of the present invention is produced by the ion plating method. , A sapphire substrate having the above specific surface was placed in a vacuum chamber equipped with an electron beam heating device, a Knudsen cell and a working coil for high frequency plasma generation. First, the vacuum chamber was set to 1 × 10 -8 Torr or less. After evacuating to vacuum, oxygen gas was introduced at 1 × 10 −4 to 5 × 10 −4 Torr to generate high-frequency plasma. In this state, metal Nb and metal Ta were heated by an electron beam heating device, and metal Nb was heated by a Knudsen cell. After setting the heating temperature so that each Li has a predetermined evaporation amount independently, the surface of the sapphire substrate is heated and held at 600 to 800 ° C. It can be carried out by depositing at the time.

なお、上記Nb又はTaのいずれかを用いないでリチウ
ム酸化物系単結晶としてもこの発明の目的を達成するこ
とができる。
Note that the object of the present invention can be achieved even if a lithium oxide-based single crystal is used without using either Nb or Ta.

このようにして作製されたリチウム酸化物系単結晶薄膜
の表面は結晶性の高いR面結晶格子面であり、上記基板
表面と平行に形成されることになる。
The surface of the lithium oxide single crystal thin film thus manufactured is an R-plane crystal lattice plane with high crystallinity and is formed parallel to the substrate surface.

(ホ)作用 サファイヤ基板の(102)結晶格子面に対して、
[110]方向を回転軸とし[100]方向へ1゜
〜4゜の範囲に傾斜したサファイヤ基板表面の上にリチ
ウム酸化物系単結晶薄膜を成長させると、このリチウム
酸化物系単結晶薄膜のR面格子面が、上記サファイヤ基
板表面に対して平行に成長し、リチウム酸化物系単結晶
薄膜の結晶性が向上する。
(E) Action For the (102) crystal lattice plane of the sapphire substrate,
When a lithium oxide single crystal thin film is grown on a sapphire substrate surface inclined in the range of 1 ° to 4 ° with the [110] direction as a rotation axis, the lithium oxide single crystal thin film The R-plane lattice plane grows parallel to the surface of the sapphire substrate to improve the crystallinity of the lithium oxide single crystal thin film.

(ヘ)実施例 以下この発明の一実施例について説明する。尚、これに
よってこの発明は限定されるものではない。
(F) Example One example of the present invention will be described below. The present invention is not limited to this.

実施例1 電子ビーム加熱装置(2機)、クヌードセンセル(1
機)及び高周波プラズマ発生用ワーキングコイルを内部
に装備した真空チャンバーにおいて、まず、真空チャン
バー内を1×10-8Torrまで真空排気した後、酸素ガスを2
×10-4Torrまで導入し高周波プラズマを発生させた。こ
の時のRfパワーは200Wとした。この状態で、電子ビ
ーム加熱装置により金属Nb及び金属Taを、クヌード
センセルにより金属Liを各々独立に所定の蒸発量とな
る様に加熱温度を設定した後、700℃に加熱保持したサ
ファイヤ基板上へ同時蒸着した。この場合の電子ビーム
加熱のエミッション電流はNb源150mA,Ta源50mAと
し、クヌードセンセルの加熱温度は550℃に設定した。
ただし、上記サファイヤ基板としては、基板表面がR面
に対して、[110]方向を回転軸とし[100]
方向へ3゜傾斜した基板を用いた。このようにして2時
間の蒸着後この基板上に約6000Åの膜厚の透明薄膜が得
られた。
Example 1 Electron beam heating device (2 units), Knudsen cell (1
Machine) and a working coil for high-frequency plasma generation inside, first evacuate the inside of the vacuum chamber to 1 × 10 -8 Torr and then add oxygen gas to 2
High frequency plasma was generated by introducing up to × 10 -4 Torr. The Rf power at this time was set to 200W. In this state, the sapphire substrate was heated and held at 700 ° C. after the metal Nb and the metal Ta were heated by the electron beam heating device and the metal Li was independently heated by the Knudsen cell so as to have a predetermined evaporation amount. Co-deposited on top. In this case, the electron beam heating emission current was set to 150 mA for Nb source and 50 mA for Ta source, and the heating temperature of the Knudsen cell was set at 550 ° C.
However, in the sapphire substrate, the substrate surface is [100] with the rotation axis in the [110] direction with respect to the R plane.
A substrate tilted by 3 ° was used. Thus, a transparent thin film having a film thickness of about 6000Å was obtained on this substrate after vapor deposition for 2 hours.

作製した薄膜の組成を2次イオン質量分析計(SIM
S)により分析した所、この板上の薄膜はLiNb0.9Ta0.1
O3であり、膜中全体にわたり均質である事がわかった。
The composition of the prepared thin film was measured by the secondary ion mass spectrometer (SIM
S)), the thin film on this plate is LiNb 0.9 Ta 0.1
It was O 3 and was found to be homogeneous throughout the film.

次に、X線回折による結晶性の評価を行ったところ、こ
の薄膜から第1図のX線回折パターンに見られる様にLi
Nb0.9Ta0.1O3のR面反射(102)(204)(3
06)のみが観測された。すなわち、R面単結晶薄膜
が得られた事がわかる。
Next, the crystallinity was evaluated by X-ray diffraction, and as a result, it was found from this thin film that the Li
Rb reflection of Nb 0.9 Ta 0.1 O 3 (102) (204) (3
Only 06) was observed. That is, it can be seen that an R-plane single crystal thin film was obtained.

更にX線プリセッション写真の撮影を行った結果、基板
上のLiNb0.9Ta0.1O3はスポット状の回折点を示し、この
薄膜が単結晶薄膜である事が確認された。
As a result of further X-ray precession photography, it was confirmed that LiNb 0.9 Ta 0.1 O 3 on the substrate showed spot-like diffraction points, and that this thin film was a single crystal thin film.

次に、結晶性を評価する為に、LiNb0.9Ta0.1O3の(1
02)反射のロッキング・カーブ半値巾の測定を行った
ところ、第2図に見られるように、半値巾(Δω)が約
0.4゜であり、後述する比較例の約1.0゜に比べて明らか
に小さい事から結晶性が向上していることがわかり、こ
のLiNb0.9Ta0.1O3単結晶薄膜は光デバイス用基板として
適するものであることを確認した。
Next, in order to evaluate the crystallinity, LiNb 0.9 Ta 0.1 O 3 (1
02) When the half-width of the rocking curve of reflection was measured, as shown in FIG. 2, the half-width (Δω) was about
It is 0.4 °, which is clearly smaller than about 1.0 ° of the comparative example described later, and it can be seen that the crystallinity is improved. This LiNb 0.9 Ta 0.1 O 3 single crystal thin film is suitable as a substrate for optical devices. Was confirmed.

比較例1 実施例1において、基板の表面がこの基板のR面格子面
と平行なサファイヤ基板を用い、この他は実施例1と同
様にしてLiNb0.9Ta0.1O3単結晶薄膜を作製した。
Comparative Example 1 A LiNb 0.9 Ta 0.1 O 3 single crystal thin film was prepared in the same manner as in Example 1 except that a sapphire substrate whose surface was parallel to the R-plane lattice plane of this substrate was used in Example 1.

得られた単結晶薄膜の結晶性を評価するために、実施例
1と同様にLiNb0.9Ta0.1O3の(102)反射のロッキ
ング・カーブ半値巾の測定を行ったところ第2図にみら
れるように半値巾が約1.0゜であり、結晶性は低かっ
た。
In order to evaluate the crystallinity of the obtained single crystal thin film, the rocking curve full width at half maximum of (102) reflection of LiNb 0.9 Ta 0.1 O 3 was measured in the same manner as in Example 1, and it is seen in FIG. The full width at half maximum was about 1.0 ° and the crystallinity was low.

(ト)発明の効果 この発明を用いることにより、例えば光デバイス用基板
への適用が可能な結晶性の高いリチウム酸化物系単結晶
薄膜の製法を提供することができる。
(G) Effect of the Invention By using the present invention, it is possible to provide a method for producing a lithium oxide single crystal thin film having high crystallinity which can be applied to, for example, an optical device substrate.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の実施例で得られたLiNb0.9Ta0.1O3
単結晶薄膜のX線回折パターンの図、第2図はこの発明
の実施例及び比較例で得られたLiNb0.9Ta0.1O3単結晶薄
膜の(102)面反射ロッキングカーブの図である。
FIG. 1 shows the LiNb 0.9 Ta 0.1 O 3 obtained in the example of the present invention.
FIG. 2 is an X-ray diffraction pattern of the single crystal thin film, and FIG. 2 is a (102) plane reflection rocking curve diagram of the LiNb 0.9 Ta 0.1 O 3 single crystal thin films obtained in Examples and Comparative Examples of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】サファイヤ単結晶表面をその(102)
結晶格子面に対して[110]方向を回転軸とし[1
00]方向へ1゜〜4゜傾斜した面に加工してサファ
イア単結晶基板となし、上記加工した基板面上に式LiNb
1-xTaxO3(ただし、 0≦x≦1)で表わされるリチウム
酸化物系の単結晶をエピタキシャル成長させ、上記基板
表面に平行にR面結晶格子面を有するリチウム酸化物系
単結晶薄膜を作製することを特徴とするリチウム酸化物
系単結晶薄膜の製法。
1. A sapphire single crystal surface is provided with (102)
The [110] direction is the axis of rotation with respect to the crystal lattice plane and [1
[00] direction to form a sapphire single crystal substrate with a surface inclined by 1 to 4 degrees.
A lithium oxide single crystal thin film having an R-plane crystal lattice plane parallel to the substrate surface, which is obtained by epitaxially growing a lithium oxide single crystal represented by 1-x Ta x O 3 (where 0 ≦ x ≦ 1) A method for producing a lithium oxide single crystal thin film, which comprises:
JP22213688A 1988-09-05 1988-09-05 Manufacturing method of lithium oxide single crystal thin film Expired - Lifetime JPH0637352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22213688A JPH0637352B2 (en) 1988-09-05 1988-09-05 Manufacturing method of lithium oxide single crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22213688A JPH0637352B2 (en) 1988-09-05 1988-09-05 Manufacturing method of lithium oxide single crystal thin film

Publications (2)

Publication Number Publication Date
JPH0269395A JPH0269395A (en) 1990-03-08
JPH0637352B2 true JPH0637352B2 (en) 1994-05-18

Family

ID=16777736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22213688A Expired - Lifetime JPH0637352B2 (en) 1988-09-05 1988-09-05 Manufacturing method of lithium oxide single crystal thin film

Country Status (1)

Country Link
JP (1) JPH0637352B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7078582B2 (en) * 2019-08-29 2022-05-31 信越化学工業株式会社 Method for forming a laminated structure, a semiconductor device, and a crystalline oxide film
JP7078581B2 (en) * 2019-08-29 2022-05-31 信越化学工業株式会社 Laminated structure, semiconductor device, and method for manufacturing the laminated structure
JP7093329B2 (en) * 2019-09-02 2022-06-29 信越化学工業株式会社 Laminated structures, semiconductor devices and semiconductor systems

Also Published As

Publication number Publication date
JPH0269395A (en) 1990-03-08

Similar Documents

Publication Publication Date Title
US4981714A (en) Method of producing ferroelectric LiNb1-31 x Tax O3 0<x<1) thin film by activated evaporation
JPH06244407A (en) Multilayer structural body with (111) orientation buffer layer
Foster et al. Zinc oxide film transducers
Foster Structure of CdS evaporated films in relation to their use as ultrasonic transducers
CN101785126B (en) Deposition of piezoelectric aln for BAW resonators
JPH0297485A (en) Epitaxial growth method of two-dimensional material onto three-dimensional material
JPH0637352B2 (en) Manufacturing method of lithium oxide single crystal thin film
Bialas et al. Heteroepitaxy of copper on sapphire under uhv conditions
JP2001072498A (en) Oxide single crystal thin film and its processing
JP2710973B2 (en) Manufacturing method of ferroelectric thin film
JP4023677B2 (en) LiNbO3 oriented thin film forming method
JPH0637351B2 (en) Method of manufacturing ferroelectric thin film
JPH02258700A (en) Ferroelectric thin film and production thereof
JPH09256139A (en) Production of zinc oxide film
Mitsuyu et al. Rf-sputtered epitaxial films of Bi12TiO20 on Bi12GeO20 for optical waveguiding
US20220364265A1 (en) Nanocomposite-seeded epitaxial growth of single-domain lithium niobate thin films for surface acoustic wave devices
JP2708213B2 (en) Manufacturing method of ferroelectric thin film
JP2721869B2 (en) Method for manufacturing diluted magnetic semiconductor thin film
JPH0511078B2 (en)
JPH0354454B2 (en)
JP2856533B2 (en) Method for manufacturing polycrystalline silicon thin film
JPH04170396A (en) Production of thin film of lithium niobate single crystal
JPH01156462A (en) Production of thin film of ferroelectric substance
KR100416664B1 (en) Zn-added magnesium oxide thin films and process for preparing same
JPH05267196A (en) Manufacture of ferroelectric substance film