JPH04170396A - Production of thin film of lithium niobate single crystal - Google Patents

Production of thin film of lithium niobate single crystal

Info

Publication number
JPH04170396A
JPH04170396A JP29178390A JP29178390A JPH04170396A JP H04170396 A JPH04170396 A JP H04170396A JP 29178390 A JP29178390 A JP 29178390A JP 29178390 A JP29178390 A JP 29178390A JP H04170396 A JPH04170396 A JP H04170396A
Authority
JP
Japan
Prior art keywords
substrate
single crystal
thin film
linbo3
sapphire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29178390A
Other languages
Japanese (ja)
Inventor
Yoshihiko Shibata
佳彦 柴田
Tatsuyoshi Kaya
嘉屋 樹佳
Hiroyasu Akashi
明石 景泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP29178390A priority Critical patent/JPH04170396A/en
Publication of JPH04170396A publication Critical patent/JPH04170396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To improve crystal orientation by epitaxially growing the above single crystal at and under a specific substrate temp. and pressure by a sputtering method on a substrate consisting of sapphire, LiNbO3, LiTaO3, MgO, Si or SrTiO3 or the like. CONSTITUTION:An RF-sputtering device or the like is used and after a reduced pressure is generated therein by evacuating the inside of the system, a gaseous mixture composed of Ar and O2 contg. >=30vol.% O2 is introduced into the system. One kind selected from the sapphire substrate, the LiNbO3 substrate, the LiTaO3 substrate, the MgO substrate, the Si substrate or the SrTiO3 substrate is used as the substrate and is heated to <400 deg.C, more preferably 250 to 400 deg.C. The sintered body of the LiNbO3 is used as a target and is epitaxially grown by supttering under <=0.0050Torr pressure, by which the thin film of the LiNbO3 single crystal having the excellent crystal orientation is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光関連デバイス及び弾性表面波(SAW)デバ
イスとして好適なLINbO,単結晶薄膜の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a LINbO single crystal thin film suitable for optical-related devices and surface acoustic wave (SAW) devices.

(従来の技術) LiNbOz単結晶は高いキュリー温度を有する強誘電
体であり、その大きな電気機械結合定数、電気光学効果
、非線形光学効果などにおいて非常に優れた性質を有し
ており、現在最も広範に研究されており、かつ光学素子
材料として有望視されている物質のうちの一つである。
(Prior art) LiNbOz single crystal is a ferroelectric material with a high Curie temperature, and has excellent properties such as a large electromechanical coupling constant, electro-optic effect, and nonlinear optical effect, and is currently the most widely used. It is one of the substances that has been studied extensively and is considered promising as an optical element material.

近年の半導体技術の進歩による電子部品の集積化及び小
型化に伴い、強誘電体素子も小型化、薄膜化が進みつつ
あり、LINbOi単結晶に関しても薄膜化の需要は強
く、数多くの研究が成されてきている。
Along with the integration and miniaturization of electronic components due to recent advances in semiconductor technology, ferroelectric elements are also becoming smaller and thinner. There is also a strong demand for thinner LINbOi single crystals, and a large amount of research has been carried out. It has been done.

従来LiNb0z薄膜の製造方法として液相エピタキシ
ャル法、CVD法、真空蒸着法、スパッタリング法等が
報告されているが、これらのうち、スパッタリング法が
最も一般的に用いられている。
Conventionally, liquid phase epitaxial method, CVD method, vacuum evaporation method, sputtering method, etc. have been reported as methods for producing LiNb0z thin films, but among these, sputtering method is most commonly used.

従来のスパッタリング法によるLiNbO3薄膜の製造
では、基板温度として40O℃以上の高温を用いており
、基板温度の昇温、降温に時間がかかり効率性が悪いと
いう工業化の上で重大な欠点が−あった。
In the production of LiNbO3 thin films by the conventional sputtering method, a high temperature of 400°C or more is used as the substrate temperature, which has a serious drawback in terms of industrialization, as it takes time to raise and lower the substrate temperature, resulting in poor efficiency. Ta.

また、高い基板温度での製造は、基板とWiMとの間の
熱膨張係数の違いによる歪の発生により配向性に悪影響
を与える可能性も考えられ、表面状態の悪化にも寄与す
る可能性があった。
In addition, manufacturing at high substrate temperatures may adversely affect orientation due to the generation of distortion due to the difference in thermal expansion coefficient between the substrate and WiM, which may also contribute to deterioration of the surface condition. there were.

従来輻告されているスパッタリング法、例えば、J、A
ppl、Phys、、40(1969)420によるL
iNb0□*i+iの合成においては、サファイヤC面
上では基板温度約300℃以下で非晶an+、約380
℃で多結晶層が得られている。また、Applied 
Physics Leterg、、24(1974)4
9Gで、基板温度500℃以上で単結晶Il!((00
6)配向)が得られている。ここで、単結晶といわれて
いる膜は、格子定数が1.416nmから1.424n
臘で、バルクの文献値1.386n−と大きく異なって
おり、決して、良好なものと言うことはできない。また
時開11152−127500では、サファイヤR面上
では基板温度300℃から800℃で、単結晶1[((
300)配向)が得られており、その際に、基板温度が
高い程結晶性が良くなるとされている。
Conventionally reported sputtering methods, such as J, A
L by ppl, Phys, 40 (1969) 420
In the synthesis of iNb0□*i+i, on the sapphire C surface, amorphous an+, about 380
A polycrystalline layer is obtained at ℃. Also, Applied
Physics Letterg, 24 (1974) 4
Single crystal Il at 9G and substrate temperature of 500℃ or more! ((00
6) Orientation) is obtained. Here, the film that is said to be single crystal has a lattice constant of 1.416 nm to 1.424 nm.
This is significantly different from the bulk literature value of 1.386n-, and cannot be said to be good at all. In addition, for the time opening 11152-127500, the substrate temperature was 300°C to 800°C on the sapphire R surface, and the single crystal 1 [((
300) orientation), and it is said that the higher the substrate temperature, the better the crystallinity.

(発明が解決しようとする課H) 本発明は、上記の間麗を解決する為になされたものであ
り、従来用いられていた基板温度より低い基板温度(4
00℃未満)で単結晶LiNb0sfifl[を効率良
く製造することに関するものである。
(Problem H to be solved by the invention) The present invention was made in order to solve the above-mentioned problem, and the present invention is made to solve the problem described above.
This invention relates to the efficient production of single-crystal LiNb0sfifl[at temperatures below 00°C].

(0!題を解決するための手段) 本発明は、サファイヤ基板、LiNbO3基板、LiT
aO3基板、MgO基板、シリコン基板または、SrT
iO3基板上にスパッタ法でLiNb0i単結晶KM単
結晶部度として400℃未満、圧力として0.0050
torr以下でエピタキシャル成長させることを特徴と
するLiNb0゜単結晶Saの製造方法である。特に、
基板がサファイヤC面であり、成長させるLiNbO3
単結晶薄膜のC軸がサファイヤ基板と垂直であることを
特徴とするLiNbO3単結晶薄膜の製造方法、及び、
基板がサファイヤ8面であり、成長させるLiNbO3
単結晶薄膜の(012)面がサファイヤ基板と平行であ
ることを特徴とするLiNbO3単結晶薄膜の製造方法
である。
(Means for Solving Problem 0!) The present invention is based on a sapphire substrate, a LiNbO3 substrate, a LiT
aO3 substrate, MgO substrate, silicon substrate or SrT
LiNb0i single crystal KM single crystal part temperature is less than 400℃ and pressure is 0.0050 on iO3 substrate by sputtering method.
This is a method for manufacturing LiNb 0° single crystal Sa, which is characterized by epitaxial growth at torr or less. especially,
The substrate is sapphire C-plane, and LiNbO3 is grown.
A method for producing a LiNbO3 single crystal thin film, characterized in that the C axis of the single crystal thin film is perpendicular to a sapphire substrate, and
The substrate is 8-sided sapphire, and LiNbO3 is grown.
This is a method for manufacturing a LiNbO3 single crystal thin film, characterized in that the (012) plane of the single crystal thin film is parallel to a sapphire substrate.

発明者らは、より結晶配向性の良いLiNbO3薄膜を
得るために圧力、rf−パワー、ガス組成、基板温度、
ターゲットと基板間の距離などのスパッタ条件を詳細に
調べた。その結果、種々のスパッタ条件を最適化し、圧
力を限界まで低くすることによって基板温度が400℃
未満の領域でサファイヤC面上に単結晶LiNbO3薄
膜((006)配向)、サファイヤR面上に単結晶Li
NbO3薄膜((012)配向)が得られることを見い
だした。具体例としては、圧力は放電が生じる範凹内で
低い方が良く、0.0050t6rr以下が必要で特に
0.0001torrから0.0050torrまでが
好ましい。スパッタ出力は低すぎない方が良く、例えば
高周波スパッタリング法では、rf−パワーとして80
w以上が必要で特に、  toowから400wの範囲
が好ましい、酸票ガスの割合は大きい領域が望ましく、
特に30va1%以上が好ましい、基板温度は、400
℃未満であることが必要で、特に250℃〜400℃未
満が好ましい、成膜速度は、0.5から2.5n■/s
inであった。
In order to obtain a LiNbO3 thin film with better crystal orientation, the inventors investigated various changes in pressure, RF power, gas composition, substrate temperature,
The sputtering conditions, such as the distance between the target and the substrate, were investigated in detail. As a result, by optimizing various sputtering conditions and lowering the pressure to the limit, we were able to reduce the substrate temperature to 400°C.
Single-crystal LiNbO3 thin film ((006) orientation) on the sapphire C-plane and single-crystal LiNbO3 thin film ((006) orientation) on the sapphire R-plane in the area below
It has been found that a NbO3 thin film ((012) orientation) can be obtained. As a specific example, it is better for the pressure to be low within the range where discharge occurs, and it is necessary to be 0.0050 t6rr or less, and particularly preferably from 0.0001 torr to 0.0050 torr. It is better that the sputtering power is not too low; for example, in the high frequency sputtering method, the rf-power is 80
W or more is required, in particular, a range from too to 400 W is preferable, and a large proportion of acid gas is desirable.
In particular, the substrate temperature is preferably 30va 1% or more, 400
It is necessary that the temperature is lower than ℃, particularly preferably 250℃ to 400℃, and the film forming rate is 0.5 to 2.5n/s.
It was in.

また、この温度領域で得られるLiNbO3薄躾は、格
子定数もバルクの文献値1.386n−と完全に一致し
、かつ、表面状態も鏝面で良好であり、結晶配向性も基
板温度500℃以上で得られたものよりも優れているこ
とがわかり、よって本発明に到達しえた。
In addition, the LiNbO3 thin film obtained in this temperature range has a lattice constant that completely matches the literature value of 1.386n- for the bulk, a good surface condition on the trowel surface, and a crystal orientation at a substrate temperature of 500°C. It was found that this was superior to that obtained above, and thus the present invention was achieved.

250℃〜400℃の基板温度において、単結晶LiN
bO3薄膜が形成された理由は定かではないが、スパッ
タリング法では、ヘテロエピタキシャル成長は、基板温
度とスパッタされて飛んでくる粒子の持つエネルギーと
成膜速度とに大きく影響されると考えられ、低い基板温
度でもスパッタされて飛んでくる粒子の持つエネルギー
がある程度大きく、かつ、成膜速度が適当であればヘテ
ロエピタキシャル成長が起こると考えられる。また、基
板温度が低い方が基板とLiNbO3N!との間の熱膨
張係数の違いに由来する歪の影響も小さく、よって、よ
り結晶配向性の良い腹が得られたのではないかと考えら
れる。
At a substrate temperature of 250°C to 400°C, single crystal LiN
The reason why the bO3 thin film was formed is not clear, but in the sputtering method, heteroepitaxial growth is thought to be greatly influenced by the substrate temperature, the energy of sputtered particles, and the film formation rate. It is thought that heteroepitaxial growth will occur if sputtered particles have a certain amount of energy at a certain temperature and the film formation rate is appropriate. Also, the lower the substrate temperature, the better the substrate and LiNbO3N! It is thought that the effect of strain resulting from the difference in thermal expansion coefficient between the two is also small, and that this is why the antinode with better crystal orientation was obtained.

本発明の実施にあたって、スパッタ装置は、RF−スパ
ッタ装置でも、DC−スパッタ装置でも良く、その他マ
グネトロンスパッタ装置、エキシマレイザースパッタ装
置など、いずれのスパッタ装置でも良い。
In carrying out the present invention, the sputtering device may be an RF sputtering device, a DC sputtering device, or any other sputtering device such as a magnetron sputtering device or an excimer laser sputtering device.

尚、単結晶WINの結晶配向性の評価にはX線ロッキン
グカーブの半値幅(σ/deg)をもって行った。その
際、発散スリットは1/6@のものを用い、受光スリッ
トは[1,3msのものを用いた。
The crystal orientation of single crystal WIN was evaluated using the half width (σ/deg) of the X-ray rocking curve. At that time, a 1/6 @ divergence slit was used, and a 1.3 ms light receiving slit was used.

X線回折、及び、X線ロッキングカーブの測定には、リ
ガク製RAD−Aシリーズを用いた。
Rigaku RAD-A series was used for X-ray diffraction and X-ray rocking curve measurements.

屈折率の測定にはエリプソメーター(情況光学製DVL
−36L)を用いた。
To measure the refractive index, use an ellipsometer (DVL manufactured by Situ Kogaku Co., Ltd.)
-36L) was used.

以下に本発明についての実施例を示す。尚、この実施例
によってこの発明は限定されるものではない。
Examples of the present invention are shown below. Note that the invention is not limited to this example.

(実施例) スパッタ装置は、通常の高周波スパッタ装置を用いた。(Example) A normal high frequency sputtering device was used as the sputtering device.

基板にはサファイヤC面を用いた。ターゲットとしてL
iNbO3の焼結体(,99,9%以上)を用い、ター
ゲットと基板間の距離は、5.5cmとした。スパッタ
前に系内を5x 10−’torr以下まで減圧後、高
純度アルゴン(99,9999Z以上)と高純度酸素(
99,9995%以上)の混合ガス(または、各ガス単
独)を系内に導入し、プレスパツタを圧力0.0100
torrで20分間行った後に、スパッタを行った。基
板温度は400℃未満とした。スパッタ条件の詳細は、
表1に示す。
A sapphire C-plane was used as the substrate. L as a target
A sintered body of iNbO3 (99.9% or more) was used, and the distance between the target and the substrate was 5.5 cm. After reducing the pressure in the system to 5x 10-'torr or less before sputtering, high-purity argon (99,9999Z or more) and high-purity oxygen (
A mixed gas of 99,9995% or more (or each gas alone) is introduced into the system, and the press sputter is heated to a pressure of 0.0100.
Sputtering was performed after 20 minutes at torr. The substrate temperature was less than 400°C. For details on sputtering conditions, see
It is shown in Table 1.

実験したいずれの基板温度においても基板に対してLi
NbO5のC軸が垂直に配向した単結晶LiNb0゜薄
膜が得られた。 1*られた躾の結晶配向性(σ/de
g)を表°に示す。また、X11回折の結果(第1図)
から格子定数を計算すると1)86n畠となりバルク単
結 晶の値と完全に一致し、屈折率も2.289(at 6
32.8nm)となりバルク単結晶の値と一致した。
At all substrate temperatures tested, Li
A single crystal LiNb 0° thin film in which the C axis of NbO5 was vertically oriented was obtained. 1*Crystal orientation (σ/de
g) is shown in Table °. Also, the results of X11 diffraction (Fig. 1)
Calculating the lattice constant from
32.8 nm), which coincided with the value of the bulk single crystal.

(比較例) 基板温度500℃において得られた膜の結果を比較例と
して表に付記した。本発明によって基板温度400℃未
満で得られた鰻の方がはるかに優れた結晶配向性を示し
ており、また、格子定数、屈折率も文献値に良く一致し
ているのがわかる。
(Comparative Example) The results of a film obtained at a substrate temperature of 500° C. are added to the table as a comparative example. It can be seen that the eel obtained according to the present invention at a substrate temperature of less than 400° C. shows much better crystal orientation, and the lattice constant and refractive index also agree well with the literature values.

(双下奈白) (発明の効果) 以上のように本発明によると、従来法より低い基板温度
で従来法で得られていたものより優れた結晶配向性の単
結晶LiNbO3薄膜の製造が可能であり、また、基板
の昇温、降温にかかる時間も大幅に短縮でき、従来法と
比ベニ業化する際に、効率良く単結晶LiNbO3の製
造が行うことができ、極めて有効である。
(Nahaku Soshita) (Effect of the invention) As described above, according to the present invention, it is possible to produce a single-crystal LiNbO3 thin film with better crystal orientation than that obtained by the conventional method at a lower substrate temperature than that obtained by the conventional method. In addition, the time required to raise and lower the temperature of the substrate can be significantly shortened, and when compared with conventional methods, single crystal LiNbO3 can be manufactured efficiently, which is extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、上記実施例で得られたWIHのX線回折パタ
ーンを示す図である。 特許出願人 旭化成工業株式会社
FIG. 1 is a diagram showing the X-ray diffraction pattern of WIH obtained in the above example. Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] サファイヤ基板、LiNbO_3基板、LiTaO_3
基板、MgO基板、シリコン基板または、SrTiO_
3基板上にスパッタ法でLiNbO_3単結晶薄膜を基
板温度として400℃未満、圧力として0.0050t
orr以下でエピタキシャル成長させることを特徴とす
るLiNbO_3単結晶薄膜の製造方法。
Sapphire substrate, LiNbO_3 substrate, LiTaO_3
Substrate, MgO substrate, silicon substrate or SrTiO_
3 Sputtering a LiNbO_3 single crystal thin film onto a substrate at a substrate temperature of less than 400°C and a pressure of 0.0050t.
A method for producing a LiNbO_3 single crystal thin film, characterized by epitaxial growth at or below orr.
JP29178390A 1990-10-31 1990-10-31 Production of thin film of lithium niobate single crystal Pending JPH04170396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29178390A JPH04170396A (en) 1990-10-31 1990-10-31 Production of thin film of lithium niobate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29178390A JPH04170396A (en) 1990-10-31 1990-10-31 Production of thin film of lithium niobate single crystal

Publications (1)

Publication Number Publication Date
JPH04170396A true JPH04170396A (en) 1992-06-18

Family

ID=17773370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29178390A Pending JPH04170396A (en) 1990-10-31 1990-10-31 Production of thin film of lithium niobate single crystal

Country Status (1)

Country Link
JP (1) JPH04170396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264426A1 (en) * 2021-06-18 2022-12-22 日本電信電話株式会社 Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film
WO2024075690A1 (en) * 2022-10-05 2024-04-11 株式会社シンクロン Homoepitaxial thin film, and manufacturing method and manufacturing apparatus thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264426A1 (en) * 2021-06-18 2022-12-22 日本電信電話株式会社 Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film
WO2024075690A1 (en) * 2022-10-05 2024-04-11 株式会社シンクロン Homoepitaxial thin film, and manufacturing method and manufacturing apparatus thereof

Similar Documents

Publication Publication Date Title
US6475931B2 (en) Method for producing devices having piezoelectric films
Kanata et al. Epitaxial growth of LiNbO3‐LiTaO3 thin films on Al2O3
US6348754B1 (en) Surface acoustic wave device and method of manufacturing the same
Nakagawa et al. Deposition of new piezoelectric Ta2O5 thin films and their surface acoustic‐wave properties
Whatmore New polar materials: their application to SAW and other devices
Kao et al. Synthesis of C-axis-oriented aluminum nitride films by reactive RF magnetron sputtering for surface acoustic wave
JPH04170396A (en) Production of thin film of lithium niobate single crystal
JPS6096599A (en) Production of superconductive thin film of oxide
Kao et al. Synthesis and surface acoustic wave properties of AlN films deposited on LiNbO/sub 3/substrates
JP2834355B2 (en) Method of manufacturing ferroelectric thin film construct
JP4092900B2 (en) Diamond substrate on which piezoelectric thin film is formed and method for manufacturing the same
JP4023677B2 (en) LiNbO3 oriented thin film forming method
JPH02258700A (en) Ferroelectric thin film and production thereof
JP2004292228A (en) Method of manufacturing potassium niobate single crystal thin film, surface acoustic wave element, frequency filter, frequency oscillator, electronic circuit and electronic appliance
Mitsuyu et al. Piezoelectric thin films of rf‐sputtered Bi12PbO19
JPH01317199A (en) Method for producing ferroelectric thin film
JPH0637352B2 (en) Manufacturing method of lithium oxide single crystal thin film
JP3438360B2 (en) Method for forming electrodes of surface acoustic wave device
Véronique et al. LiNbO3 and LiTaO3 thin films deposited by chemical and/or physical processes
Yogo et al. Synthesis of Oriented Ba2NaNb5O15 (BNN) Thin Films from an Alkoxy‐derived Precursor
JP2008069058A (en) LiNbO3 EPITAXIAL FILM DEPOSITION METHOD
JP2710973B2 (en) Manufacturing method of ferroelectric thin film
Zhang et al. Preparation and characterization of nanocrystalline potassium lithium niobate powders and films
Cheng et al. Highly c-axis oriented AlN films deposited on LiNbO/sub 3/substrates for surface acoustic wave devices
JPS595560B2 (en) LiNb↓1-xTaxo↓3 single crystal film manufacturing method