WO2022264426A1 - Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film - Google Patents

Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film Download PDF

Info

Publication number
WO2022264426A1
WO2022264426A1 PCT/JP2021/023264 JP2021023264W WO2022264426A1 WO 2022264426 A1 WO2022264426 A1 WO 2022264426A1 JP 2021023264 W JP2021023264 W JP 2021023264W WO 2022264426 A1 WO2022264426 A1 WO 2022264426A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
zno
crystal
lithium niobate
Prior art date
Application number
PCT/JP2021/023264
Other languages
French (fr)
Japanese (ja)
Inventor
方省 赤澤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023529181A priority Critical patent/JPWO2022264426A1/ja
Priority to PCT/JP2021/023264 priority patent/WO2022264426A1/en
Publication of WO2022264426A1 publication Critical patent/WO2022264426A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Definitions

  • the present disclosure relates to a method for forming a c-axis oriented lithium niobate crystal thin film, and a laminate including the c-axis oriented lithium niobate crystal thin film.
  • CMOS complementary metal oxide semiconductor
  • a high-refractive-index-difference optical waveguide whose main constituent materials are silicon (Si) and silica (SiO 2 ) can be curved or Y-branched with a sharp curvature on a micrometer scale. Therefore, there is an advantage that selective extraction of optical signals in a limited space and addition operation can be realized.
  • a new functional element since the function of an optical waveguide composed only of Si and SiO2 remains passive, a new functional element must be inserted into the optical circuit in order to handle the optical signal more actively. is required.
  • Candidate materials for the newly inserted functional element include ferroelectric materials having properties such as ferroelectricity, electro-optic effect, nonlinear optical effect, and photorefractive effect.
  • Lithium niobate (LiNbO 3 : hereinafter referred to as LN), which is a composite of lithium oxide Li 2 O and niobium oxide Nb 2 O 5 at a molar ratio of 1:1, is highly available as a single crystal and has a typical strength. Since it is a dielectric material, it is applied to electro-optic modulators, optical deflectors, wavelength converters, and the like.
  • the LN crystal is preferably a single crystal, but it is technically difficult to insert an LN single crystal into an optical waveguide formed on a substrate.
  • the LN crystal is polished to a micrometer-order thickness, and then processed into an optical waveguide shape by photolithography and etching. (see, for example, Non-Patent Document 1).
  • this process is not suitable for production because it requires advanced technology for bonding and takes time for polishing.
  • a method for forming a thin film such as a sputtering method has the advantage that a polycrystalline LN crystal film whose orientation and film thickness are controlled can be formed anywhere on the substrate.
  • the characteristics as an optical element are inferior to the LN single crystal.
  • the crystallinity of LN polycrystals can be brought closer to that of single crystals by controlling the orientation or the like, there is a good possibility that they will be put to practical use even if some deterioration in characteristics is taken into account. From this point of view, many studies have been conducted on LN polycrystalline film formation.
  • Si has been widely used as a substrate because of its low cost and high versatility.
  • Si is not suitable as a substrate for forming an optical waveguide because of its high light absorption.
  • SiO 2 has a high light transmittance and a low refractive index of 1.457 at a wavelength of 633 nm, so it is a material that can serve as a clad layer for all the materials that constitute the core of the optical waveguide.
  • SiO 2 is an effective material as a cladding layer, and it can be said that the LN crystal formed on the SiO 2 substrate is important for application as an optical element.
  • LN crystal film it is difficult to obtain a film with high crystallinity, and it is not always possible to obtain a thin film of LN crystal with c-axis orientation. is known (see, for example, Non-Patent Document 2).
  • MgO a single crystal of magnesium oxide (MgO), or MgO (100)
  • MgO substrates which are highly available, are generally limited to a size of about 10 ⁇ 10 mm, and are not suitable for practical use as optical elements.
  • the substrate if an electric field needs to be applied to the LN crystal to function as an optical element, the substrate preferably has not only high light transmission but also high electrical conductivity.
  • SiO 2 and sapphire mentioned above have high insulating properties, when an LN crystal film is formed on these substrates, the electrodes must be arranged side by side on the LN crystal.
  • An optical element having such a structure naturally has a limit to the magnitude of the electric field that can be applied, so it is difficult to apply it to an optical element that requires a high electric field, such as an optical deflector or an optical modulator.
  • an LN crystal is formed on a substrate having high conductivity, the substrate acts as a lower electrode, so forming an electrode on the LN crystal can ensure a high electric field.
  • This is also advantageous in aligning the polarization directions of the ferroelectric domains by poling.
  • an epitaxial film of Pt (111) which is a single crystal of platinum (Pt) was formed on a Si (111) substrate, and a Pt (100) epitaxial film was formed on an MgO (100) substrate.
  • Pt (111) which is a single crystal of platinum (Pt)
  • Non-Patent Document 5 the crystal orientation of the LN crystal becomes random orientation
  • the substrate in applying LN crystals as optical elements, it is desirable to form a thin film of c-axis oriented LN crystals on a substrate having high light transmittance.
  • the substrate preferably has a higher electrical conductivity.
  • the present disclosure has been made in view of such problems, and an object of the present disclosure is to provide a thin film of LN crystal for application as an optical element, which has high light transmittance and large refraction of LN crystal.
  • An object of the present invention is to provide a method for forming a c-axis oriented LN crystal film on a substrate having a difference in index and a laminate thereof.
  • the present disclosure provides a deposition method for depositing a c-axis oriented lithium niobate crystal thin film on a substrate using an electron cyclotron resonance (ECR) plasma sputtering method.
  • ECR electron cyclotron resonance
  • RF radio frequency
  • a method for forming a lithium niobate crystal thin film characterized by forming a crystal thin film.
  • FIG. 4 is a flow chart illustrating a method for depositing an LN crystal film on a SiO2 substrate using ECR plasma sputtering according to the present disclosure
  • FIG. 3 shows XRD patterns of LN crystals deposited on SiO 2 by ECR plasma sputtering at various deposition temperatures and oxygen flow rates.
  • 4 is a flowchart illustrating a method for depositing ZnO as a buffer layer on SiO 2 and depositing c-axis oriented LN crystals thereon according to an embodiment of the present disclosure
  • FIG. 4 is a diagram showing an XRD pattern of a laminate in which an LN crystal is deposited on ZnO/SiO 2 with a ZnO deposition temperature of 500° C.
  • FIG. 4 is a diagram showing an XRD pattern of a laminate obtained by forming an LN crystal film on ZnO/SiO 2 with a ZnO film forming temperature of 500° C. and a film thickness of 10 nm, in an embodiment of the present disclosure.
  • FIG. 4 is a diagram showing an XRD pattern of a laminate obtained by forming an LN crystal film on ZnO/SiO 2 with a ZnO film forming temperature of 400° C. and a film thickness of 70 nm, in an embodiment of the present disclosure.
  • FIG. 4 is a flow chart illustrating a method for depositing c-axis oriented LN crystals on Z-cut quartz according to one embodiment of the present disclosure.
  • FIG. 4 is a diagram showing an XRD pattern of a laminate in which an LN crystal is deposited on a Z-cut quartz substrate in an embodiment of the present disclosure;
  • 4 is a flow chart illustrating a method for depositing c-axis oriented LN crystals on Z-cut quartz according to one embodiment of the present disclosure.
  • FIG. 4 is a flow chart illustrating a method for depositing c-axis oriented LN crystals on Z-cut quartz according to one embodiment of the present disclosure.
  • FIG. 4 is a diagram showing an XRD pattern of a laminate in which an LN crystal is deposited on a Z-cut quartz substrate in an embodiment of the present disclosure
  • 4 is a flowchart illustrating a method for depositing a c-axis oriented LN crystalline film on STO(111) according to an embodiment of the present disclosure
  • FIG. 4 is a diagram showing an XRD pattern of a laminate in which an LN crystal is deposited on STO (111) in an embodiment of the present disclosure
  • a substrate in which zinc oxide (ZnO) is deposited as a buffer layer on SiO 2 using a sputtering method, Z-cut quartz, Three types of strontium titanate (SrTiO 3 : hereinafter referred to as STO) single crystals were selected.
  • ZnO/SiO 2 zinc oxide/SiO 2
  • STO strontium titanate
  • ZnO deposited by sputtering tends to be strongly c-axis oriented on many substrates, even if the temperature of the substrate during deposition is room temperature.
  • an LN crystal is deposited by an electron cyclotron resonance (hereinafter referred to as ECR) plasma sputtering method on a substrate where the LN crystal is expected to be c-axis oriented.
  • ECR electron cyclotron resonance
  • FIG. 1 is a flowchart illustrating a method for depositing an LN crystal film on a SiO2 substrate using ECR plasma sputtering according to the present disclosure.
  • a method for forming an LN crystal on a SiO2 substrate according to the present disclosure includes step 11 of creating a substrate having SiO2 formed on the surface layer by thermally oxidizing a Si(111) single crystal;
  • argon plasma is generated without applying a potential to the LN target, and the moisture adsorbed on the wall surface in the film forming chamber is removed;
  • RF Radio Frequency
  • the film thickness of SiO 2 in step 1 is set to 500 nm.
  • the final vacuum degree of the film formation chamber was set to 9 ⁇ 10 ⁇ 5 Pa.
  • the microwave power for generating the ECR plasma was set to 500W, and the RF power applied to the LN target was also set to 500W.
  • the substrate was placed on a heater, and the substrate and the growing thin film were held at a desired temperature (hereinafter referred to as film forming temperature) for film formation.
  • oxygen was supplied in addition to argon, which is a sputtering gas, into the deposition chamber.
  • the flow rate of argon was fixed at 8 sccm.
  • the film formation temperature and oxygen flow rate were varied, and the accompanying changes in crystallinity of the LN crystal were evaluated.
  • the film formation temperature was varied in the range of 400 to 460° C.
  • the oxygen flow rate was varied in the range of 0.5 to 3.0 sccm. Note that the film thickness of the LN crystal is 1 ⁇ m under any conditions.
  • the crystallinity was evaluated by crystal structure analysis by X-ray diffraction (hereinafter referred to as XRD) method.
  • the characteristic X-rays used in this method are CuK ⁇ rays, and the scan mode is ⁇ /2 ⁇ .
  • FIG. 2 shows XRD patterns of LN crystals deposited on SiO 2 by ECR plasma sputtering at various deposition temperatures and oxygen flow rates.
  • the deposition temperature is 400 ° C. and the oxygen flow rate is 0.5 sccm
  • the XRD pattern of the deposited LN crystal shows that the peak intensity of LN (006) corresponding to the c-axis orientation is higher than the peak intensity of LN (006) corresponding to the c-axis orientation.
  • the peak intensity of (122) is stronger. Therefore, it can be inferred that the LN crystal formed under these conditions has a weak c-axis orientation.
  • the film formation temperature was increased to 460° C.
  • the peak intensity of LN(006) increased significantly.
  • the peak intensity of LN (202), which is the second strongest in the same XRD pattern, is one order of magnitude smaller than the peak intensity of LN (006), so the LN crystal formed under this condition is a c-axis oriented LN crystal. I can say there is. Even when the film formation temperature is raised to 460° C., no peak corresponding to the Li-deficient LiNb 3 O 8 phase is detected. Furthermore, when the oxygen flow rate is increased to 1.5 sccm while the film formation temperature is kept at 460° C., the XRD pattern of the LN crystal shows that the LN (202) peak is increased while the LN (006) peak intensity is maintained.
  • FIG. 3 is a flowchart illustrating a method for depositing ZnO as a buffer layer on SiO 2 and depositing c-axis oriented LN crystals thereon according to one embodiment of the present disclosure.
  • the method of forming an LN crystal according to the present embodiment includes step 31 of forming a substrate having SiO 2 formed on the surface layer by thermally oxidizing a Si(111) single crystal, and forming a film of ZnO as a buffer layer.
  • argon plasma is generated without applying a potential to the Zn target to desorb moisture adsorbed on the wall surface of the film forming chamber (step 32), and a ZnO film is formed.
  • ECR plasma is generated while supplying oxygen in the deposition chamber of the deposition apparatus, and RF power is applied to the Zn target to generate a sputtering phenomenon on the Zn target surface and release from the oxidized Zn target surface.
  • step 33 of depositing the particles on SiO 2 and in the film forming apparatus for forming the LN crystal film after the film forming chamber is decompressed by a vacuum pump, plasma is generated without applying a potential to the LN target,
  • the size of Si (111) used in step 31 is 4 inches, and the film thickness of SiO 2 formed is 140 nm.
  • the ECR plasma sputtering method performed in step 33 was a reactive sputtering method using oxygen, film formation temperatures were 400° C. and 500° C., and ZnO film thicknesses were 10 nm and 70 nm.
  • the conditions for forming the LN crystal in steps 34 and 35 were the same as in the case of forming the LN crystal on SiO 2 described above. However, the film formation temperature and the oxygen flow rate were fixed under the conditions (460° C. and 1.5 sccm, respectively) under which the LN crystal with the strongest c-axis orientation could be formed when the LN crystal was formed on SiO 2 .
  • the film thickness of the formed LN crystal film is 1 ⁇ m.
  • the crystallinity of the LN crystal deposited on ZnO/SiO 2 was evaluated using XRD.
  • the scan mode is ⁇ /2 ⁇
  • only the 2 ⁇ angle of the detector is scanned while the X-ray incident angle is 1.5° with respect to the thin film surface of the LN crystal.
  • a Grazing Incident X-ray Diffraction (hereinafter referred to as GIXRD) pattern was also obtained. Further, a rocking curve was obtained for some of the detected peaks, and the orientation was evaluated in more detail from the shape and half-value width.
  • FIG. 4 is an XRD pattern of a laminate in which an LN crystal is deposited on ZnO/SiO 2 with a ZnO deposition temperature of 500° C. and a film thickness of 70 nm in an embodiment of the present disclosure.
  • FIG. 4(a) is the XRD pattern with the scan mode ⁇ -2 ⁇
  • FIG. 4(b) is the GIXRD pattern
  • FIG. 4(c) is the rocking curves for the peaks of LN(006) and ZnO(002), respectively. showing.
  • the peak of ZnO (002) corresponding to the c-axis direction of ZnO, which is the buffer layer is detected with a high intensity of 1 ⁇ 10 5 counts.
  • FIG. 5 is an XRD pattern of a laminate in which an LN crystal is deposited on ZnO/SiO 2 with a ZnO deposition temperature of 500° C. and a film thickness of 10 nm in an embodiment of the present disclosure.
  • FIG. 5(a) shows an XRD pattern with a scan mode of ⁇ -2 ⁇
  • FIG. 5(b) shows a GIXRD pattern.
  • LN(104), LN(116), and LN(018) whose crystal orientation is not the c-axis, are detected with peak intensities comparable to those of LN(006).
  • the film thickness of ZnO is 10 nm
  • the film thickness is thin, so the c-axis orientation of ZnO is weak, and rather it acts to increase the surface roughness of the LN growth surface. It is thought that the LN crystal also became a polycrystalline structure with random orientation along with it.
  • FIG. 6 is an XRD pattern of a laminate in which an LN crystal is deposited on ZnO/SiO 2 with a ZnO deposition temperature of 400° C. and a film thickness of 70 nm in an embodiment of the present disclosure.
  • FIG. 6(a) is an XRD pattern with a scan mode of ⁇ -2 ⁇
  • FIG. 6(b) is a GIXRD pattern
  • FIG. 6(c) is a rocking curve for LN (006) and ZnO (002) peaks, respectively. showing. As shown in FIG.
  • the detected diffraction peaks for both ZnO and LN crystals are all peaks related to the c-axis direction, and both ZnO and LN crystals have higher , c-axis orientation becomes stronger.
  • the GIXRD pattern of FIG. 6 (b) only a weak LN (006) was detected as a peak derived from the LN crystal, which also indicates that the LN crystal is strongly c-axis oriented. is suggested.
  • an LN crystal film was formed using the ECR plasma sputtering method at a film formation temperature of 400 to 500 ° C., using a ZnO/SiO 2 substrate in which ZnO having a film thickness of 70 nm was formed on SiO 2 .
  • ZnO has a high light transmittance, so that light loss is small. Therefore, the LN/ZnO/SiO 2 laminate deposited according to this embodiment can be applied to an optical waveguide having an LN crystal core.
  • the film thickness of ZnO is set to 70 nm in the present embodiment, the same effect can be obtained if the film thickness is 70 to 100 nm. If it is thicker than this, problems may arise in that the surface roughness of ZnO increases and the internal stress increases due to the difference in coefficient of linear expansion from that of SiO 2 . Conversely, if the film thickness is less than this, the crystallinity of ZnO is low, and it is conceivable that the LN crystal formed thereon does not exhibit a strong c-axis orientation.
  • the ZnO film formation method is a reactive sputtering method using oxygen, but a sputtering method using a ZnO target and argon also produces the same effect.
  • ZnO may be reduced to such an extent that the crystal structure is not destroyed.
  • ZnO becomes a transparent conductive film, so that it becomes possible to have high conductivity while maintaining high light transmittance. This is because oxygen vacancies generated by reduction form donor levels that release two electrons.
  • a method for reducing ZnO for example, a method of using a ZnO target in film formation by sputtering of ZnO and introducing hydrogen in addition to argon to the sputtering gas can be used.
  • AZO or GZO it is possible to further increase the electrical conductivity by doping ZnO with aluminum (Al) or gallium (Ga) to form AZO or GZO.
  • Al aluminum
  • Ga gallium
  • the doped Al or Ga forms a substitutional solid solution in the Zn site of ZnO to form a donor level that emits one electron.
  • a method of doping ZnO with Al or Ga for example, a method using AZO or GZO as a target in ZnO film formation by sputtering can be used.
  • ZnO is given high conductivity, for example, by forming a ZnO film also on the upper part and forming a sandwich structure in which the LN crystal is sandwiched between ZnO transparent electrodes, it is possible to use the electro-optic effect for conduction. It can be applied to wave-type devices.
  • FIG. 7 is a flowchart illustrating a method for depositing c-axis oriented LN crystals on Z-cut quartz according to one embodiment of the present disclosure.
  • the method of forming a c-axis oriented LN crystal film on a Z-cut quartz according to the present embodiment comprises the following steps: step 71 of preparing a c-axis oriented Z-cut quartz substrate; After decompressing the film chamber with a vacuum pump, argon plasma is generated without applying potential to the LN target to remove moisture adsorbed on the wall surface of the film forming chamber 72, ECR plasma is generated, and the LN target is generating a sputtering phenomenon on the LN target surface by applying RF power to the LN target to deposit particles ejected from the LN target onto the Z-cut quartz substrate.
  • the size of the Z-cut quartz substrate in this embodiment is 3 inches.
  • the film formation method of the LN crystal is the ECR plasma sputtering method, and the film formation conditions are the conditions under which the LN crystal with the strongest c-axis orientation is obtained when the LN crystal film is formed on the SiO 2 described above, that is, , the film formation temperature was 460° C., and the oxygen flow rate was 1.5 sccm.
  • the film thickness of the LN crystal is 1 ⁇ m as in the first embodiment.
  • the crystallinity of the LN crystal film formed by such a method was evaluated using XRD in the same manner as in the first embodiment.
  • FIG. 8 is an XRD pattern of a stack of LN crystals deposited on a Z-cut quartz substrate in one embodiment of the present disclosure.
  • FIG. 8(a) shows an XRD pattern with a scan mode of ⁇ -2 ⁇
  • FIG. 8(b) shows a GIXRD pattern
  • FIG. 8(c) shows a rocking curve for the peak of LN(006).
  • the notation of Q shown in the drawing is an abbreviation for Quartz.
  • the diffraction peaks derived from Z-cut quartz are Q(001), Q(002), Q(003), and Q(004), and the peaks corresponding to the c-axis direction are mainly detected.
  • the Z-cut quartz substrate used in this embodiment has a strong c-axis orientation. This is also proved by the fact that no peak derived from Z-cut quartz is detected in the GIXRD pattern of FIG. 8(b).
  • the diffraction peak derived from the LN crystal is the strongest in LN (006) corresponding to the c-axis direction, and the peak intensity reaches 2 ⁇ 10 4 counts, so this LN crystal is affected by the substrate. , c-axis oriented crystals.
  • weak peaks of LN(202), LN(018), and LN(10 10 ) which do not correspond to the c-axis direction, are also detected, suggesting that the crystallinity is somewhat disturbed.
  • FIG. 9 is a flowchart illustrating a method for depositing c-axis oriented LN crystals on Z-cut quartz according to one embodiment of the present disclosure.
  • a step 74 of performing heat treatment for the purpose of solid-phase crystallization is added to the laminated body in which the LN crystal is formed on the Z-cut quartz substrate.
  • the film formation temperature during the film formation in step 73 was room temperature
  • the heat treatment temperature for solid phase crystallization was 600° C.
  • the holding time was 1 hour. Crystallinity was evaluated by XRD in the same manner as in the first embodiment for the laminated body in which the LN crystal was formed on the Z-cut quartz substrate formed by such a method.
  • FIG. 10 is an XRD pattern of a stack of LN crystals deposited on a Z-cut quartz substrate in one embodiment of the present disclosure.
  • FIG. 10(a) shows an XRD pattern with a scan mode of ⁇ -2 ⁇
  • FIG. 10(b) shows a GIXRD pattern
  • FIG. 10(c) shows a rocking curve for the peak of LN(006).
  • the XRD pattern of the LN crystal film formed by the method including the step 74 as described above is similar to FIG.
  • the LN crystal deposited by the present embodiment has crystallites that do not correspond to the c-axis direction, as in the LN crystal film deposited by the method that does not include the step 74 described in the second embodiment.
  • the peak intensity of LN(006) is 5 ⁇ 10 4 counts, which is more than double that of FIG. 8(a).
  • FIG. 10(c) the rocking curve of FIG. 10(c)
  • the film formation temperature of the LN crystal was set to room temperature. Effective.
  • the temperature of the heat treatment after film formation is set to 600° C. in this embodiment, the same effect can be obtained as long as the temperature is in the range of 500 to 650° C. At a temperature below this, the crystallization of the LN crystal film is insufficient, and conversely, if the heat treatment is performed at a temperature above this, re-evaporation of Li in the LN crystal occurs.
  • FIG. 11 is a flowchart illustrating a method for depositing a c-axis oriented LN crystalline film on STO (111) according to one embodiment of the present disclosure.
  • the method of forming a c-axis oriented LN crystal film on STO (111) according to the present embodiment includes step 111 of preparing a single crystal substrate of STO (111), and a film forming apparatus for forming an LN crystal.
  • the film formation temperature was set to 350° C. in the LN crystal film formation shown in step 113 .
  • Other film formation conditions such as the oxygen flow rate were the same as the film formation conditions for the LN crystal in the first and second embodiments.
  • the film thickness of the LN crystal was set to be the same at 1 ⁇ m.
  • the crystallinity of the LN crystal deposited on the STO (111) was evaluated by XRD in the same manner as in the first and second embodiments.
  • FIG. 12 is an XRD pattern of a stack of LN crystals deposited on STO(111) in an embodiment of the present disclosure.
  • FIG. 12(a) shows an XRD pattern with a scan mode of ⁇ -2 ⁇
  • FIG. 12(b) shows a GIXRD pattern
  • FIG. 12(c) shows a rocking curve for the peak of LiNb 3 O 8 ( ⁇ 602). ing.
  • LN 006
  • Diffraction peaks of LiNb 3 O 8 ( ⁇ 301) and LiNb 3 O 8 ( ⁇ 602) derived from LiNb 3 O 8 are also detected.
  • the conditions for forming the LN crystal film in this embodiment are not significantly different from those in the first and second embodiments. Therefore, the formation of LiNb3O8 , which is limited only to the case of STO ( 111), can be attributed not to the deposition process, but rather to the chemical interaction between the deposited LN crystal film and STO ( For example, Li atoms diffuse into STO). Since the LN (006) plane and the LiNb 3 O 8 ( ⁇ 602) plane are in an epitaxial relationship (see, for example, Non-Patent Document 6), it is natural for both to coexist.
  • the film formed according to this embodiment is a mixed film in which LiNb 3 O 8 and LN coexist (hereinafter referred to as LiNb 3 O 8 /LN). Further, in the GIXRD pattern of FIG. 12(b), no diffraction peak corresponding to the c-axis direction is detected, and in the rocking curve shown in FIG. was observed, it was confirmed that this LiNb 3 O 8 /LN was epitaxially grown.
  • an epitaxial film of LiNb 3 O 8 /LN with c-axis orientation can be formed according to the present embodiment. It has been confirmed that the XRD pattern of the deposited LiNb 3 O 8 /LN crystal film exhibits a diffraction pattern similar to that of FIG. . That is, in the method of forming the LiNb 3 O 8 /LN crystal film according to the present embodiment, the same effect can be obtained if the film forming temperature is between 350 and 550°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

When applying LN crystals as an optical element, it is desirable to form a thin film of c-axis-oriented LN crystals on a substrate having high light transmittance, and it is preferable that the substrate also have high electrical conductivity in consideration of cases in which an electric field is applied to the LN crystals. Therefore, the present disclosure provides: a method for forming an LN crystal thin film to be applied as an optical element, the method involving forming c-axis-oriented LN crystals into a film on a substrate having high light transmittance and a large difference in refractive index from LN crystals; and a laminate thereof.

Description

ニオブ酸リチウム結晶薄膜の成膜方法およびニオブ酸リチウム結晶薄膜を含む積層体Method for depositing lithium niobate crystal thin film and laminate containing lithium niobate crystal thin film
 本開示は、c軸配向したニオブ酸リチウム結晶薄膜の成膜方法、およびそのc軸配向したニオブ酸リチウム結晶薄膜を含む積層体に関する。 The present disclosure relates to a method for forming a c-axis oriented lithium niobate crystal thin film, and a laminate including the c-axis oriented lithium niobate crystal thin film.
 光学素子を一つの光回路の中に集積することは、近年の光通信デバイス開発における潮流である。とりわけ、相補型MOS(CMOS)回路と互換性のあるシリコンフォトニクスは、電子デバイスと光デバイスの機能を統合したシステムを構築する上で、重要なプラットフォームを提供する。  Integration of optical elements into a single optical circuit is a trend in the development of optical communication devices in recent years. In particular, silicon photonics compatible with complementary metal oxide semiconductor (CMOS) circuits provides an important platform for building systems that integrate the functions of electronic and optical devices.
 シリコン(Si)とシリカ(SiO)を主要な構成材料とする高屈折率差光導波路では、マイクロメータースケールの急峻な曲率で光導波路を湾曲させる、あるいはY分岐させることが可能である。そのため、限られた空間内における光信号の選択的な取り出しや、加算演算が実現できるという利点を有する。しかし、SiとSiOのみで構成される光導波路の機能は、あくまで受動的なものに留まるため、光信号をより能動的に取り扱うためには、光回路の中に新たな機能素子を挿入することが必要となる。この新たに挿入する機能素子の候補材料には、強誘電性、電気光学効果、非線形光学効果、フォトリフラクティブ効果などの特性を有する、強誘電体材料が挙げられる。 A high-refractive-index-difference optical waveguide whose main constituent materials are silicon (Si) and silica (SiO 2 ) can be curved or Y-branched with a sharp curvature on a micrometer scale. Therefore, there is an advantage that selective extraction of optical signals in a limited space and addition operation can be realized. However, since the function of an optical waveguide composed only of Si and SiO2 remains passive, a new functional element must be inserted into the optical circuit in order to handle the optical signal more actively. is required. Candidate materials for the newly inserted functional element include ferroelectric materials having properties such as ferroelectricity, electro-optic effect, nonlinear optical effect, and photorefractive effect.
 酸化リチウム LiOと酸化ニオブNbを1:1のモル比で複合化したニオブ酸リチウム(LiNbO:以下、LNと記す)は、単結晶の入手性が高く、代表的な強誘電体材料であるため、電気光学変調器、光偏向器、波長変換器等に応用されている。LN結晶の結晶系は三方晶系であり、その格子定数は、a=5.148Å、c=13.86Åである。LN結晶の特性を光導波路として最大限に引き出すためには、単結晶であることが好ましいが、基板上に形成した光導波路内にLN単結晶を挿入することは、技術的に困難である。従来までに報告されている例では、SiO基板にLN結晶ウエハを貼り合わせた後、LN結晶をマイクロメーターオーダーの厚さまで研磨し、その後、フォトリソグラフィーとエッチングによって光導波路形状へ加工するという方法が挙げられる(例えば、非特許文献1参照)。しかし、このプロセスは、貼り合わせに高度な技術を要し、研磨にも時間が掛かるという問題があるため、生産には不向きである。 Lithium niobate (LiNbO 3 : hereinafter referred to as LN), which is a composite of lithium oxide Li 2 O and niobium oxide Nb 2 O 5 at a molar ratio of 1:1, is highly available as a single crystal and has a typical strength. Since it is a dielectric material, it is applied to electro-optic modulators, optical deflectors, wavelength converters, and the like. The crystal system of the LN crystal is a trigonal system, and its lattice constants are a=5.148 Å and c=13.86 Å. In order to maximize the characteristics of the LN crystal as an optical waveguide, it is preferably a single crystal, but it is technically difficult to insert an LN single crystal into an optical waveguide formed on a substrate. In the examples reported so far, after bonding an LN crystal wafer to a SiO2 substrate, the LN crystal is polished to a micrometer-order thickness, and then processed into an optical waveguide shape by photolithography and etching. (see, for example, Non-Patent Document 1). However, this process is not suitable for production because it requires advanced technology for bonding and takes time for polishing.
 一方、スパッタ法などの薄膜を成膜する方法は、配向性、および膜厚を制御した多結晶のLN結晶膜を基板上の任意の場所に形成できるという利点を有するが、LN多結晶は、LN単結晶に比べて、光学素子としての特性が劣るという欠点がある。しかし、LN多結晶であっても、配向を制御するなどにより、結晶性を単結晶に近づけられれば、多少の特性の低下を考慮したとしても実用に供される可能性が十分にある。このような観点から、LN多結晶の成膜に対する研究が、多数行われてきた。 On the other hand, a method for forming a thin film such as a sputtering method has the advantage that a polycrystalline LN crystal film whose orientation and film thickness are controlled can be formed anywhere on the substrate. There is a drawback that the characteristics as an optical element are inferior to the LN single crystal. However, if the crystallinity of LN polycrystals can be brought closer to that of single crystals by controlling the orientation or the like, there is a good possibility that they will be put to practical use even if some deterioration in characteristics is taken into account. From this point of view, many studies have been conducted on LN polycrystalline film formation.
 このようなLN多結晶の成膜に関する研究では、安価で汎用性が高いという理由から、基板としてSiが広く用いられてきた。しかし、Siは光吸収が大きいため、光導波路を形成するための基板としては不向きである。一方、SiOは、光透過率が高く、波長633nmにおける屈折率も1.457と小さいため、光導波路のコアを構成するすべての材料に対して、クラッド層となり得る材料である。実際、SiOの屈折率は、LN結晶の常光線屈折率n=2.28、および異常光線屈折率n= 2.20と比べても、はるかに小さい。したがって、コアとしてLN結晶を用いた光導波路においても、SiOはクラッド層として有効な材料であり、SiO基板上に成膜したLN結晶は、光学素子としての応用上、重要と言える。しかし、一般的に、SiO基板上にLN結晶を成膜する場合、高い結晶性を有する膜を得ることは困難であり、必ずしもc軸配向したLN結晶の薄膜が得られるとは限らないことが知られている(例えば、非特許文献2参照)。 In studies on such LN polycrystalline film formation, Si has been widely used as a substrate because of its low cost and high versatility. However, Si is not suitable as a substrate for forming an optical waveguide because of its high light absorption. On the other hand, SiO 2 has a high light transmittance and a low refractive index of 1.457 at a wavelength of 633 nm, so it is a material that can serve as a clad layer for all the materials that constitute the core of the optical waveguide. In fact, the refractive index of SiO 2 is much smaller than the ordinary refractive index n 0 =2.28 and the extraordinary refractive index n e =2.20 of the LN crystal. Therefore, even in an optical waveguide using an LN crystal as a core, SiO 2 is an effective material as a cladding layer, and it can be said that the LN crystal formed on the SiO 2 substrate is important for application as an optical element. However, in general, when forming an LN crystal film on a SiO2 substrate, it is difficult to obtain a film with high crystallinity, and it is not always possible to obtain a thin film of LN crystal with c-axis orientation. is known (see, for example, Non-Patent Document 2).
 LN結晶のc軸は、自発分極の方向と一致するため、光学素子としての機能を最大限に引き出すためには、その結晶方位を、選択的にc軸配向させることが求められる。これを実現する方法として、LN結晶と格子整合する単結晶基板上に成長させる方法が挙げられ、これまで、サファイアC面基板上にLN結晶のエピタキシャル膜を形成した多くの実験結果が報告されている(例えば、非特許文献3参照)。また、サファイアA面やR面上において結晶方位を制御した試みもある。その他にも、酸化マグネシウム(MgO)の単結晶であるMgO(111)や、MgO(100)の基板上にLN結晶のエピタキシャル膜を成長させた例が報告されている(例えば、非特許文献4参照)。しかし、入手性の高いMgO基板は、通常、その大きさが10×10mm程度に限られるため、光学素子としての実用化には不向きである。 Since the c-axis of the LN crystal coincides with the direction of spontaneous polarization, it is required to selectively orient the crystal orientation to the c-axis in order to maximize the function as an optical element. As a method for realizing this, there is a method of growing on a single crystal substrate lattice-matched to the LN crystal, and so far, many experimental results of forming an epitaxial film of an LN crystal on a sapphire C-plane substrate have been reported. (For example, see Non-Patent Document 3). There are also attempts to control the crystal orientation on the A-plane and R-plane of sapphire. In addition, an example of growing an epitaxial film of an LN crystal on a substrate of MgO (111), which is a single crystal of magnesium oxide (MgO), or MgO (100) has been reported (for example, Non-Patent Document 4 reference). However, MgO substrates, which are highly available, are generally limited to a size of about 10×10 mm, and are not suitable for practical use as optical elements.
 加えて、光学素子として機能させる上でLN結晶に電界を印加する必要がある場合、基板は、高い光透過率だけでなく、高い導電率も有していることが好ましい。これに対し、上述したSiOやサファイアは絶縁性が高いため、これらの基板上にLN結晶膜を成膜した場合、電極はLN結晶上に横に並べて配置せざるを得ない。このような構成を有する光学素子は、印加できる電界の大きさに関して自ずと限界があるため、光偏向器や光変調器等、高い電界が必要になる光学素子への応用は困難である。一方、高い導電率を有する基板上へLN結晶を成膜すれば、基板は下部電極として作用するため、LN結晶の上部に電極を形成することで、高い電界を確保することができる。これは、ポーリングによって強誘電体ドメインの分極方向を揃える上でも有利である。このような試みとして、Si(111)基板上に、白金(Pt)の単結晶であるPt(111)のエピタキシャル膜や、MgO(100)基板上にPt(100)エピタキシャル膜を成膜し、さらに、その上にLN結晶を成膜した例が報告されている(例えば、非特許文献4)。しかし、このように金属膜上にLN膜を直接成膜すると、LN結晶の膜中を伝搬する光ビームと金属膜が干渉し、光の強度が減衰する可能性があるため、LN結晶の膜厚を厚くする必要がある。このような観点から、金属膜の代わりに、例えば、ITOなどの透明導電膜を用いることが考えられるが、この場合、LN結晶の結晶方位がランダムな配向になることが報告されている(例えば、非特許文献5)。 Additionally, if an electric field needs to be applied to the LN crystal to function as an optical element, the substrate preferably has not only high light transmission but also high electrical conductivity. On the other hand, since SiO 2 and sapphire mentioned above have high insulating properties, when an LN crystal film is formed on these substrates, the electrodes must be arranged side by side on the LN crystal. An optical element having such a structure naturally has a limit to the magnitude of the electric field that can be applied, so it is difficult to apply it to an optical element that requires a high electric field, such as an optical deflector or an optical modulator. On the other hand, if an LN crystal is formed on a substrate having high conductivity, the substrate acts as a lower electrode, so forming an electrode on the LN crystal can ensure a high electric field. This is also advantageous in aligning the polarization directions of the ferroelectric domains by poling. As such an attempt, an epitaxial film of Pt (111), which is a single crystal of platinum (Pt), was formed on a Si (111) substrate, and a Pt (100) epitaxial film was formed on an MgO (100) substrate. Furthermore, an example of forming an LN crystal film thereon has been reported (for example, Non-Patent Document 4). However, if the LN film is formed directly on the metal film in this way, the light beam propagating in the LN crystal film and the metal film may interfere with each other, and the light intensity may be attenuated. It is necessary to increase the thickness. From this point of view, instead of the metal film, for example, it is possible to use a transparent conductive film such as ITO, but in this case, it is reported that the crystal orientation of the LN crystal becomes random orientation (for example, , Non-Patent Document 5).
 このように、LN結晶を光学素子として適用するにあたり、c軸配向したLN結晶の薄膜を、高い光透過率を有する基板上に成膜することが望まれる。とりわけ、LN結晶に電界を印加する場合を考慮すると、基板は、更に高い導電率を有することが好ましい。しかし、このような条件を満たす基板に対し、c軸配向したLN結晶膜を成膜する技術であって、光学素子への実用化に適したものは、現状では報告されていない。 Thus, in applying LN crystals as optical elements, it is desirable to form a thin film of c-axis oriented LN crystals on a substrate having high light transmittance. In particular, considering the case where an electric field is applied to the LN crystal, the substrate preferably has a higher electrical conductivity. However, at present, there is no report on a technique for forming a c-axis oriented LN crystal film on a substrate that satisfies such conditions, which is suitable for practical use in optical elements.
 本開示は、このような課題に鑑みてなされたものであり、その目的とするところは、光学素子として適用するためのLN結晶の薄膜であって、高い光透過率と、LN結晶と大きい屈折率差を有する基板上に、c軸配向したLN結晶を成膜する方法およびその積層体を提供することである。 The present disclosure has been made in view of such problems, and an object of the present disclosure is to provide a thin film of LN crystal for application as an optical element, which has high light transmittance and large refraction of LN crystal. An object of the present invention is to provide a method for forming a c-axis oriented LN crystal film on a substrate having a difference in index and a laminate thereof.
 上記の課題を解決するために、本開示では、電子サイクロトロン共鳴(ECR)プラズマスパッタ法を用いて、c軸配向したニオブ酸リチウムの結晶薄膜を、基板の上に成膜する成膜方法であって、基板を準備する工程と、ECRプラズマスパッタ法を実施する成膜装置の成膜室を減圧したあと、ニオブ酸リチウムターゲットに電位を印加しない状態でアルゴンプラズマを発生させることにより、前記成膜装置の前記成膜室内の壁面に吸着した水分を離脱する工程と、成膜装置の成膜室にアルゴンおよび酸素を供給しながらECRプラズマを発生させ、さらにニオブ酸リチウムターゲットに高周波(RF)パワーを印加し、ニオブ酸リチウムターゲットの表面においてスパッタリング現象を発生させることにより、ニオブ酸リチウムターゲットの粒子を前記基板の上に堆積する工程とを備え、基板が、ZnO/SiO、Zカットクォーツ、または(111)配向したチタン酸ストロンチウム(STO)の単結晶のいずれかであり、ニオブ酸リチウムターゲッの粒子を基板の上に堆積する工程において、基板の上にc軸配向した前記ニオブ酸リチウムの結晶薄膜が成膜されることを特徴とする、ニオブ酸リチウム結晶薄膜の成膜方法を提供する。 In order to solve the above problems, the present disclosure provides a deposition method for depositing a c-axis oriented lithium niobate crystal thin film on a substrate using an electron cyclotron resonance (ECR) plasma sputtering method. After a step of preparing a substrate and depressurizing a film forming chamber of a film forming apparatus for carrying out the ECR plasma sputtering method, argon plasma is generated in a state in which no potential is applied to the lithium niobate target. A step of removing moisture adsorbed on the wall surface of the film forming chamber of the apparatus, generating ECR plasma while supplying argon and oxygen to the film forming chamber of the film forming apparatus, and further applying radio frequency (RF) power to the lithium niobate target. depositing particles of a lithium niobate target on said substrate by applying a to and causing a sputtering phenomenon on the surface of the lithium niobate target, wherein the substrate is ZnO/ SiO2 , Z-cut quartz, or (111) oriented strontium titanate (STO) single crystal, wherein in the step of depositing particles of the lithium niobate target on the substrate, the c-axis oriented lithium niobate on the substrate. Provided is a method for forming a lithium niobate crystal thin film, characterized by forming a crystal thin film.
本開示による、ECRプラズマスパッタ法を用いてSiO基板上にLN結晶膜を成膜する方法を示したフローチャートである。4 is a flow chart illustrating a method for depositing an LN crystal film on a SiO2 substrate using ECR plasma sputtering according to the present disclosure; ECRプラズマスパッタ法により、様々な成膜温度、および酸素流量で、SiO上に成膜したLN結晶のXRDパターンを示す図である。FIG. 3 shows XRD patterns of LN crystals deposited on SiO 2 by ECR plasma sputtering at various deposition temperatures and oxygen flow rates. 本開示の一実施形態による、SiO上にバッファ層としてZnOを成膜し、その上にc軸配向したLN結晶を成膜する方法を示したフローチャートである。4 is a flowchart illustrating a method for depositing ZnO as a buffer layer on SiO 2 and depositing c-axis oriented LN crystals thereon according to an embodiment of the present disclosure; 本開示の一実施形態において、ZnOの成膜温度が500℃、膜厚が70nmであるZnO/SiOの上に、LN結晶を成膜した積層体のXRDパターンを示す図である。FIG. 4 is a diagram showing an XRD pattern of a laminate in which an LN crystal is deposited on ZnO/SiO 2 with a ZnO deposition temperature of 500° C. and a film thickness of 70 nm, in an embodiment of the present disclosure. 本開示の一実施形態において、ZnOの成膜温度が500℃、膜厚が10nmであるZnO/SiOの上に、LN結晶を成膜した積層体のXRDパターンを示す図である。FIG. 4 is a diagram showing an XRD pattern of a laminate obtained by forming an LN crystal film on ZnO/SiO 2 with a ZnO film forming temperature of 500° C. and a film thickness of 10 nm, in an embodiment of the present disclosure. 本開示の一実施形態において、ZnOの成膜温度が400℃、膜厚が70nmであるZnO/SiOの上に、LN結晶を成膜した積層体のXRDパターンを示す図である。FIG. 4 is a diagram showing an XRD pattern of a laminate obtained by forming an LN crystal film on ZnO/SiO 2 with a ZnO film forming temperature of 400° C. and a film thickness of 70 nm, in an embodiment of the present disclosure. 本開示の一実施形態による、Zカットクォーツ上にc軸配向したLN結晶を成膜する方法を示したフローチャートである。4 is a flow chart illustrating a method for depositing c-axis oriented LN crystals on Z-cut quartz according to one embodiment of the present disclosure. 本開示の一実施形態において、Zカットクォーツ基板上にLN結晶を成膜した積層体のXRDパターンを示す図である。FIG. 4 is a diagram showing an XRD pattern of a laminate in which an LN crystal is deposited on a Z-cut quartz substrate in an embodiment of the present disclosure; 本開示の一実施形態による、Zカットクォーツ上にc軸配向したLN結晶を成膜する方法を示したフローチャートである。4 is a flow chart illustrating a method for depositing c-axis oriented LN crystals on Z-cut quartz according to one embodiment of the present disclosure. 本開示の一実施形態において、Zカットクォーツ基板上にLN結晶を成膜した積層体のXRDパターンを示す図である。FIG. 4 is a diagram showing an XRD pattern of a laminate in which an LN crystal is deposited on a Z-cut quartz substrate in an embodiment of the present disclosure; 本開示の一実施形態による、STO(111)上にc軸配向したLN結晶膜を成膜する方法を示したフローチャートである。4 is a flowchart illustrating a method for depositing a c-axis oriented LN crystalline film on STO(111) according to an embodiment of the present disclosure; 本開示の一実施形態において、STO(111)上にLN結晶を成膜した積層体のXRDパターンを示す図である。FIG. 4 is a diagram showing an XRD pattern of a laminate in which an LN crystal is deposited on STO (111) in an embodiment of the present disclosure;
 以下に、本発明の実施形態について、図面を参照して説明する。高い光透過率と、LN結晶と大きい屈折率差を有する基板上に、c軸配向したLN結晶を成膜するためには、その基板の選定が重要である。本開示の一実施形態では、基板として、SiO上にスパッタ法を用いて酸化亜鉛(ZnO)をバッファ層として成膜した2層体(以下、ZnO/SiOと記す)、Zカットクォーツ、チタン酸ストロンチウム(SrTiO:以下、STOと記す)単結晶の3種を選定した。以下に、各基板材料の特徴と選定理由を記す。 Embodiments of the present invention will be described below with reference to the drawings. In order to form a c-axis oriented LN crystal on a substrate having high light transmittance and a large difference in refractive index from the LN crystal, selection of the substrate is important. In one embodiment of the present disclosure, as a substrate, a two-layer body (hereinafter referred to as ZnO/SiO 2 ) in which zinc oxide (ZnO) is deposited as a buffer layer on SiO 2 using a sputtering method, Z-cut quartz, Three types of strontium titanate (SrTiO 3 : hereinafter referred to as STO) single crystals were selected. The characteristics of each substrate material and the reasons for selection are described below.
 スパッタ法により成膜されたZnOは、成膜時の基板の温度が室温であったとしても、多くの基板上で強くc軸配向する傾向がある。ZnOの結晶は、六方晶系の結晶系に属するウルツ鉱型結晶構造を有し、その格子定数は、a=3.25Åである。もし、LN結晶のC面がバッファ層であるZnOに対して60°回転して成長するなら、その単位格子の長さは5.63Åとなり、LN結晶の格子定数、a=5.148Åとほぼ一致する。したがって、ZnO上へのLN結晶膜の成長は、エピタキシャル成長とは言えないまでも、LN結晶の格子整合成長を促進し、c軸配向したLN結晶膜の成膜が期待される。 ZnO deposited by sputtering tends to be strongly c-axis oriented on many substrates, even if the temperature of the substrate during deposition is room temperature. A ZnO crystal has a wurtzite crystal structure belonging to the hexagonal crystal system, and its lattice constant is a=3.25 Å. If the C plane of the LN crystal is rotated 60° with respect to the buffer layer ZnO and grows, the length of the unit cell is 5.63 Å, and the lattice constant of the LN crystal, a = 5.148 Å, is approximately match. Therefore, although the growth of LN crystal film on ZnO is not epitaxial growth, it is expected to promote lattice-matched growth of LN crystal and to form a c-axis oriented LN crystal film.
 ZカットクォーツはSiOを主成分とする水晶の一種であり、Quartz(0001)に優先配向した単結晶材料である。そして、その格子定数は、a=4.91Å、c=5.41Åであるため、ZカットクォーツのQuartz(0001)面は、LN結晶のC面(格子定数a=5.148Å)に対して、格子定数差は約5%と小さい。したがって、6回対称の結晶構造と同様な格子定数により、LN結晶膜はZカットクォーツのQuartz(0001)面上に、エピタキシャル成長することが期待できる。また、Zカットクォーツは、上述の通り、SiOを成分とするため、波長633nmの光に対する屈折率は、SiOとおなじn=1.544、n=1.553である。したがって、Zカットクォーツは、LN結晶をコアとした光導波路において、クラッド層として機能する。 Z-cut quartz is a type of quartz whose main component is SiO2 , and is a single-crystal material preferentially oriented to Quartz (0001). And since the lattice constants are a = 4.91 Å and c = 5.41 Å, the Quartz (0001) plane of Z-cut quartz is the C plane of the LN crystal (lattice constant a = 5.148 Å) , the lattice constant difference is as small as about 5%. Therefore, it can be expected that the LN crystal film will grow epitaxially on the Quartz (0001) plane of Z-cut quartz due to the same lattice constant as the six-fold symmetrical crystal structure. In addition, since Z-cut quartz contains SiO 2 as a component as described above, the refractive indices for light with a wavelength of 633 nm are n 0 =1.544 and n e =1.553, which are the same as SiO 2 . Therefore, Z-cut quartz functions as a clad layer in an optical waveguide with an LN crystal core.
 STO結晶は、AサイトをSr、BサイトをTiが占有する立方晶の構造を有しており、その格子定数は、a=3.905Åである。STO(111)表面は、酸素原子が六方格子状に配列した構造を持ち、酸素原子間距離は5.52Åである。この値は、LN結晶の格子定数a=5.148Åに対し、格子定数差は約7%と小さいため、LN結晶は、STO(111)表面上に成膜した場合、エピタキシャル成長することが期待される。 The STO crystal has a cubic crystal structure in which Sr occupies the A site and Ti occupies the B site, and its lattice constant is a = 3.905 Å. The STO (111) surface has a structure in which oxygen atoms are arranged in a hexagonal lattice, and the distance between oxygen atoms is 5.52 Å. This value corresponds to the lattice constant a=5.148 Å of the LN crystal, and the lattice constant difference is as small as about 7%. Therefore, the LN crystal is expected to grow epitaxially when deposited on the STO (111) surface. be.
 このように、LN結晶がc軸配向することが見込まれる基板に対し、本開示では、電子サイクロトロン共鳴(Electron Cyclotron Resonance:以下、ECRと記す)プラズマスパッタ法により、LN結晶を成膜する。上述した3種の各基板に対し、c軸配向したLN結晶を成膜する方法を述べるに先立ち、SiO基板に直接LN結晶を成膜し、その結晶方位が成膜条件に対して、どのように変化するかについて評価した内容を説明する。 Thus, in the present disclosure, an LN crystal is deposited by an electron cyclotron resonance (hereinafter referred to as ECR) plasma sputtering method on a substrate where the LN crystal is expected to be c-axis oriented. Prior to describing the method of forming a c-axis oriented LN crystal film on each of the three types of substrates described above, an LN crystal film was formed directly on a SiO2 substrate, and the crystal orientation was determined by the film formation conditions. We will explain the contents of the evaluation to see if it changes.
 図1は、本開示による、ECRプラズマスパッタ法を用いてSiO基板上にLN結晶膜を成膜する方法を示したフローチャートである。本開示による、SiO基板上にLN結晶を成膜する方法は、Si(111)単結晶を熱酸化することによって表層にSiOを形成させた基板を作成する工程11と、LN結晶の成膜を行う成膜装置において、成膜室を真空ポンプにより減圧したあと、LNターゲットに電位を印加しない状態でアルゴンプラズマを発生させ、成膜室内の壁面に吸着した水分を離脱する工程12と、ECRプラズマを発生させ、さらにLNターゲットに高周波(Radio Frequency:以下、RFと記す)パワーを印加することにより、LNターゲット表面でスパッタリング現象を発生させ、LNターゲットから放出した粒子を、基板上に堆積する工程13を含む。ここでは、一例として、工程1におけるSiOは、膜厚500nmとした。また、工程12において、成膜室の到達真空度は9×10-5Paとした。さらに、工程13において、ECRプラズマを発生させるためのマイクロ波のパワーは500Wとし、LNターゲットに印加するRFのパワーも500Wとした。また、工程13において、基板はヒーター上に設置し、基板および成長する薄膜を所望の温度(以下、成膜温度という)に保持して成膜を行った。加えて、成膜されるLN結晶の酸化度を保つため、成膜室内には、スパッタガスであるアルゴンに加え、酸素を供給した。尚、アルゴンの流量は8sccmで固定とした。 FIG. 1 is a flowchart illustrating a method for depositing an LN crystal film on a SiO2 substrate using ECR plasma sputtering according to the present disclosure. A method for forming an LN crystal on a SiO2 substrate according to the present disclosure includes step 11 of creating a substrate having SiO2 formed on the surface layer by thermally oxidizing a Si(111) single crystal; In a film forming apparatus for forming a film, after the film forming chamber is decompressed by a vacuum pump, argon plasma is generated without applying a potential to the LN target, and the moisture adsorbed on the wall surface in the film forming chamber is removed; By generating ECR plasma and applying high frequency (Radio Frequency: hereinafter referred to as RF) power to the LN target, a sputtering phenomenon is generated on the LN target surface, and the particles emitted from the LN target are deposited on the substrate. and step 13 of performing. Here, as an example, the film thickness of SiO 2 in step 1 is set to 500 nm. Further, in step 12, the final vacuum degree of the film formation chamber was set to 9×10 −5 Pa. Further, in step 13, the microwave power for generating the ECR plasma was set to 500W, and the RF power applied to the LN target was also set to 500W. Further, in step 13, the substrate was placed on a heater, and the substrate and the growing thin film were held at a desired temperature (hereinafter referred to as film forming temperature) for film formation. In addition, in order to maintain the degree of oxidation of the LN crystal to be deposited, oxygen was supplied in addition to argon, which is a sputtering gas, into the deposition chamber. The flow rate of argon was fixed at 8 sccm.
 このような方法において、成膜温度および酸素流量を変動させ、それに伴うLN結晶の結晶性の変化を評価した。成膜温度は400~460℃、酸素流量は0.5~3.0sccmの範囲で変動させた。なお、LN結晶の膜厚は、いずれの条件においても1μmである。また、結晶性の評価は、X線回折(X-Ray Diffraction:以下、XRDと記す)法による、結晶構造分析とした。なお、本手法で用いた特性X線は、CuKα線であり、スキャンモードはθ/2θである。 In such a method, the film formation temperature and oxygen flow rate were varied, and the accompanying changes in crystallinity of the LN crystal were evaluated. The film formation temperature was varied in the range of 400 to 460° C., and the oxygen flow rate was varied in the range of 0.5 to 3.0 sccm. Note that the film thickness of the LN crystal is 1 μm under any conditions. The crystallinity was evaluated by crystal structure analysis by X-ray diffraction (hereinafter referred to as XRD) method. The characteristic X-rays used in this method are CuKα rays, and the scan mode is θ/2θ.
 図2に、ECRプラズマスパッタ法により、様々な成膜温度、および酸素流量で、SiO上に成膜したLN結晶のXRDパターンを示す。成膜温度を400℃、酸素流量を0.5sccmとした場合、成膜したLN結晶のXRDパターンでは、c軸配向に対応するLN(006)のピーク強度よりも、c軸配向に対応しないLN(122)のピーク強度の方が強い。したがって、この条件で成膜したLN結晶は、c軸配向が弱いことが伺える。一方、同じ酸素流量で、成膜温度を460℃に上げたところ、LN(006)のピーク強度が著しく増大した。同じXRDパターン中において2番目に強いLN(202)のピーク強度は、LN(006)のピーク強度よりも1桁小さいため、この条件で成膜されたLN結晶は、c軸配向したLN結晶であると言える。なお、成膜温度を460℃に上げても、Liが欠損したLiNb相に対応するピークは検出されていない。更に、成膜温度を460℃としたまま、酸素流量を1.5sccmに増加させると、LN結晶のXRDパターンは、LN(006)のピーク強度が維持されたまま、LN(202)の ピークが検出されなくなる様子が見られ、よりc軸配向が強くなっている様子が認められる。一方、同じ成膜温度460℃で、酸素流量を3sccmまで増大させると、LN(006)のピーク強度は著しく減少し、LN(012)、LN(110)、LN(202)、LN(116)、LN(122)など、方位が異なるピークが多数検出され、ランダムな配向を有する多結晶となっている様子が認められた。これは、薄膜成長表面において酸素過剰となり、成長するLN結晶の格子間位置に酸素が存在することによって、LN結晶が様々な方位に向いた多数の結晶子に分かれたことを意味する。 FIG. 2 shows XRD patterns of LN crystals deposited on SiO 2 by ECR plasma sputtering at various deposition temperatures and oxygen flow rates. When the deposition temperature is 400 ° C. and the oxygen flow rate is 0.5 sccm, the XRD pattern of the deposited LN crystal shows that the peak intensity of LN (006) corresponding to the c-axis orientation is higher than the peak intensity of LN (006) corresponding to the c-axis orientation. The peak intensity of (122) is stronger. Therefore, it can be inferred that the LN crystal formed under these conditions has a weak c-axis orientation. On the other hand, when the film formation temperature was increased to 460° C. at the same oxygen flow rate, the peak intensity of LN(006) increased significantly. The peak intensity of LN (202), which is the second strongest in the same XRD pattern, is one order of magnitude smaller than the peak intensity of LN (006), so the LN crystal formed under this condition is a c-axis oriented LN crystal. I can say there is. Even when the film formation temperature is raised to 460° C., no peak corresponding to the Li-deficient LiNb 3 O 8 phase is detected. Furthermore, when the oxygen flow rate is increased to 1.5 sccm while the film formation temperature is kept at 460° C., the XRD pattern of the LN crystal shows that the LN (202) peak is increased while the LN (006) peak intensity is maintained. It can be seen that the c-axis orientation is becoming stronger. On the other hand, at the same deposition temperature of 460 °C, when the oxygen flow rate is increased to 3 sccm, the peak intensity of LN(006) decreases significantly, LN(012), LN(110), LN(202), LN(116) , LN (122), etc., were detected, and it was found that polycrystals with random orientation were formed. This means that the presence of oxygen in the interstitial sites of the growing LN crystal caused the LN crystal to split into multiple crystallites oriented in various orientations due to the oxygen excess at the thin film growth surface.
 以上のことから、上述した方法によって、SiO基板上にc軸配向したLN結晶膜を成膜することが可能あり、成膜温度が460℃の場合、酸素流量が0.5~1.5sccmの範囲において、c軸配向したLN結晶が得られることが分かる。尚、上述した通り、通常SiO上にLNをスパッタ法で成膜した場合、c軸配向させることは困難とされているが、本開示では、アモルファスであるSiO上に成膜したLN結晶膜の配向がc軸方向に揃った膜が成膜された。これは、LN膜表面を最密充填のC面で終端することにより表面エネルギーを最小化することに起因すると考えられる。そして、上述した、本開示における成膜方法では、酸素流量が0.5~1.5sccmと比較的低い場合において、この条件に合致していたことになる。ただし、光学素子としての適用を考えた場合、c軸配向がさらに強いLN結晶が求められる。また、上述した様に、LN結晶に電界を印加する必要がある場合、SiOは基板として不向きである。そこで、本開示では、上述した3種の各基板を用い、c軸配向がより強いLN結晶を成膜する方法を提案する。以下に、その各々の基板を用いた実施形態について説明する。 From the above, it is possible to form a c-axis oriented LN crystal film on a SiO2 substrate by the method described above, and when the film formation temperature is 460 ° C., the oxygen flow rate is 0.5 to 1.5 sccm. It can be seen that c-axis oriented LN crystals can be obtained in the range of . As described above, when LN is usually deposited on SiO 2 by sputtering, it is difficult to align the c-axis, but in the present disclosure, LN crystals deposited on amorphous SiO 2 A film was formed in which the orientation of the film was aligned in the c-axis direction. This is attributed to minimizing the surface energy by terminating the LN film surface with the closest-packed C-plane. In the above-described film forming method according to the present disclosure, this condition is met when the oxygen flow rate is relatively low, ie, 0.5 to 1.5 sccm. However, when considering application as an optical element, an LN crystal with a stronger c-axis orientation is required. Also, as described above, SiO 2 is unsuitable as a substrate when an electric field needs to be applied to the LN crystal. Therefore, the present disclosure proposes a method of forming an LN crystal having a stronger c-axis orientation using each of the three types of substrates described above. Embodiments using each substrate will be described below.
(第1の実施形態) 
 以下に、本開示における第1の実施形態を、図面を参照して説明する。本実施形態は、SiO上にバッファ層としてZnOを成膜したZnO/SiOを基板とし、ZnO上に、c軸配向したLN結晶膜を成膜する例である。
(First embodiment)
A first embodiment of the present disclosure will be described below with reference to the drawings. This embodiment is an example in which a ZnO/SiO 2 substrate in which ZnO is deposited as a buffer layer on SiO 2 is used as a substrate, and a c-axis oriented LN crystal film is deposited on the ZnO.
 図3は、本開示の一実施形態による、SiO上にバッファ層としてZnOを成膜し、その上にc軸配向したLN結晶を成膜する方法を示したフローチャートである。本実施形態によるLN結晶の成膜方法は、Si(111)単結晶を熱酸化することによって表層にSiOを形成させた基板を作成する工程31と、バッファ層であるZnOを成膜する成膜装置において、成膜室を真空ポンプにより減圧したあと、Znターゲットに電位を印加しない状態でアルゴンプラズマを発生させ、成膜室内の壁面に吸着した水分を離脱する工程32と、ZnOを成膜する成膜装置の成膜室内で、酸素を供給しながらECRプラズマを発生させ、さらにZnターゲットにRFパワーを印加することによって、Znターゲット表面においてスパッタリング現象を発生させ、酸化したZnターゲット表面から放出した粒子をSiO上に堆積する工程33と、LN結晶膜を成膜する成膜装置において、成膜室を真空ポンプにより減圧したあと、LNターゲットに電位を印加しない状態でプラズマを発生させ、成膜室内の壁面に吸着した水分を離脱する工程34と、LNを成膜する成膜装置の成膜室内でECRプラズマを発生させ、さらにLNターゲットにRFパワーを印加することによって、LNターゲット表面においてスパッタリング現象を発生させ、LNターゲットから放出した粒子をZnO上に堆積する工程35とを含む。本実施形態では、一例として、工程31において用いられるSi(111)の大きさは4インチのとし、形成されるSiOの膜厚は140nmとした。また、工程33で行われるECRプラズマスパッタ法は、酸素を用いた反応性スパッタ法とし、成膜温度は400℃および500℃、ZnOの膜厚は10nmおよび70nmとした。なお、工程34および工程35における、LN結晶の成膜は、上述したSiO上にLN結晶を形成した場合と同じ条件とした。ただし、成膜温度および酸素流量は、SiO上にLN結晶を形成した場合において最もc軸配向が強いLN結晶が成膜できた条件(それぞれ460℃、1.5sccm)で固定した。成膜したLN結晶膜の膜厚は1μmである。 FIG. 3 is a flowchart illustrating a method for depositing ZnO as a buffer layer on SiO 2 and depositing c-axis oriented LN crystals thereon according to one embodiment of the present disclosure. The method of forming an LN crystal according to the present embodiment includes step 31 of forming a substrate having SiO 2 formed on the surface layer by thermally oxidizing a Si(111) single crystal, and forming a film of ZnO as a buffer layer. In the film apparatus, after the pressure in the film forming chamber is reduced by a vacuum pump, argon plasma is generated without applying a potential to the Zn target to desorb moisture adsorbed on the wall surface of the film forming chamber (step 32), and a ZnO film is formed. ECR plasma is generated while supplying oxygen in the deposition chamber of the deposition apparatus, and RF power is applied to the Zn target to generate a sputtering phenomenon on the Zn target surface and release from the oxidized Zn target surface. In step 33 of depositing the particles on SiO 2 and in the film forming apparatus for forming the LN crystal film, after the film forming chamber is decompressed by a vacuum pump, plasma is generated without applying a potential to the LN target, A step 34 for removing moisture adsorbed on the wall surface of the film forming chamber, generating ECR plasma in the film forming chamber of the film forming apparatus for forming the LN film, and further applying RF power to the LN target, thereby removing the LN target surface generating a sputtering event at 35 to deposit particles emitted from the LN target onto the ZnO. In this embodiment, as an example, the size of Si (111) used in step 31 is 4 inches, and the film thickness of SiO 2 formed is 140 nm. The ECR plasma sputtering method performed in step 33 was a reactive sputtering method using oxygen, film formation temperatures were 400° C. and 500° C., and ZnO film thicknesses were 10 nm and 70 nm. The conditions for forming the LN crystal in steps 34 and 35 were the same as in the case of forming the LN crystal on SiO 2 described above. However, the film formation temperature and the oxygen flow rate were fixed under the conditions (460° C. and 1.5 sccm, respectively) under which the LN crystal with the strongest c-axis orientation could be formed when the LN crystal was formed on SiO 2 . The film thickness of the formed LN crystal film is 1 μm.
 このようにして、ZnO/SiO上に成膜されたLN結晶の結晶性を、XRDを用いて評価した。なお、本実施形態では、スキャンモードをθ/2θとした測定に加え、LN結晶の薄膜表面に対し、X線の入射角を1.5°としたまま、検出器の2θ角のみをスキャンする斜入射X線回折(Grazing Incident X-ray Diffraction:以下、GIXRDと記す)パターンの取得も行った。また、検出された一部のピークに対して、ロッキングカーブの取得を行い、その形状および半値幅から、配向性の評価を、より詳細に行った。 In this way, the crystallinity of the LN crystal deposited on ZnO/SiO 2 was evaluated using XRD. In this embodiment, in addition to the measurement in which the scan mode is θ/2θ, only the 2θ angle of the detector is scanned while the X-ray incident angle is 1.5° with respect to the thin film surface of the LN crystal. A Grazing Incident X-ray Diffraction (hereinafter referred to as GIXRD) pattern was also obtained. Further, a rocking curve was obtained for some of the detected peaks, and the orientation was evaluated in more detail from the shape and half-value width.
 図4は、本開示の一実施形態において、ZnOの成膜温度が500℃、膜厚が70nmであるZnO/SiOの上に、LN結晶を成膜した積層体のXRDパターンである。図4(a)はスキャンモードをθ-2θとしたXRDパターン、図4(b)はGIXRDパターン、図4(c)は、LN(006)とZnO(002)のピークに対するロッキングカーブを、それぞれ示している。図4(a)に示される通り、バッファ層であるZnOのc軸方向に相当するZnO(002)のピークは、1×10カウントと高強度で検出されている。一方、他に検出されたZnOに由来するピークは、ZnO(102)、ZnO(110)、ZnO(103)、ZnO(004)などが検出されたが、これらのピーク強度は、ZnO(002)のそれと比較しても2桁以上小さい。このことから、本実施形態により、バッファ層として成膜した膜厚70nmのZnOは、強くc軸配向した膜であると言える。また、図4(a)において、LN結晶に関するピークは、LN(006)しか検出されていないことから、成膜したLN結晶はZnO(002)を反映し、強くc軸配向していることが伺える。一方、図4(b)に示されるGIXRDパターンにおいては、LiNb(-602)、LN(006)、LN(116)などのピークも検出されている。これは、c軸とは異なる方位を有する結晶子も混入していることを示している。しかし、図4(c)に示す、LN(006)とZnO(002)のロッキングカーブでは、いずれも半値幅は10°程度であり、このことから、本実施形態により膜厚70nmのZnO上に形成したLN結晶膜は、ある程度のc軸配向を有していることが示唆される。 FIG. 4 is an XRD pattern of a laminate in which an LN crystal is deposited on ZnO/SiO 2 with a ZnO deposition temperature of 500° C. and a film thickness of 70 nm in an embodiment of the present disclosure. FIG. 4(a) is the XRD pattern with the scan mode θ-2θ, FIG. 4(b) is the GIXRD pattern, and FIG. 4(c) is the rocking curves for the peaks of LN(006) and ZnO(002), respectively. showing. As shown in FIG. 4A, the peak of ZnO (002) corresponding to the c-axis direction of ZnO, which is the buffer layer, is detected with a high intensity of 1×10 5 counts. On the other hand, other peaks derived from ZnO were detected, such as ZnO (102), ZnO (110), ZnO (103), and ZnO (004). is smaller than that of , by more than two orders of magnitude. From this, it can be said that the 70 nm-thickness ZnO film formed as the buffer layer according to this embodiment is a film strongly c-axis oriented. In addition, in FIG. 4A, only LN (006) is detected as the peak for LN crystal, so the LN crystal formed reflects ZnO (002) and is strongly c-axis oriented. I can ask. On the other hand, peaks such as LiNb 3 O 8 (−602), LN(006), and LN(116) are also detected in the GIXRD pattern shown in FIG. 4(b). This indicates that crystallites having orientations different from the c-axis are also mixed. However, in the rocking curves of LN (006) and ZnO (002) shown in FIG. It is suggested that the formed LN crystal film has a certain degree of c-axis orientation.
 図5は、本開示の一実施形態において、ZnOの成膜温度が500℃、膜厚が10nmであるZnO/SiOの上に、LN結晶を成膜した積層体のXRDパターンである。図5(a)はスキャンモードをθ-2θとしたXRDパターン、図5(b)はGIXRDパターン、それぞれ示している。図4に示した、ZnOの膜厚が70nmの場合に比べ、ZnO(002)のピークの強度は、1×10カウントと2桁程度弱く、LN結晶に由来するピークも、LN(012)、LN(104)、LN(116)、LN(018)といった、結晶方位がc軸でないピークが、LN(006)と同程度のピーク強度で多数検出されている。さらに、図5(b)に示されるGIXRDパターンにおいて、これら回折ピークがθ/2θスキャンの場合と同程度のピーク強度を有していることが分かる。このことから、ZnOの膜厚が10nmであるZnO/SiO上に成膜したLN結晶は、ZnOのc軸配向の影響をほとんど受けず、ランダムな配向を有するように結晶成長したことが示唆される。SiO上にZnOをスパッタ法によって成膜した際の一般的な傾向として、初期段階の結晶性が最も悪く、膜厚が増加するにつれて、膜上部の結晶性が向上することが知られている。したがって、本実施形態においても、ZnOの膜厚が10nmの場合では、その膜厚が薄かったため、ZnOのc軸配向が弱く、むしろLN成長表面の表面粗さを増大させるように作用したために、LN結晶もそれに伴って、ランダムな配向を有する多結晶構造になったものと考えられる。 FIG. 5 is an XRD pattern of a laminate in which an LN crystal is deposited on ZnO/SiO 2 with a ZnO deposition temperature of 500° C. and a film thickness of 10 nm in an embodiment of the present disclosure. FIG. 5(a) shows an XRD pattern with a scan mode of θ-2θ, and FIG. 5(b) shows a GIXRD pattern. Compared to the case where the ZnO film thickness is 70 nm shown in FIG. , LN(104), LN(116), and LN(018), whose crystal orientation is not the c-axis, are detected with peak intensities comparable to those of LN(006). Furthermore, in the GIXRD pattern shown in FIG. 5(b), it can be seen that these diffraction peaks have peak intensities comparable to those of the θ/2θ scan. This suggests that the LN crystals deposited on ZnO/SiO 2 with a ZnO film thickness of 10 nm were almost unaffected by the c-axis orientation of ZnO, and the crystals grew so as to have a random orientation. be done. It is known that, as a general tendency, when ZnO is deposited on SiO2 by sputtering, the crystallinity is the worst in the initial stage, and the crystallinity at the top of the film improves as the film thickness increases. . Therefore, even in this embodiment, when the film thickness of ZnO is 10 nm, the film thickness is thin, so the c-axis orientation of ZnO is weak, and rather it acts to increase the surface roughness of the LN growth surface. It is thought that the LN crystal also became a polycrystalline structure with random orientation along with it.
 図6は、本開示の一実施形態において、ZnOの成膜温度が400℃、膜厚が70nmであるZnO/SiOの上に、LN結晶を成膜した積層体のXRDパターンである。図6(a)はスキャンモードをθ-2θとしたXRDパターン、図6(b)はGIXRDパターン、図6(c)は、LN(006)とZnO(002)のピークに対するロッキングカーブを、それぞれ示している。図6(a)に示される通り、ZnO、LN結晶ともに、検出された回折ピークは、全てc軸方向に関するピークであり、ZnO、およびLN結晶ともに、成膜温度が500℃の場合に比べて、c軸配向が更に強くなっている様子が認められる。また、図6(b)のGIXRDパターンにおいて、LN結晶に由来するピークが、微弱なLN(006)が検出されたのみであったことからも、このLN結晶が強くc軸配向していることが示唆される。さらに、図6(c)に示すZnO(002)およびLN(006)のロッキングカーブは、ガウス分布上の形状を呈しており、半値幅もそれぞれ6°、および4°と小さいことから、高い結晶性を有していると考えられる。すなわち、ZnOの成膜温度を400℃とすることにより、成膜温度が500℃の場合に比べ、さらにc軸配向の強いLN結晶が成膜されたと言える。これは、ZnOの成膜温度が低くなったことにより、成膜されたZnOの表面粗さが低減され、かつ70nmと、強いc軸配向を有するに十分な膜厚を有していたために、これに伴ってLN結晶も、c軸配向が強くなったと考えられる。 FIG. 6 is an XRD pattern of a laminate in which an LN crystal is deposited on ZnO/SiO 2 with a ZnO deposition temperature of 400° C. and a film thickness of 70 nm in an embodiment of the present disclosure. FIG. 6(a) is an XRD pattern with a scan mode of θ-2θ, FIG. 6(b) is a GIXRD pattern, and FIG. 6(c) is a rocking curve for LN (006) and ZnO (002) peaks, respectively. showing. As shown in FIG. 6A, the detected diffraction peaks for both ZnO and LN crystals are all peaks related to the c-axis direction, and both ZnO and LN crystals have higher , c-axis orientation becomes stronger. In addition, in the GIXRD pattern of FIG. 6 (b), only a weak LN (006) was detected as a peak derived from the LN crystal, which also indicates that the LN crystal is strongly c-axis oriented. is suggested. Furthermore, the rocking curves of ZnO (002) and LN (006) shown in FIG. It is considered to have sex. That is, it can be said that by setting the film formation temperature of ZnO to 400° C., an LN crystal with a stronger c-axis orientation was formed as compared to the case where the film formation temperature was 500° C. This is because the surface roughness of the deposited ZnO was reduced by lowering the deposition temperature of ZnO, and the film thickness was 70 nm, which was sufficient to have a strong c-axis orientation. Along with this, it is considered that the c-axis orientation of the LN crystal also became stronger.
 以上のことから、成膜温度400~500℃で、70nmの膜厚を有するZnOをSiO上に成膜したZnO/SiOを基板とし、ECRプラズマスパッタ法を用いてLN結晶膜を成膜することによって、強くc軸配向したLN結晶が成膜できる。ZnOは、光透過率が高いため光損失が少ない。そのため、本実施形態によって成膜されたLN/ZnO/SiO積層体は、LN結晶をコアとする光導波路に応用することができる。 Based on the above, an LN crystal film was formed using the ECR plasma sputtering method at a film formation temperature of 400 to 500 ° C., using a ZnO/SiO 2 substrate in which ZnO having a film thickness of 70 nm was formed on SiO 2 . By doing so, an LN crystal having a strong c-axis orientation can be formed. ZnO has a high light transmittance, so that light loss is small. Therefore, the LN/ZnO/SiO 2 laminate deposited according to this embodiment can be applied to an optical waveguide having an LN crystal core.
 また、本実施形態において、ZnOの膜厚は70nmとしたが、70~100nmであれば、同様の効果を奏する。これ以上厚い場合は、ZnOの表面粗さが増大する、SiOとの線膨張係数差による内部応力が増大するという問題が生じ得る。逆に、これ以下の膜厚の場合、ZnOの結晶性が低く、その上に成膜するLN結晶が、強いc軸配向を示さないことが考え得る。 Further, although the film thickness of ZnO is set to 70 nm in the present embodiment, the same effect can be obtained if the film thickness is 70 to 100 nm. If it is thicker than this, problems may arise in that the surface roughness of ZnO increases and the internal stress increases due to the difference in coefficient of linear expansion from that of SiO 2 . Conversely, if the film thickness is less than this, the crystallinity of ZnO is low, and it is conceivable that the LN crystal formed thereon does not exhibit a strong c-axis orientation.
 加えて、本実施形態においては、ZnOの成膜方法としては、酸素を用いた反応性スパッタ法としたが、ZnOターゲットとアルゴンを用いたスパッタ法であっても、同様の効果を奏する。 In addition, in this embodiment, the ZnO film formation method is a reactive sputtering method using oxygen, but a sputtering method using a ZnO target and argon also produces the same effect.
 また、本実施形態においては、ZnOを結晶構造が崩れない程度に還元してもよい。こうすることにより、ZnOは透明導電膜となるため、高い光透過率を維持したまま、高い導電率を有することが可能となる。これは、還元により生成した酸素空孔が、2個の電子を放出するドナー順位を形成するためである。ZnOを還元する方法としては、例えば、ZnOのスパッタ法による成膜において、ZnOターゲットを用い、スパッタガスにアルゴンに加えて、水素を導入するなどの方法が用いられ得る。 In addition, in the present embodiment, ZnO may be reduced to such an extent that the crystal structure is not destroyed. By doing so, ZnO becomes a transparent conductive film, so that it becomes possible to have high conductivity while maintaining high light transmittance. This is because oxygen vacancies generated by reduction form donor levels that release two electrons. As a method for reducing ZnO, for example, a method of using a ZnO target in film formation by sputtering of ZnO and introducing hydrogen in addition to argon to the sputtering gas can be used.
 さらに、ZnOにアルミニウム(Al)、またはガリウム(Ga)をドープし、AZO、またはGZOとすることによって、さらに導電率を高くすることも可能である。これは、ドープしたAlやGaがZnOのZnサイトに置換型固溶することにより、1個の電子を放出するドナー順位を形成するためである。ZnOにAlやGaをドープする方法としては、例えば、ZnOのスパッタ法による成膜において、ターゲットをAZOまたはGZOとする方法が用いられ得る。 Furthermore, it is possible to further increase the electrical conductivity by doping ZnO with aluminum (Al) or gallium (Ga) to form AZO or GZO. This is because the doped Al or Ga forms a substitutional solid solution in the Zn site of ZnO to form a donor level that emits one electron. As a method of doping ZnO with Al or Ga, for example, a method using AZO or GZO as a target in ZnO film formation by sputtering can be used.
 このように、ZnOに高い導電率を付与すれば、例えば、上部にもZnO膜を成膜し、LN結晶をZnOの透明電極で挟んだサンドイッチ構造とすることによって、電気光学効果を利用した導波路型素子へ応用することができる。 In this way, if ZnO is given high conductivity, for example, by forming a ZnO film also on the upper part and forming a sandwich structure in which the LN crystal is sandwiched between ZnO transparent electrodes, it is possible to use the electro-optic effect for conduction. It can be applied to wave-type devices.
(第2の実施形態)
 以下に、本開示における第2の実施形態を、図面を参照して説明する。本実施形態は、c軸配向したZカットクォーツを基板とし、その上にc軸配向したLN結晶膜を成膜する例である。
(Second embodiment)
A second embodiment of the present disclosure will be described below with reference to the drawings. This embodiment is an example in which a c-axis oriented Z-cut quartz is used as a substrate and a c-axis oriented LN crystal film is formed thereon.
 図7は、本開示の一実施形態による、Zカットクォーツ上にc軸配向したLN結晶を成膜する方法を示したフローチャートである。本実施形態による、Zカットクォーツ上にc軸配向したLN結晶を成膜する方法は、c軸配向したZカットクォーツ基板を準備する工程71と、LN結晶を成膜する成膜装置において、成膜室を真空ポンプにより減圧したあと、LNターゲットに電位を印加しない状態でアルゴンプラズマを発生させ、成膜室内の壁面に吸着した水分を離脱する工程72と、ECRプラズマを発生させ、さらにLNターゲットにRFパワーを印加することによって、LNターゲット表面においてスパッタリング現象を発生させ、LNターゲットから放出した粒子を、Zカットクォーツ基板上に堆積する工程73とを含む。本実施形態におけるZカットクォーツ基板の大きさは3インチとした。また、LN結晶の成膜方法は、ECRプラズマスパッタ法とし、成膜条件は、上述したSiO上にLN結晶膜を形成した場合において、最も強くc軸配向したLN結晶を得た条件、すなわち、成膜温度が460℃、酸素流量が1.5sccmと、同じ条件した。LN結晶の膜厚は、第1の実施形態と同様に、1μmである。このような方法で成膜されたLN結晶膜に対し、第1の実施形態と同様に、XRDを用いて結晶性の評価を行った。 FIG. 7 is a flowchart illustrating a method for depositing c-axis oriented LN crystals on Z-cut quartz according to one embodiment of the present disclosure. The method of forming a c-axis oriented LN crystal film on a Z-cut quartz according to the present embodiment comprises the following steps: step 71 of preparing a c-axis oriented Z-cut quartz substrate; After decompressing the film chamber with a vacuum pump, argon plasma is generated without applying potential to the LN target to remove moisture adsorbed on the wall surface of the film forming chamber 72, ECR plasma is generated, and the LN target is generating a sputtering phenomenon on the LN target surface by applying RF power to the LN target to deposit particles ejected from the LN target onto the Z-cut quartz substrate. The size of the Z-cut quartz substrate in this embodiment is 3 inches. In addition, the film formation method of the LN crystal is the ECR plasma sputtering method, and the film formation conditions are the conditions under which the LN crystal with the strongest c-axis orientation is obtained when the LN crystal film is formed on the SiO 2 described above, that is, , the film formation temperature was 460° C., and the oxygen flow rate was 1.5 sccm. The film thickness of the LN crystal is 1 μm as in the first embodiment. The crystallinity of the LN crystal film formed by such a method was evaluated using XRD in the same manner as in the first embodiment.
 図8は、本開示の一実施形態において、Zカットクォーツ基板上にLN結晶を成膜した積層体のXRDパターンである。図8(a)はスキャンモードをθ-2θとしたXRDパターン、図8(b)はGIXRDパターン、図8(c)は、LN(006)のピークに対するロッキングカーブを、それぞれ示している。なお、図中に示したQの表記は、Quartzを略記したものである。図8(a)に示される通り、Zカットクォーツに由来する回折ピークは、Q(001)、Q(002)、Q(003)、Q(004)であり、c軸方向に対応するピークが主に検出された。このことから、本実施形態で用いたZカットクォーツ基板は、強くc軸配向していることが確認された。これは、図8(b)のGIXRDパターンにおいても、Zカットクォーツに由来するピークが検出されていないことからも立証される。一方、LN結晶に由来する回折ピークは、c軸方向に相当するLN(006)が最も強く、ピーク強度は2×10カウントに達していることから、このLN結晶は、基板の影響を受け、c軸配向した結晶であると言える。ただし、c軸方向に相当しないLN(202)、LN(018)、LN(1010)のピークも微弱ながら検出されており、結晶性に多少の乱れがある様子も伺える。さらに、図8(b)のGIXRDパターンにおいても、LN(104)、LN(116)、LN(018)、LN(208)、LN(1010)、LN(128)といった、c軸方向に相当しないピークが検出されている。このことから、本実施形態により、Zカットクォーツ基板上に成膜したLN結晶膜は、c軸配向はしているものの、c軸方向に相当しない結晶子も膜中に共存した状態になっていると考えられる。 FIG. 8 is an XRD pattern of a stack of LN crystals deposited on a Z-cut quartz substrate in one embodiment of the present disclosure. FIG. 8(a) shows an XRD pattern with a scan mode of θ-2θ, FIG. 8(b) shows a GIXRD pattern, and FIG. 8(c) shows a rocking curve for the peak of LN(006). Note that the notation of Q shown in the drawing is an abbreviation for Quartz. As shown in FIG. 8A, the diffraction peaks derived from Z-cut quartz are Q(001), Q(002), Q(003), and Q(004), and the peaks corresponding to the c-axis direction are mainly detected. From this, it was confirmed that the Z-cut quartz substrate used in this embodiment has a strong c-axis orientation. This is also proved by the fact that no peak derived from Z-cut quartz is detected in the GIXRD pattern of FIG. 8(b). On the other hand, the diffraction peak derived from the LN crystal is the strongest in LN (006) corresponding to the c-axis direction, and the peak intensity reaches 2 × 10 4 counts, so this LN crystal is affected by the substrate. , c-axis oriented crystals. However, weak peaks of LN(202), LN(018), and LN(10 10 ), which do not correspond to the c-axis direction, are also detected, suggesting that the crystallinity is somewhat disturbed. Furthermore, even in the GIXRD pattern of FIG. No peaks are detected. Therefore, according to this embodiment, although the LN crystal film formed on the Z-cut quartz substrate is c-axis oriented, crystallites that do not correspond to the c-axis direction coexist in the film. It is thought that there are
 このような方法を用いることにより、一部c軸方向に相当しない結晶子が共存するものの、Zカットクォーツ基板上にc軸配向したLN結晶を成膜することが可能となる。上述の通り、Zカットクォーツは、組成としてはSiOであるため、その屈折率はSiOと同じ、n=1.54である。したがって、SiOに直接LN結晶が成膜された構造が要求されるような場合、SiOの屈折率を維持しながら、c軸配向したLN結晶の特性が反映された光導波路を提供できる。 By using such a method, it is possible to form a c-axis oriented LN crystal film on a Z-cut quartz substrate, although some crystallites do not correspond to the c-axis direction. As described above, since Z-cut quartz has a composition of SiO 2 , its refractive index is n=1.54, which is the same as SiO 2 . Therefore, when a structure in which an LN crystal is deposited directly on SiO 2 is required, an optical waveguide can be provided that reflects the characteristics of the c-axis oriented LN crystal while maintaining the refractive index of SiO 2 .
(第2の実施形態の変形例)
 上述の通り、第2の実施形態による成膜方法を用いれば、Zカットクォーツ基板上にc軸配向したLN結晶膜を成膜することが可能であるが、このLN結晶膜は、c軸方向に相当しない結晶子が共存した状態であり、結晶性は高くはない。しかし、第2の実施形態による成膜方法に、固相結晶化の工程を加えれば、LN結晶の結晶性を向上させることが可能である。以下にその詳細を説明する。
(Modification of Second Embodiment)
As described above, by using the film formation method according to the second embodiment, it is possible to form a c-axis oriented LN crystal film on a Z-cut quartz substrate. It is a state in which crystallites that do not correspond to coexist, and the crystallinity is not high. However, by adding a step of solid-phase crystallization to the film forming method according to the second embodiment, it is possible to improve the crystallinity of the LN crystal. The details are described below.
 図9は、本開示の一実施形態による、Zカットクォーツ上にc軸配向したLN結晶を成膜する方法を示したフローチャートである。図9に示す方法は、図7に示した方法の後に、Zカットクォーツ基板上にLN結晶が成膜された積層体に対し、固相結晶化を目的とした熱処理を実施する工程74を更に含む。ここでは、工程73の成膜時における成膜温度は室温とし、固相結晶化のための熱処理の温度は600℃、保持時間は1時間とした。このような方法で成膜された、Zカットクォーツ基板上にLN結晶が成膜された積層体に対し、第1の実施形態と同様に、XRDによる結晶性の評価を行った。 FIG. 9 is a flowchart illustrating a method for depositing c-axis oriented LN crystals on Z-cut quartz according to one embodiment of the present disclosure. In the method shown in FIG. 9, after the method shown in FIG. 7, a step 74 of performing heat treatment for the purpose of solid-phase crystallization is added to the laminated body in which the LN crystal is formed on the Z-cut quartz substrate. include. Here, the film formation temperature during the film formation in step 73 was room temperature, the heat treatment temperature for solid phase crystallization was 600° C., and the holding time was 1 hour. Crystallinity was evaluated by XRD in the same manner as in the first embodiment for the laminated body in which the LN crystal was formed on the Z-cut quartz substrate formed by such a method.
 図10は、本開示の一実施形態において、Zカットクォーツ基板上にLN結晶を成膜した積層体のXRDパターンである。図10(a)はスキャンモードをθ-2θとしたXRDパターン、図10(b)はGIXRDパターン、図10(c)は、LN(006)のピークに対するロッキングカーブを、それぞれ示している。図10(a)に示される通り、上記のような工程74を加えた方法で成膜されたLN結晶膜のXRDパターンは、図8(a)と同様に、LN結晶に由来する回折ピークは、LN(006)が主であるが、LN(018)やLN(1010)の回折ピークも僅かに検出されている。また、図10(b)のGIXRDパターンにおいても、図8(b)と同様に、c軸方向に相当しない回折ピークが検出されている。すなわち、本実施形態によって成膜されたLN結晶は、第2の実施形態で述べた、工程74を含まない方法で成膜したLN結晶膜と同様に、c軸方向に相当しない結晶子が共存した状態にあると言える。しかし、LN(006)のピーク強度は5×10カウントであり、図8(a)のそれと比較すると、2倍以上の強度を示している。加えて、図10(c)のロッキングカーブにおいても、図8(c)に示したものに比べて半値幅が狭く、ω=19.5°を中心とするブラッグ反射を示していることが分かる。このことから、成膜温度を室温とし、更に工程74の熱処理を加えることによって、よりc軸配向が強く、結晶性が向上したLN結晶を、Zカットクォーツ基板上に成膜するができる。なお、図10(a)において、LiNbに由来するLiNb(-602)の回折ピークが検出されていることから、このLN結晶膜にはLiNbが混入していると考えられる。これは、熱処理によりLN結晶中のLiが、LiOの形で一定割合蒸発したことに起因すると考えられる(例えば、非特許文献6参照)。 FIG. 10 is an XRD pattern of a stack of LN crystals deposited on a Z-cut quartz substrate in one embodiment of the present disclosure. FIG. 10(a) shows an XRD pattern with a scan mode of θ-2θ, FIG. 10(b) shows a GIXRD pattern, and FIG. 10(c) shows a rocking curve for the peak of LN(006). As shown in FIG. 10( a ), the XRD pattern of the LN crystal film formed by the method including the step 74 as described above is similar to FIG. 8( a ), and the diffraction peak derived from the LN crystal is , and LN(006) are predominant, but diffraction peaks of LN(018) and LN(10 10 ) are also slightly detected. Also in the GIXRD pattern of FIG. 10(b), a diffraction peak not corresponding to the c-axis direction is detected as in FIG. 8(b). That is, the LN crystal deposited by the present embodiment has crystallites that do not correspond to the c-axis direction, as in the LN crystal film deposited by the method that does not include the step 74 described in the second embodiment. It can be said that it is in a state of However, the peak intensity of LN(006) is 5×10 4 counts, which is more than double that of FIG. 8(a). In addition, the rocking curve of FIG. 10(c) also has a narrower half width than that shown in FIG. 8(c), indicating Bragg reflection centered at ω=19.5°. . Therefore, by setting the film formation temperature to room temperature and further applying the heat treatment in step 74, an LN crystal having a stronger c-axis orientation and improved crystallinity can be formed on the Z-cut quartz substrate. In FIG. 10(a), the diffraction peak of LiNb 3 O 8 (−602) derived from LiNb 3 O 8 is detected, so this LN crystal film contains LiNb 3 O 8 . it is conceivable that. This is considered to be due to the fact that Li in the LN crystal was evaporated at a certain rate in the form of Li 2 O by the heat treatment (see, for example, Non-Patent Document 6).
 なお、本例においては、LN結晶の成膜温度は室温としたが、LNがECRプラズマスパッタ法による成膜時において結晶化しない温度範囲、すなわち、室温から300℃の範囲であれば、同様の効果を奏する。また、成膜後の熱処理の温度は、本実施形態では600℃としたが、500から650℃の範囲であれば、同様の効果を奏する。これ以下の温度では、LN結晶膜の結晶化が不十分であり、逆にこれ以上の温度で熱処理をすると、LN結晶中のLiの再蒸発が生じる。 In this example, the film formation temperature of the LN crystal was set to room temperature. Effective. In addition, although the temperature of the heat treatment after film formation is set to 600° C. in this embodiment, the same effect can be obtained as long as the temperature is in the range of 500 to 650° C. At a temperature below this, the crystallization of the LN crystal film is insufficient, and conversely, if the heat treatment is performed at a temperature above this, re-evaporation of Li in the LN crystal occurs.
(第3の実施形態)
 以下に、本開示における第2の実施形態を、図面を参照して説明する。本実施形態は、STO(111)単結晶を基板とし、その上にc軸配向したLN結晶膜を成膜する例である。
(Third embodiment)
A second embodiment of the present disclosure will be described below with reference to the drawings. This embodiment is an example in which an STO (111) single crystal is used as a substrate and a c-axis oriented LN crystal film is formed thereon.
 図11は、本開示の一実施形態による、STO(111)上にc軸配向したLN結晶膜を成膜する方法を示したフローチャートである。本実施形態による、STO(111)上にc軸配向したLN結晶膜を成膜する方法は、STO(111)の単結晶基板を準備する工程111と、LN結晶を成膜する成膜装置において、成膜室を真空ポンプにより減圧したあと、LNターゲットに電位を印加しない状態でアルゴンプラズマを発生させ、成膜室内の壁面に吸着した水分を離脱する工程112と、ECRプラズマを発生させ、さらにLNターゲットにRFパワーを印加することによって、LNターゲット表面においてスパッタリング現象を発生させ、LNターゲットから放出した粒子を、STO(111)上に堆積する工程113とを含む。本実施形態において、工程113に示したLN結晶の成膜において、成膜温度は350℃とした。酸素流量など、その他の成膜条件は、第1の実施形態および第2の実施形態における、LN結晶の成膜条件と同じとした。また、LN結晶の膜厚も1μmで同じとした。このようにして、STO(111)上に成膜されたLN結晶に対し、第1の実施形態、および第2の実施形態と同様に、XRDを用いて結晶性の評価を行った。 FIG. 11 is a flowchart illustrating a method for depositing a c-axis oriented LN crystalline film on STO (111) according to one embodiment of the present disclosure. The method of forming a c-axis oriented LN crystal film on STO (111) according to the present embodiment includes step 111 of preparing a single crystal substrate of STO (111), and a film forming apparatus for forming an LN crystal. After depressurizing the film formation chamber with a vacuum pump, argon plasma is generated without applying potential to the LN target, and step 112 of removing moisture adsorbed on the wall surface in the film formation chamber, ECR plasma is generated, and a step 113 of applying RF power to the LN target to generate a sputtering phenomenon on the LN target surface, depositing particles emitted from the LN target onto the STO (111). In this embodiment, the film formation temperature was set to 350° C. in the LN crystal film formation shown in step 113 . Other film formation conditions such as the oxygen flow rate were the same as the film formation conditions for the LN crystal in the first and second embodiments. Also, the film thickness of the LN crystal was set to be the same at 1 μm. The crystallinity of the LN crystal deposited on the STO (111) was evaluated by XRD in the same manner as in the first and second embodiments.
 図12は、本開示の一実施形態において、STO(111)上にLN結晶を成膜した積層体のXRDパターンである。図12(a)はスキャンモードをθ-2θとしたXRDパターン、図12(b)はGIXRDパターン、図12(c)は、LiNb(-602)のピークに対するロッキングカーブを、それぞれ示している。図12(a)に示される通り、LN結晶に由来する回折ピークとしては、LN(006)のみが検出され、LN結晶がc軸配向していることが分かる。また、LiNbに由来する、LiNb(-301)、およびLiNb(-602)の回折ピークも検出されている。上述の通り、本実施形態におけるLN結晶膜の成膜条件は、第1の実施形態および第2の実施形態と大きくは変わらない。したがって、STO(111)の場合に限って限定されたLiNbの生成は、成膜プロセスに起因するものではないと考えられ、堆積したLN結晶膜とSTOとの化学的な相互作用(例えば、Li原子がSTO内に拡散する等)により、生じたものと考えられる。なお、LN(006)面とLiNb(-602)面はエピタキシャル関係にあるため(例えば、非特許文献6参照)、両者が共存することは自然である。すなわち、本実施形態によって成膜された膜は、LiNbとLNが共存した混合膜(以下、LiNb/LNと記す)であると言える。また、図12(b)のGIXRDパターンにおいて、c軸方向に相当する回折ピークが全く検出されていないこと、図12(c)に示すロッキングカーブにおいて、半値幅が1.5°のシャープな分布が観測されていることから、このLiNb/LNは、エピタキシャル成長をしていることが認められた。 FIG. 12 is an XRD pattern of a stack of LN crystals deposited on STO(111) in an embodiment of the present disclosure. FIG. 12(a) shows an XRD pattern with a scan mode of θ-2θ, FIG. 12(b) shows a GIXRD pattern, and FIG. 12(c) shows a rocking curve for the peak of LiNb 3 O 8 (−602). ing. As shown in FIG. 12(a), only LN (006) was detected as a diffraction peak derived from the LN crystal, indicating that the LN crystal is c-axis oriented. Diffraction peaks of LiNb 3 O 8 (−301) and LiNb 3 O 8 (−602) derived from LiNb 3 O 8 are also detected. As described above, the conditions for forming the LN crystal film in this embodiment are not significantly different from those in the first and second embodiments. Therefore, the formation of LiNb3O8 , which is limited only to the case of STO ( 111), can be attributed not to the deposition process, but rather to the chemical interaction between the deposited LN crystal film and STO ( For example, Li atoms diffuse into STO). Since the LN (006) plane and the LiNb 3 O 8 (−602) plane are in an epitaxial relationship (see, for example, Non-Patent Document 6), it is natural for both to coexist. That is, it can be said that the film formed according to this embodiment is a mixed film in which LiNb 3 O 8 and LN coexist (hereinafter referred to as LiNb 3 O 8 /LN). Further, in the GIXRD pattern of FIG. 12(b), no diffraction peak corresponding to the c-axis direction is detected, and in the rocking curve shown in FIG. was observed, it was confirmed that this LiNb 3 O 8 /LN was epitaxially grown.
 以上のことから、本実施形態により、c軸配向したLiNb/LNのエピタキシャル膜を成膜することが可能であると言える。なお、成膜温度は350~550℃の間であれば、成膜したLiNb/LN結晶膜のXRDパターンが、図12(a)と同様な回折パターンを示すことを確認している。すなわち、本実施形態によるLiNb/LN結晶膜の成膜方法において、成膜温度は350~550℃の間であれば、同様の効果を奏する。 From the above, it can be said that an epitaxial film of LiNb 3 O 8 /LN with c-axis orientation can be formed according to the present embodiment. It has been confirmed that the XRD pattern of the deposited LiNb 3 O 8 /LN crystal film exhibits a diffraction pattern similar to that of FIG. . That is, in the method of forming the LiNb 3 O 8 /LN crystal film according to the present embodiment, the same effect can be obtained if the film forming temperature is between 350 and 550°C.
 なお、本実施形態において基板として用いたSTOに、結晶構造が崩れない程度のニオブ(Nb)をドープすることにより、STOを透明導電膜とすることによって、導電率を高くすることが可能である。このような構成とすることにより、電気光学効果を利用した導波路型デバイスへ応用することができるようになる。 It should be noted that by doping STO used as a substrate in this embodiment with niobium (Nb) to such an extent that the crystal structure does not collapse, it is possible to make the STO a transparent conductive film, thereby increasing the electrical conductivity. . With such a configuration, it can be applied to a waveguide type device utilizing the electro-optic effect.
 LN結晶をコアとして用いた導波路型の光学素子において、従来よりも信号光の伝送効率が高い素子としての実用化や、電気光学効果を利用した素子としての実用化が見込める。 In a waveguide type optical element using an LN crystal as a core, it is expected to be put into practical use as an element with higher signal light transmission efficiency than before, and as an element using the electro-optic effect.

Claims (11)

  1.  電子サイクロトロン共鳴(ECR)プラズマスパッタ法を用いて、c軸配向したニオブ酸リチウムの結晶薄膜を、基板の上に成膜する成膜方法であって、
     前記基板を準備する工程と、
     前記ECRプラズマスパッタ法を実施する成膜装置の成膜室を減圧したあと、ニオブ酸リチウムターゲットに電位を印加しない状態でアルゴンプラズマを発生させることにより、前記成膜装置の前記成膜室内の壁面に吸着した水分を離脱する工程と、
     前記成膜装置の前記成膜室にアルゴンおよび酸素を供給しながらECRプラズマを発生させ、さらに前記ニオブ酸リチウムターゲットに高周波(RF)パワーを印加し、前記ニオブ酸リチウムターゲットの表面においてスパッタリング現象を発生させることにより、前記ニオブ酸リチウムターゲットの粒子を前記基板の上に堆積する工程と、
     を備え、
     前記基板が、ZnO/SiO、Zカットクォーツ、または(111)配向したチタン酸ストロンチウム(STO)の単結晶のいずれかであり、前記ニオブ酸リチウムターゲットの粒子を前記基板の上に堆積する工程において、前記基板の上にc軸配向した前記ニオブ酸リチウムの結晶薄膜が成膜されることを特徴とする、ニオブ酸リチウム結晶薄膜の成膜方法。
    A deposition method for depositing a crystal thin film of c-axis oriented lithium niobate on a substrate using an electron cyclotron resonance (ECR) plasma sputtering method, comprising:
    providing the substrate;
    After reducing the pressure in the film forming chamber of the film forming apparatus for carrying out the ECR plasma sputtering method, argon plasma is generated in a state in which no potential is applied to the lithium niobate target, so that the wall surface of the film forming chamber of the film forming apparatus is A step of desorbing the moisture adsorbed on the
    ECR plasma is generated while supplying argon and oxygen to the film forming chamber of the film forming apparatus, and high frequency (RF) power is applied to the lithium niobate target to cause a sputtering phenomenon on the surface of the lithium niobate target. depositing particles of the lithium niobate target onto the substrate by generating;
    with
    said substrate is either ZnO/ SiO2 , Z-cut quartz, or (111) oriented strontium titanate (STO) single crystal, and depositing particles of said lithium niobate target onto said substrate. 2. A method of depositing a lithium niobate crystal thin film according to claim 1, wherein the lithium niobate crystal thin film is deposited on the substrate in a c-axis orientation.
  2.  前記基板がZnO/SiOであり、
     前記基板を準備する工程が、
      (111)配向したSiの単結晶を熱酸化することによって、前記Siの表層にSiOを形成させた前記基板を作成する工程と、
      ZnOを成膜する前記成膜装置の成膜室を減圧したあと、ZnターゲットまたはZnOターゲットに電位を印加しない状態でアルゴンプラズマを発生させることにより、前記ZnOを成膜する前記成膜装置の前記成膜室内の壁面に吸着した水分を離脱する工程と、
      前記ZnOを成膜する前記成膜装置の前記成膜室内で、ECRプラズマを発生させ、さらに前記Znターゲットまたは前記ZnOターゲットにRFパワーを印加し、前記Znターゲットまたは前記ZnOターゲットの表面でスパッタリング現象を発生させることにより、前記ZnOの粒子を、400から500℃に加熱された前記SiO上に堆積する工程と、
     を備え、
     前記ZnOの粒子を400から500℃に加熱された前記SiO上に堆積する工程において、前記SiO上に、c軸配向を有し、膜厚が70から100nmの前記ZnOの結晶性の膜が成膜されることを特徴とする、請求項1に記載のニオブ酸リチウム結晶薄膜の成膜方法。
    wherein the substrate is ZnO/ SiO2 ;
    The step of preparing the substrate comprises:
    a step of thermally oxidizing a (111)-oriented Si single crystal to form the substrate in which SiO 2 is formed on the surface layer of the Si;
    After reducing the pressure in the film forming chamber of the film forming apparatus for forming a ZnO film, argon plasma is generated in a state in which no potential is applied to the Zn target or the ZnO target. a step of removing moisture adsorbed on the wall surface in the deposition chamber;
    ECR plasma is generated in the deposition chamber of the deposition apparatus for depositing the ZnO, RF power is applied to the Zn target or the ZnO target, and a sputtering phenomenon occurs on the surface of the Zn target or the ZnO target. depositing the ZnO particles on the SiO2 heated to 400-500° C. by generating
    with
    depositing the ZnO particles on the SiO2 heated to 400 to 500° C., a crystalline film of the ZnO having a c-axis orientation and a thickness of 70 to 100 nm on the SiO2 ; 2. The method of forming a lithium niobate crystal thin film according to claim 1, wherein the film is formed by
  3.  前記基板が前記Zカットクォーツであり、
     前記ニオブ酸リチウムターゲットの粒子を前記基板の上に堆積する工程は、前記Zカットクォーツの温度が460℃に保持された状態で行われることを特徴とする、請求項1に記載のニオブ酸リチウム結晶薄膜の成膜方法。
    The substrate is the Z-cut quartz,
    2. The lithium niobate according to claim 1, wherein the step of depositing the particles of the lithium niobate target on the substrate is performed while the temperature of the Z-cut quartz is maintained at 460.degree. A method for forming a crystal thin film.
  4.  前記基板が前記Zカットクォーツであり、
     前記ニオブ酸リチウムターゲットの粒子を前記基板の上に堆積する工程は、前記Zカットクォーツの温度が、室温から300℃の範囲内に保持された状態で行われ、
     前記成膜方法が、前記ニオブ酸リチウムの結晶薄膜が成膜された前記基板を、500℃から650℃の温度範囲で1時間保持する熱処理を行う工程をさらに備えることを特徴とする、請求項1に記載のニオブ酸リチウム結晶薄膜の成膜方法。
    The substrate is the Z-cut quartz,
    The step of depositing particles of the lithium niobate target on the substrate is performed while the temperature of the Z-cut quartz is maintained within a range of room temperature to 300° C.,
    2. The method of claim 1, wherein the film forming method further comprises a step of performing a heat treatment of holding the substrate on which the lithium niobate crystal thin film is formed at a temperature in the range of 500° C. to 650° C. for 1 hour. 2. The method for forming a lithium niobate crystal thin film according to 1 above.
  5.  前記基板が前記STOの単結晶であり、
     前記ニオブ酸リチウムターゲットの粒子を前記基板の上に堆積する工程は、前記STOの単結晶の温度が、350℃から550℃の範囲内に保持された状態で行われることを特徴とする、請求項1に記載のニオブ酸リチウム結晶薄膜の成膜方法。
    the substrate is a single crystal of the STO;
    The step of depositing the particles of the lithium niobate target on the substrate is performed while the temperature of the STO single crystal is maintained within a range of 350°C to 550°C. Item 2. A method for forming a lithium niobate crystal thin film according to item 1.
  6.  基板と、
     前記基板の上に成膜されたc軸配向したニオブ酸リチウム結晶薄膜と、
     を備えたニオブ酸リチウム結晶薄膜を含む積層体であって、
     前記基板が、c軸配向したZnO/SiO、Zカットクォーツ、または(111)配向したチタン酸ストロンチウム(STO)の単結晶のいずれかであることを特徴とする、積層体。
    a substrate;
    a c-axis oriented lithium niobate crystal thin film deposited on the substrate;
    A laminate containing a lithium niobate crystal thin film comprising
    A laminate, wherein the substrate is either c-axis oriented ZnO/SiO 2 , Z-cut quartz, or (111) oriented strontium titanate (STO) single crystal.
  7.  前記基板が、前記ZnO/SiOであり、
     前記ZnOが、透明導電膜であることを特徴とする、請求項6に記載の積層体。
    the substrate is the ZnO/ SiO2 ;
    7. The laminate according to claim 6, wherein said ZnO is a transparent conductive film.
  8.  前記基板が、前記ZnO/SiOであり、
     前記ZnOが、AlをドープしたAZO、またはGaをドープしたGZOであることを特徴とする、請求項6または7に記載の積層体。
    the substrate is the ZnO/ SiO2 ;
    8. Laminate according to claim 6 or 7, characterized in that said ZnO is Al-doped AZO or Ga-doped GZO.
  9.  前記基板が、前記Zカットクォーツであり、
     前記基板の上に成膜された前記c軸配向したニオブ酸リチウム結晶薄膜が、前記c軸配向したLiNbとLiNbOとが共存した混合膜であることを特徴とする、請求項6に記載の積層体。
    the substrate is the Z-cut quartz;
    7. The c-axis oriented lithium niobate crystal thin film formed on the substrate is a mixed film in which the c - axis oriented LiNb3O8 and LiNbO3 coexist. The laminate according to .
  10.  前記基板が、前記STOの単結晶であり、
     前記基板の上に成膜された前記c軸配向したニオブ酸リチウム結晶薄膜が、前記c軸配向したLiNbとLiNbOとが共存した混合膜であることを特徴とする、請求項6に記載の積層体。
    the substrate is a single crystal of the STO;
    7. The c-axis oriented lithium niobate crystal thin film formed on the substrate is a mixed film in which the c - axis oriented LiNb3O8 and LiNbO3 coexist. The laminate according to .
  11.  前記基板が、前記STOの単結晶であり、
     前記STOの単結晶が、Nbがドープされた、透明導電膜であることを特徴とする、請求項6または10に記載の積層体。
    the substrate is a single crystal of the STO;
    11. The laminate according to claim 6, wherein the STO single crystal is a Nb-doped transparent conductive film.
PCT/JP2021/023264 2021-06-18 2021-06-18 Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film WO2022264426A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023529181A JPWO2022264426A1 (en) 2021-06-18 2021-06-18
PCT/JP2021/023264 WO2022264426A1 (en) 2021-06-18 2021-06-18 Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023264 WO2022264426A1 (en) 2021-06-18 2021-06-18 Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film

Publications (1)

Publication Number Publication Date
WO2022264426A1 true WO2022264426A1 (en) 2022-12-22

Family

ID=84526014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023264 WO2022264426A1 (en) 2021-06-18 2021-06-18 Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film

Country Status (2)

Country Link
JP (1) JPWO2022264426A1 (en)
WO (1) WO2022264426A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829280B2 (en) * 1975-12-17 1983-06-21 日本電気株式会社 LINB1-XTAX03
JPH04170396A (en) * 1990-10-31 1992-06-18 Asahi Chem Ind Co Ltd Production of thin film of lithium niobate single crystal
JPH08154033A (en) * 1994-11-29 1996-06-11 Sumitomo Electric Ind Ltd Diamond base material and surface acoustic wave element
JPH11135475A (en) * 1997-10-29 1999-05-21 Sharp Corp Manufacture of semiconductor device
JP2002026687A (en) * 2000-05-01 2002-01-25 Murata Mfg Co Ltd Surface wave device, lateral wave transducer and longitudinal wave transducer, and manufacturing method for them
JP2004059341A (en) * 2002-07-25 2004-02-26 Nippon Telegr & Teleph Corp <Ntt> METHOD FOR FORMING ORIENTED THIN FILM OF LiNbO3
WO2005045821A1 (en) * 2003-11-07 2005-05-19 Murata Manufacturing Co., Ltd. Dielectric memory element
JP2007058194A (en) * 2005-07-26 2007-03-08 Tohoku Univ High-reflectance visible-light reflector member, liquid-crystal display backlight unit employing the same and manufacturing method of the high-reflectance visible-light reflector member
JP2013072099A (en) * 2011-09-27 2013-04-22 Toppan Printing Co Ltd Sputter cleaning method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829280B2 (en) * 1975-12-17 1983-06-21 日本電気株式会社 LINB1-XTAX03
JPH04170396A (en) * 1990-10-31 1992-06-18 Asahi Chem Ind Co Ltd Production of thin film of lithium niobate single crystal
JPH08154033A (en) * 1994-11-29 1996-06-11 Sumitomo Electric Ind Ltd Diamond base material and surface acoustic wave element
JPH11135475A (en) * 1997-10-29 1999-05-21 Sharp Corp Manufacture of semiconductor device
JP2002026687A (en) * 2000-05-01 2002-01-25 Murata Mfg Co Ltd Surface wave device, lateral wave transducer and longitudinal wave transducer, and manufacturing method for them
JP2004059341A (en) * 2002-07-25 2004-02-26 Nippon Telegr & Teleph Corp <Ntt> METHOD FOR FORMING ORIENTED THIN FILM OF LiNbO3
WO2005045821A1 (en) * 2003-11-07 2005-05-19 Murata Manufacturing Co., Ltd. Dielectric memory element
JP2007058194A (en) * 2005-07-26 2007-03-08 Tohoku Univ High-reflectance visible-light reflector member, liquid-crystal display backlight unit employing the same and manufacturing method of the high-reflectance visible-light reflector member
JP2013072099A (en) * 2011-09-27 2013-04-22 Toppan Printing Co Ltd Sputter cleaning method

Also Published As

Publication number Publication date
JPWO2022264426A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
US5650362A (en) Oriented conductive film and process for preparing the same
US5753300A (en) Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films
TWI284974B (en) Electronic and optical devices and methods of forming these devices
Nystrom et al. Nonlinear optical properties of textured strontium barium niobate thin films prepared by metalorganic chemical vapor deposition
JPH086083A (en) Wavelength converting element
Okuyama et al. Ferroelectric PbTiO3 thin films and their application
JP2011164604A (en) Substrate structure and manufacturing method
WO2022264426A1 (en) Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film
US6195191B1 (en) Optical devices having improved temperature stability
Akazawa et al. Mechanism for LiNb3O8 phase formation during thermal annealing of crystalline and amorphous LiNbO3 thin films
Sudheendran et al. Effect of process parameters and post-deposition annealing on the microwave dielectric and optical properties of pulsed laser deposited Bi 1.5 Zn 1.0 Nb 1.5 O 7 thin films
EP1589370A1 (en) Optical deflection device, and manufacturing method thereof
JP2001072498A (en) Oxide single crystal thin film and its processing
Akazawa Trials to achieve high-quality c-axis-oriented LiNbO3 thin films: Sputter-deposition on a-SiO2, ZnO/SiO2, quartz (0001), and SrTiO3 (111) substrates
Teowee et al. Optical properties of sol-gel-derived PZT thin films
Maqueira-Albo et al. Integration of non-volatile ferroelectric actuators in silicon photonics circuits
JP4179452B2 (en) LiNbO3 oriented thin film forming method
Makram et al. Preparation of nanophotonics LiNbO3 thin films and studying their morphological and structural properties by sol-gel method for waveguide applications
US7142760B2 (en) Stabilized titanate thin film structures
Albo et al. Non-volatile switching of polycrystalline barium titanate films integrated in silicon photonic waveguides
Stankovaa et al. Pulsed laser deposition of LiNbO3 thin films from Li-rich targets
JP2008069058A (en) LiNbO3 EPITAXIAL FILM DEPOSITION METHOD
Boulton et al. Sol-gel derived barium sodium niobate and bismuth titanate films
JP2023528848A (en) LAYERED SOLID-STATE DEVICE INCLUDING FERROELECTRIC LAYER AND MANUFACTURING METHOD THEREOF
Mendes et al. Structural characterization and ferroelectric properties of strontium barium niobate (Sr xBa1-xNb2O6) thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529181

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE