JP4023677B2 - LiNbO3 oriented thin film forming method - Google Patents
LiNbO3 oriented thin film forming method Download PDFInfo
- Publication number
- JP4023677B2 JP4023677B2 JP2003037803A JP2003037803A JP4023677B2 JP 4023677 B2 JP4023677 B2 JP 4023677B2 JP 2003037803 A JP2003037803 A JP 2003037803A JP 2003037803 A JP2003037803 A JP 2003037803A JP 4023677 B2 JP4023677 B2 JP 4023677B2
- Authority
- JP
- Japan
- Prior art keywords
- linbo
- thin film
- film
- sio
- oriented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Integrated Circuits (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Physical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、光導波路や機能性光学部品に用いられるLiNbO3光学薄膜を作製するLiNbO3配向性薄膜形成方法に関する。
【0002】
【従来の技術】
LiNbO3(ニオブ酸リチウム)のバルク結晶は、電気光学効果、非線形光学効果、音響光学効果、ピエゾ電気効果など数々の特性を示す。このため、LiNbO3のバルク結晶は光通信分野や光応用分野で広く用いられてきた。その一方で、LiNbO3薄膜を異種基板上に成膜して、薄膜ならではの低電圧駆動、素子の微細化などのメリットを活かすことを目的とするLiNbO3薄膜の成膜方法が開発されている。その方法の代表的なものとして、例えばRF(高周波)スッパタ法、マグネトロンスパッタ法、ECR(電子サイクロトロン共鳴)スパッタ法、有機金属気相成長法、ゾル−ゲル法、レーザーアブレーション法などが挙げられる。
【0003】
LiNbO3薄膜を光導波路のコアとして用いるには、LiNbO3よりも低屈折率の材料をクラッド層とし、この上にLiNbO3薄膜を形成する必要がある。従来から、LiNbO3結晶と格子整合が取れて、しかも、低屈折率であるサファイア基板が主に用いられてきた。
【0004】
最近、シリコンとSiO2との間の高い屈折率差に着目した微小光回路の可能性が指摘されている。そのような系にLiNbO3薄膜を組み入れ、電気光学効果や非線形光学効果を利用して、機能素子部品として働かせるために、LiNbO3結晶よりも屈折率の低い石英基板やSiO2膜の上に、LiNbO3の配向性膜を成膜することが必要である。
【0005】
【発明が解決しようとする課題】
しかし、LiNbO3結晶よりも屈折率の低い石英基板やSiO2膜の上に、LiNbO3配向性膜を成膜するためには、次のような問題点がある。つまり、SiO2は元来無定形であるため、サファイア基板上のようなエピタキシャル成長を期待することはできない。しかし、ECRスパッタ法を用いると、本来、LiNbO3と格子整合しないSi基板上で、良好な結晶性と配向性を兼ね備えるLiNbO3薄膜が得られている。この点については、次の文献に記載されている。
文献1:特願2002−118713 LiNbO3薄膜形成方法;赤澤方省、嶋田勝 H14/04/22
【0006】
ところが、Si基板上の成膜と同様な条件をSiO2膜上での成長に適用した場合、十分な結晶性と配向性とを有するLiNbO3薄膜が得られないという問題点があった。
【0007】
本発明は、前記の課題を解決し、十分な結晶性と配向性とを有するLiNbO3薄膜を、石英基板上またはSiO2膜上に形成することができるLiNbO3配向性薄膜形成方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記課題を解決するために、請求項1の発明は、定組成のLiNbO3ターゲットを用いた電子サイクロトロン共鳴スパッタリング法によるLiNbO3配向性薄膜形成方法において、石英基板もしくはSiO2膜(1)の温度が430℃以上490℃以下の状態で酸素ガスを供給して、前記石英基板もしくは前記SiO2膜(1)上にLiNbO3薄膜(2)を形成することを特徴とするLiNbO3配向性薄膜形成方法である。
請求項2の発明は、請求項1に記載のLiNbO3配向性薄膜形成方法において、前記酸素ガスの供給は、LiNb3O8相が生ずるよりも低く、かつ、前記LiNbO3ターゲット表面を一定量の酸素原子が覆った状態を保つのに十分な流量にすることを特徴とする。
【0009】
本発明により、SiO2上では非常に限られた成膜条件の範囲において、配向性膜が得られることが明らかになり、光学的薄膜としての利用に適した配向性結晶薄膜が得られるようになった。
【0010】
【発明の実施の形態】
つぎに、この発明の実施の形態について、図面を参照して詳しく説明する。この実施の形態では、図1に示すように、SiO2膜1上にLiNbO3薄膜2を形成する。
【0011】
ECRスパッタ法によりSi基板上にLiNbO3薄膜を成膜する場合の最適温度は、前述の文献1に記載されているように530℃である。この温度ではSiO2膜で良好な配向性結晶薄膜が得られないため、以下にその原因を検討した。
【0012】
図2は、基板温度460℃および酸素分圧1.2mPaの条件下において、膜厚140nmのSiO2膜1上に成膜した膜厚360nmのLiNbO3薄膜2試料中の各元素の深さ分布を、二次イオン質量分析法により測定した結果である。Li原子の分布はLiNbO3/SiO2界面3付近(深さ460nm)にパイルアップ3Aが見られるものの、LiNbO3薄膜2とSiO2膜1との界面3で急峻に落ちている。同様に、Nb原子の分布もLiNbO3薄膜2とSiO2膜1の界面3で2桁近く落ちている。したがって、基板温度460℃では、LiNbO3薄膜2とSiO2膜1とは基本的に界面で分離している。この結果、良好な配向性結晶薄膜を得ることができる。
【0013】
一方、成膜温度530℃および酸素分圧1.2mPaの条件下による結果を図3に示す。図3の結果では、Li原子とNb原子の分布はLiNbO3薄膜とSiO2膜との界面より深い領域でも緩やかにしか下がらず、SiO2膜中へ拡散していることが分かる。Si原子のLiNbO3膜内の濃度は、図2に比べて約2桁程度高く、SiO2膜から拡散してLiNbO3薄膜の表面まで達している。このように、LiNbO3/SiO2界面が著しくだれていることが、LiNbO3薄膜の配向性に多大な影響を与えることは必死である。プラズマが作る電界のもとで成膜をするスパッタリング法の最中には、このようなSi、Li、Nb原子の相互拡散現象は、単なる加熱の効果以上に顕著に起るものと推察される。この結果、良好な配向性結晶薄膜を得ることができない。
【0014】
逆に、基板温度が460℃よりもさらに低くなると、LiNbO3薄膜2の結晶性は悪化する。このことから、LiNbO3配向性結晶薄膜を得るためには、基板温度460℃付近が最適である。また、基板温度460℃付近から少しでもずれると、結晶性もしくは配向性が悪くなることが分かる。
【0015】
同様に、酸素分圧に関しても最適な条件が存在する。もし、酸素分圧が高すぎると、一度成膜したLiNbO3薄膜2からのLi2O分子の脱離が促進されて、LiNb3O8相が生じてしまう。逆に、酸素分圧が低すぎると、ターゲット表面が酸素欠損をした状態になり、多結晶状態のLiNbO3が成長する。したがって、ターゲット表面を一定量の酸素原子が覆う程度に酸素分圧は高く、LiNbO3の単一相だけが得られる程度に酸素分圧は低くなければならない。
【0016】
以上述べた基板温度と酸素分圧とによって、SiO2膜上に<001>方向へ高配向したLiNbO3結晶薄膜であるLiNbO3薄膜2を得ることが可能になった。
【0017】
【実施例】
以下に、実施例をあげて本発明をさらに詳細に説明するが、本発明は本実施例によって限定されるものではない。ECRプラズマスパッタ法により、SiO2膜上に連続成膜したLiNbO3薄膜(薄膜350nm)のX線回折スペクトルを図4に示す。スパッタガスとしてアルゴンと酸素との混合気体を用い、実施の形態で述べた実験結果を踏まえて、酸素流量0.5sccm、基板温度460℃の条件で連続的にLiNbO3薄膜を成長させた。
【0018】
Si基板からの<004>反射(69.5°)以外には、LiNbO3薄膜がC軸配向していることを示す<006>反射(38.9°)、<0012>反射(83.5°)だけが観測されている。図5に示す基板温度を変化させたときの<006>反射点強度の変化から、460℃で結晶性が最大になることが分かる。460℃以下では、基板温度が低くなる程、結晶性が劣化して、<006>反射点の強度が低下する。460℃以上では、Li原子の拡散による組成性の崩れや界面のラフネス増大による配向性の変位の拡大により、<006>反射点の強度が低下するものと考えられる。アモルファス状態から結晶化が始まる温度は430℃であるため、430〜490℃の範囲で成膜が可能であるが、基板温度440〜490℃が実用上成膜に使用できる温度である。
【0019】
一方、酸素流量に関しては、図6に示す酸素分圧を0〜8mPaの範囲で変化させたときの<006>反射点強度の変化から、1mPaで配向性・結晶性が最大になることが分かる。実用上は、1〜3mPaが成膜に使える範囲であることが分かる。この最適酸素ガス分圧は、装置の排気速度、イオン源に投入するマイクロ波のパワー、ターゲットに印加する電圧に依存するため、使用する装置ごとに異なる。しかし、共通して言えることは、高酸素分圧で配向性・結晶性が低下するのは、LiO2分子の離脱が促進されるからであり、1mPaより低い酸素分圧で配向性・結晶性が低下するのは、成膜されるLiNbO3薄膜の内部が酸素不足になるからである。
【0020】
以上、本発明の実施の形態および実施例を詳述してきたが、具体的な構成は本実施の形態および実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても、本発明に含まれる。たとえば、前記の実施の形態および実施例では、結晶性と配向性とを有するLiNbO3薄膜をSiO2膜上に形成する場合を例としたが、SiO2膜と同様に石英基板上にLiNbO3薄膜を形成してもよい。
【0021】
【発明の効果】
以上、説明したように、本発明によれば、SiO2膜または石英基板上では非常に限られた成膜条件の範囲で、LiNbO3の配向性膜を得ることができることが明らかになり、光学的薄膜としての利用に適した配向性結晶薄膜を得ることができる。
【図面の簡単な説明】
【図1】発明の実施の形態によってSiO2膜上に成膜したLiNbO3薄膜を示す断面図である。
【図2】ECRスパッタ法により、基板温度460℃、酸素分圧1.2mPaの条件下でSiO2膜上に成膜したLiNbO3薄膜の二次イオン質量分析法による各元素の深さ分布を示す図である。
【図3】ECRスパッタ法により、基板温度530℃、酸素分圧1.2mPaの条件下でSiO2膜上に成膜したLiNbO3薄膜の二次イオン質量分析法による各元素の深さ分布を示す図である。
【図4】ECRスパッタ法により、基板温度460℃、酸素分圧1.2mPaの条件下でSiO2膜上に成膜したLiNbO3薄膜のX線回折θ−2θスペクトルを示す図である。
【図5】ECRスパッタ法により成膜したLiNbO3薄膜の<006>反射点の基板温度依存性を示す図である。
【図6】ECRスパッタ法により成膜したLiNbO3薄膜の<006>反射点の酸素分圧依存性を示す図である。
【符号の説明】
1 SiO2膜
2 LiNbO3薄膜
3 LiNbO3/SiO2界面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a LiNbO 3 oriented thin film forming method of making a LiNbO 3 optical thin film used in the optical waveguide and a functional optical components.
[0002]
[Prior art]
A bulk crystal of LiNbO 3 (lithium niobate) exhibits various characteristics such as an electro-optic effect, a nonlinear optical effect, an acousto-optic effect, and a piezoelectric effect. For this reason, the bulk crystal of LiNbO 3 has been widely used in the optical communication field and the optical application field. On the other hand, by forming a LiNbO 3 thin film on a substrate different low voltage thin film unique, the LiNbO 3 thin film forming method that aims to exploit the benefits of such miniaturization of elements have been developed . Typical examples of the method include RF (radio frequency) sputtering method, magnetron sputtering method, ECR (electron cyclotron resonance) sputtering method, metalorganic vapor phase epitaxy method, sol-gel method, laser ablation method and the like.
[0003]
In order to use the LiNbO 3 thin film as the core of the optical waveguide, it is necessary to use a material having a refractive index lower than that of LiNbO 3 as a cladding layer and to form the LiNbO 3 thin film thereon. Conventionally, a sapphire substrate having a lattice match with a LiNbO 3 crystal and having a low refractive index has been mainly used.
[0004]
Recently, the possibility of a micro optical circuit focusing on a high refractive index difference between silicon and SiO 2 has been pointed out. In order to incorporate a LiNbO 3 thin film into such a system and use it as a functional element component using the electro-optic effect or nonlinear optical effect, on a quartz substrate or SiO 2 film having a refractive index lower than that of a LiNbO 3 crystal, It is necessary to form an alignment film of LiNbO 3 .
[0005]
[Problems to be solved by the invention]
However, in order to form a LiNbO 3 oriented film on a quartz substrate or a SiO 2 film having a refractive index lower than that of the LiNbO 3 crystal, there are the following problems. That is, since SiO 2 is originally amorphous, it cannot be expected to grow epitaxially on a sapphire substrate. However, the use of ECR sputtering, originally on Si substrates without LiNbO 3 lattice matched, and LiNbO 3 thin film having both excellent crystallinity and orientation can be obtained. This point is described in the following document.
Literature 1: Japanese Patent Application No. 2002-118713 LiNbO 3 thin film formation method; Akazawakata, Masaru Shimada H14 / 04/22
[0006]
However, when the same conditions as the film formation on the Si substrate are applied to the growth on the SiO 2 film, there is a problem that a LiNbO 3 thin film having sufficient crystallinity and orientation cannot be obtained.
[0007]
The present invention provides a method for forming a LiNbO 3 oriented thin film, which solves the above-mentioned problems and can form a LiNbO 3 thin film having sufficient crystallinity and orientation on a quartz substrate or a SiO 2 film. For the purpose.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the invention of
According to a second aspect of the present invention, in the method for forming a LiNbO 3 oriented thin film according to the first aspect, the supply of the oxygen gas is lower than the generation of the LiNb 3 O 8 phase, and a certain amount of the surface of the LiNbO 3 target is formed. The flow rate is sufficient to keep the oxygen atom covered.
[0009]
According to the present invention, it becomes clear that an oriented film can be obtained within a very limited range of film forming conditions on SiO 2 , so that an oriented crystal thin film suitable for use as an optical thin film can be obtained. became.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. In this embodiment, a LiNbO 3
[0011]
The optimum temperature when a LiNbO 3 thin film is formed on a Si substrate by ECR sputtering is 530 ° C. as described in the above-mentioned
[0012]
FIG. 2 shows the depth distribution of each element in a sample of a LiNbO 3 thin film having a thickness of 360 nm formed on a SiO 2 film 1 having a thickness of 140 nm under the conditions of a substrate temperature of 460 ° C. and an oxygen partial pressure of 1.2 mPa. Is the result of measuring by secondary ion mass spectrometry. The distribution of Li atoms sharply falls at the
[0013]
On the other hand, FIG. 3 shows the results under conditions of a film forming temperature of 530 ° C. and an oxygen partial pressure of 1.2 mPa. From the results of FIG. 3, it can be seen that the distribution of Li atoms and Nb atoms is only gently lowered even in a region deeper than the interface between the LiNbO 3 thin film and the SiO 2 film and diffuses into the SiO 2 film. The concentration of Si atoms in the LiNbO 3 film is about two orders of magnitude higher than that in FIG. 2, and diffuses from the SiO 2 film and reaches the surface of the LiNbO 3 thin film. Thus, it is desperate that the LiNbO 3 / SiO 2 interface being drastically affected greatly affects the orientation of the LiNbO 3 thin film. During the sputtering method in which film formation is performed under the electric field generated by plasma, it is assumed that such interdiffusion phenomenon of Si, Li, and Nb atoms occurs more significantly than the effect of mere heating. . As a result, a good orientation crystal thin film cannot be obtained.
[0014]
On the contrary, when the substrate temperature is further lower than 460 ° C., the crystallinity of the LiNbO 3
[0015]
Similarly, optimum conditions exist for oxygen partial pressure. If the oxygen partial pressure is too high, desorption of Li 2 O molecules from the LiNbO 3
[0016]
With the substrate temperature and oxygen partial pressure described above, it is possible to obtain the LiNbO 3
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples. FIG. 4 shows an X-ray diffraction spectrum of the LiNbO 3 thin film (thin film 350 nm) continuously formed on the SiO 2 film by the ECR plasma sputtering method. A mixed gas of argon and oxygen was used as a sputtering gas, and based on the experimental results described in the embodiment, a LiNbO 3 thin film was continuously grown under the conditions of an oxygen flow rate of 0.5 sccm and a substrate temperature of 460 ° C.
[0018]
In addition to <004> reflection (69.5 °) from the Si substrate, <006> reflection (38.9 °), <00 12 > reflection (83.) indicating that the LiNbO 3 thin film is C-axis oriented. Only 5 °) is observed. From the change of <006> reflection point intensity when the substrate temperature shown in FIG. 5 is changed, it can be seen that the crystallinity becomes maximum at 460 ° C. Below 460 ° C., the lower the substrate temperature, the lower the crystallinity and the <006> reflection point intensity decreases. Above 460 ° C., it is considered that the intensity of the <006> reflection point decreases due to the collapse of the composition due to the diffusion of Li atoms and the expansion of the displacement of the orientation due to the increased roughness of the interface. Since the temperature at which crystallization starts from the amorphous state is 430 ° C., film formation is possible in the range of 430 to 490 ° C., but the substrate temperature of 440 to 490 ° C. is a temperature that can be practically used for film formation.
[0019]
On the other hand, regarding the oxygen flow rate, it can be seen that the orientation and crystallinity are maximized at 1 mPa from the change in <006> reflection point intensity when the oxygen partial pressure shown in FIG. 6 is changed in the range of 0 to 8 mPa. . Practically, it can be seen that 1 to 3 mPa can be used for film formation. This optimal oxygen gas partial pressure depends on the exhaust speed of the apparatus, the power of the microwave input to the ion source, and the voltage applied to the target, and therefore differs depending on the apparatus used. However, what can be said in common is that the orientation / crystallinity decreases at a high oxygen partial pressure because the separation of LiO 2 molecules is promoted, and the orientation / crystallinity at an oxygen partial pressure lower than 1 mPa. The reason for the decrease is that the inside of the LiNbO 3 thin film to be deposited becomes oxygen deficient.
[0020]
The embodiments and examples of the present invention have been described in detail above, but the specific configuration is not limited to the embodiments and examples, and design changes and the like without departing from the scope of the present invention. Is included in the present invention. For example, in the embodiment and examples of the embodiment, although the LiNbO 3 thin film having an orientation and crystallinity taken as an example a case where formed on the SiO 2 film, LiNbO 3 to SiO 2 film as well as a quartz substrate A thin film may be formed.
[0021]
【The invention's effect】
As described above, according to the present invention, it becomes clear that an orientation film of LiNbO 3 can be obtained on a SiO 2 film or a quartz substrate within a very limited range of film formation conditions. An oriented crystal thin film suitable for use as a general thin film can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a LiNbO 3 thin film formed on a SiO 2 film according to an embodiment of the invention.
FIG. 2 shows the depth distribution of each element by secondary ion mass spectrometry of a LiNbO 3 thin film formed on a SiO 2 film under the conditions of a substrate temperature of 460 ° C. and an oxygen partial pressure of 1.2 mPa by ECR sputtering. FIG.
FIG. 3 shows the depth distribution of each element by secondary ion mass spectrometry of a LiNbO 3 thin film formed on a SiO 2 film under conditions of a substrate temperature of 530 ° C. and an oxygen partial pressure of 1.2 mPa by ECR sputtering. FIG.
FIG. 4 is a diagram showing an X-ray diffraction θ-2θ spectrum of a LiNbO 3 thin film formed on a SiO 2 film by ECR sputtering under conditions of a substrate temperature of 460 ° C. and an oxygen partial pressure of 1.2 mPa.
FIG. 5 is a diagram showing the substrate temperature dependence of the <006> reflection point of a LiNbO 3 thin film formed by ECR sputtering.
FIG. 6 is a graph showing the oxygen partial pressure dependence of the <006> reflection point of a LiNbO 3 thin film formed by ECR sputtering.
[Explanation of symbols]
1 SiO 2 film 2 LiNbO 3
Claims (2)
石英基板もしくはSiO2膜(1)の温度が430℃以上490℃以下の状態で酸素ガスを供給して、前記石英基板もしくは前記SiO2膜(1)上にLiNbO3薄膜(2)を形成することを特徴とするLiNbO3配向性薄膜形成方法。In a method for forming a LiNbO 3 oriented thin film by electron cyclotron resonance sputtering using a constant composition LiNbO 3 target,
An oxygen gas is supplied in a state where the temperature of the quartz substrate or the SiO 2 film (1) is not lower than 430 ° C. and not higher than 490 ° C. to form the LiNbO 3 thin film (2) on the quartz substrate or the SiO 2 film (1). A method of forming a LiNbO 3 oriented thin film characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003037803A JP4023677B2 (en) | 2003-02-17 | 2003-02-17 | LiNbO3 oriented thin film forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003037803A JP4023677B2 (en) | 2003-02-17 | 2003-02-17 | LiNbO3 oriented thin film forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004244703A JP2004244703A (en) | 2004-09-02 |
JP4023677B2 true JP4023677B2 (en) | 2007-12-19 |
Family
ID=33022496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003037803A Expired - Fee Related JP4023677B2 (en) | 2003-02-17 | 2003-02-17 | LiNbO3 oriented thin film forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4023677B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006195383A (en) * | 2005-01-17 | 2006-07-27 | Nippon Telegr & Teleph Corp <Ntt> | Optical modulator and its manufacturing method |
JP4514146B2 (en) * | 2005-05-30 | 2010-07-28 | 日本電信電話株式会社 | Method for manufacturing periodically poled optical waveguide device |
JP5151692B2 (en) * | 2007-09-11 | 2013-02-27 | 住友電気工業株式会社 | Lithium battery |
WO2014203931A1 (en) * | 2013-06-21 | 2014-12-24 | 株式会社村田製作所 | Light control element |
CN114752903B (en) * | 2022-04-08 | 2022-12-30 | 武汉大学 | Preparation method of piezoelectric coating with adjustable surface morphology and piezoelectric coating |
-
2003
- 2003-02-17 JP JP2003037803A patent/JP4023677B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004244703A (en) | 2004-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bartasyte et al. | Toward high‐quality epitaxial LiNbO3 and LiTaO3 thin films for acoustic and optical applications | |
JP3462265B2 (en) | Wavelength conversion element | |
JP2006195383A (en) | Optical modulator and its manufacturing method | |
WO2018066653A1 (en) | Composite substrate and method of manufacturing composite substrate | |
Feigelson | Epitaxial growth of lithium niobate thin films by the solid source MOCVD method | |
JP4023677B2 (en) | LiNbO3 oriented thin film forming method | |
JP2007182335A (en) | Monocrystal thin film and its forming method | |
EP0930702B1 (en) | Orientational material and surface acoustic wave device | |
JP4179452B2 (en) | LiNbO3 oriented thin film forming method | |
JP3486957B2 (en) | Oriented materials and surface acoustic wave devices | |
JPH08154033A (en) | Diamond base material and surface acoustic wave element | |
JP2016109856A (en) | Laminate structure | |
WO2022264426A1 (en) | Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film | |
JP3344442B2 (en) | Orientation material and surface acoustic wave device | |
US6605227B2 (en) | Method of manufacturing a ridge-shaped three dimensional waveguide | |
KR100439960B1 (en) | PMN-PT optical waveguides by thermal diffusion and fabrication methods thereof | |
EP0674384B1 (en) | Orientational material and surface acoustic wave device | |
US20230200246A1 (en) | Layered solid state element comprising a ferroelectric layer and method for manufacturing the same | |
JPH0637352B2 (en) | Manufacturing method of lithium oxide single crystal thin film | |
JP2008069058A (en) | LiNbO3 EPITAXIAL FILM DEPOSITION METHOD | |
JPH01317199A (en) | Method for producing ferroelectric thin film | |
Chen et al. | Preparation conditions investigation on high-quality lithium niobate thin films on SiO2 substrates | |
JPH05267197A (en) | Material of oxide film substance | |
JPH0548383A (en) | Surface acoustic wave element and its manufacture | |
JP4275615B2 (en) | Dielectric element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070925 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20070927 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070927 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111012 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111012 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121012 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |