JPS5829280B2 - LINB1-XTAX03 - Google Patents

LINB1-XTAX03

Info

Publication number
JPS5829280B2
JPS5829280B2 JP15110375A JP15110375A JPS5829280B2 JP S5829280 B2 JPS5829280 B2 JP S5829280B2 JP 15110375 A JP15110375 A JP 15110375A JP 15110375 A JP15110375 A JP 15110375A JP S5829280 B2 JPS5829280 B2 JP S5829280B2
Authority
JP
Japan
Prior art keywords
substrate
linb1
film
plane
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15110375A
Other languages
Japanese (ja)
Other versions
JPS5274600A (en
Inventor
恵史 布村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15110375A priority Critical patent/JPS5829280B2/en
Publication of JPS5274600A publication Critical patent/JPS5274600A/en
Publication of JPS5829280B2 publication Critical patent/JPS5829280B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Insulating Materials (AREA)
  • Optical Integrated Circuits (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明はLiNb1−XTaX03(ただし0≦X≦1
)の単結晶薄膜を作成する方法に関する。
Detailed Description of the Invention The present invention relates to LiNb1-XTaX03 (where 0≦X≦1
) relates to a method for producing single crystal thin films.

LiNb1−XTaX03は高いキュリ一点を有する強
誘電体であり、電気機械結合係数、電気光学効果、非線
型光学効果などにおいて非常に優れた性質を有しており
、広範な応用分野に対して、最も興味のある誘電材料で
ある 近年、各種の材料を薄膜化することによって、新しい素
子の開発が注目されて誘電体材料についても、弾性表面
波素子あるいは各種の機能を持つ光学薄膜素子としての
利用が期待されている。
LiNb1-XTaX03 is a ferroelectric material with a high Curie point, and has excellent properties in terms of electromechanical coupling coefficient, electro-optic effect, nonlinear optical effect, etc., and is the most suitable for a wide range of application fields. Dielectric materials are of interest In recent years, the development of new devices by making various materials into thin films has attracted attention, and dielectric materials are also being used as surface acoustic wave devices or optical thin film devices with various functions. It is expected.

LiNb1−XTaXO3は、その優れた特性のために
誘電体薄膜素子としても、最も注目される材料であり薄
膜作成の努力がなされている。
Due to its excellent properties, LiNb1-XTaXO3 is a material that is attracting the most attention as a dielectric thin film element, and efforts are being made to create a thin film.

特に、最近ではLiNb11TaxO3は光集積回路の
重要な中心材料と見なされており、 LiNb1−XTaXO3を用いた光導波路は、モード
変換器、光スィッチ、光変換器、先高周波発生素子など
の多様な機能素子が期待されている。
In particular, recently, LiNb11TaxO3 has been regarded as an important core material for optical integrated circuits, and optical waveguides using LiNb1-XTaXO3 can be used for various functions such as mode converters, optical switches, optical converters, and high-frequency generating elements. Elements are expected.

従って、L iN b 1 x T a x 03の
数百オングストロームから数ミクロン程度の薄膜を精度
よく形成する技術は非常に重要である。
Therefore, a technique for accurately forming a thin film of L iN b 1 x T a x 03 with a thickness of several hundred angstroms to several microns is extremely important.

LiNb、XTaX03の各種の物理特性を有効に利用
するためには、単結晶、あるいは強く配向性を持った薄
膜として作成する必要があるが、L iN b 1−
x T a x 03は結晶学的にその点群がR3Cで
記述される異方性の構造を持った酸化物であり、ヘテロ
ピタキシャル成長させることは、基板材料の選定および
膜製造方法の点で容易ではない。
In order to effectively utilize the various physical properties of LiNb and XTaX03, it is necessary to create them as single crystals or thin films with strong orientation.
x T a x 03 is an oxide with an anisotropic structure whose crystallographic point group is described by R3C, and growing it heteropitaxially is difficult in terms of substrate material selection and film manufacturing method. It's not easy.

現在、報告されているLiNbO3膜の作成方法および
基板材料について簡単に記す。
The currently reported LiNbO3 film production methods and substrate materials will be briefly described.

サファイヤのZ面基板、水晶のZ面基板、L t T
a Oa基板を用いてスパッタリング法による作成例、
LiTa0a基板を用いてLPEおよび熔融固化(EG
M)法による作成例がある。
Sapphire Z-plane substrate, crystal Z-plane substrate, L t T
Example of creation by sputtering method using a Oa substrate,
LPE and melt solidification (EG) using LiTa0a substrate
M) There is an example of preparation by law.

LPE法およびEGM法は非常に薄い膜を膜厚精度よく
作成することおよび成長後に表面研磨が必要であること
に欠点を有している。
The LPE method and the EGM method have drawbacks in that a very thin film must be formed with high precision in thickness and that surface polishing is required after growth.

これらの方法の他に、バルクのL iN b Osある
いはLiTaO3を用いて、Liイオンの外部拡散ある
いは各種の金属イオンの内部拡散法によりL iN b
OsあるいはL i Tag3結晶の表面層をわずか
に高屈折率として光導波路とする技術があるが充分な屈
折率差が得られない欠点がある。
In addition to these methods, using bulk LiNbOs or LiTaO3, LiNb can be produced by external diffusion of Li ions or internal diffusion of various metal ions.
Although there is a technique in which the surface layer of Os or Li Tag3 crystal has a slightly high refractive index to form an optical waveguide, it has the drawback that a sufficient difference in refractive index cannot be obtained.

本発明は酸化マグネシウム単結晶の(111)面を基板
としLiNb1−XTaX03の3面をスパッタ法によ
りエピタキシャル成長させることを特徴とするものであ
るが、一般にはスパッタ法に限らずLPE法、EGM法
等の通常の方法によって酸化マグネシウム単結晶(11
1)面基板にLiNb11Taxo3膜をエピタキシャ
ル成長させることが可能であることは勿論である。
The present invention is characterized in that three planes of LiNb1-XTaX03 are epitaxially grown using a (111) plane of a magnesium oxide single crystal as a substrate by a sputtering method, but in general, the method is not limited to the sputtering method, but also the LPE method, the EGM method, etc. Magnesium oxide single crystal (11
1) It goes without saying that it is possible to epitaxially grow a LiNb11Taxo3 film on a plane substrate.

エピタキシャル成長のためには、基板の選定が重要であ
る。
For epitaxial growth, substrate selection is important.

特に成長膜の格子定数と基板材料の格子定数の整合は重
要である。
In particular, matching of the lattice constant of the grown film and the lattice constant of the substrate material is important.

本発明のMgOの(111)面での酸素イオンの周期性
とL iN b 1−x T a x O3のZ面での
酸素イオンの周期性が0.2070以下の非常によい整
合を示すことに注目して、LiNb1−xTaxO3の
Z面が双晶状にエピタキシャル成長する可能性を見い出
した。
The periodicity of oxygen ions on the (111) plane of MgO of the present invention and the periodicity of oxygen ions on the Z plane of LiN b 1-x T a x O3 show a very good matching of 0.2070 or less. By paying attention to this, we discovered the possibility that the Z plane of LiNb1-xTaxO3 grows epitaxially in a twin crystal shape.

従来、試作されている基板材料である、サファイヤ(Z
面)、水晶(Z面)では、格子定数の不整合は各々、5
.0 % 、8.2%もあり成長膜に悪影響を与えてい
る。
Sapphire (Z
plane) and crystal (Z plane), the lattice constant mismatch is 5
.. 0% and 8.2%, which has an adverse effect on the grown film.

また、基板としてのLiTaO3はLiNbO3と正常
光に対する屈折率差において数多程度の差しかないが、
MgOは屈折率が1.75程度と小さく、また小さな分
散しか示さないという点でLiNb1−xTaXO3の
光学薄膜素子の基板としても非常に優れたものである。
In addition, although LiTaO3 as a substrate has only a few differences in refractive index with respect to normal light compared to LiNbO3,
MgO has a low refractive index of about 1.75 and exhibits only small dispersion, making it an excellent substrate for LiNb1-xTaXO3 optical thin film elements.

以下に実施例のひとつとしてスパッタ法による作成法に
ついて述べる。
A manufacturing method using a sputtering method will be described below as one of the embodiments.

スパッタ装置は通常の二極高周波スパッタ装置を用いた
The sputtering device used was a normal two-pole high frequency sputtering device.

ターゲットとしてLi2OとNb2O,を55:45の
割合で混合し140.(X5に加圧成形した焼結体を用
いた。
As a target, Li2O and Nb2O were mixed at a ratio of 55:45 and 140. (A sintered body press-molded into X5 was used.

雰囲気としてアルゴン60係、酸素40%の混合ガスを
ガス圧2 X 10−2myrtHgとして用いた。
A mixed gas of 60% argon and 40% oxygen was used as the atmosphere at a gas pressure of 2×10 −2 myrtHg.

基板温度は室温〜700℃、膜成長速度は100人/
h r〜2000人/hrの範囲で実験を行なった。
Substrate temperature is room temperature to 700℃, film growth rate is 100 people/
Experiments were conducted in the range of hr to 2000 people/hr.

この結果、基板温度300℃以上で双晶状のL i N
b 03のZ面が成長していることが、電子線回折に
より確認された。
As a result, twinned L i N
It was confirmed by electron beam diffraction that the Z plane of b03 had grown.

ここでの双晶とは、Z軸を中心として60度回転した方
位関係を有するものである。
The twin crystal here has an orientation relationship that is rotated by 60 degrees around the Z axis.

このことは、MgOの<111>軸が6回対称性である
のに対してLiNbO3のZ軸は3回対称性しかもって
いないことに本質的に起因している。
This is essentially due to the fact that the <111> axis of MgO has a 6-fold symmetry, whereas the Z-axis of LiNbO3 has only a 3-fold symmetry.

すなわち、MgO基板とL i NbO3成長膜の方位
関係はMgO:<111ン/…NbO3<001>、
MgO:〈211≧九1NbO3:<110〉および<
100>である。
That is, the orientation relationship between the MgO substrate and the L i NbO3 growth film is MgO:<111n/...NbO3<001>,
MgO: <211≧91NbO3: <110> and <
100>.

LiNbO3はZ軸を中心とする一軸性結晶であり上記
のような双晶構造であっても応用上の制限にはならない
LiNbO3 is a uniaxial crystal centered on the Z axis, and even the above-mentioned twin crystal structure does not limit the application.

成長膜の結晶性は、基板温度の高い程、成長速度の遅い
程良好であった。
The crystallinity of the grown film was better as the substrate temperature was higher and the growth rate was slower.

また、ルチルプリズムを用いて、He−Meレーザ(6
328A)光を成長膜内に導入することができ、光導波
路として使用されることがわかった。
In addition, using a rutile prism, a He-Me laser (6
328A) It was found that light can be introduced into the grown film and used as an optical waveguide.

また、LiNbO3を約1μ成長させた膜上に櫛状の電
極を付けて弾性表面波を励振することが可能であり、2
50 MHzと20dB程度の挿入損であった。
In addition, it is possible to excite surface acoustic waves by attaching comb-shaped electrodes on a film of approximately 1 μm of LiNbO3 grown.
The insertion loss was 50 MHz and about 20 dB.

以上のように本発明によるL t NbO3単結晶膜は
光導波路素子、弾性表面波素子として使用可能であるこ
とがわかった。
As described above, it was found that the L t NbO3 single crystal film according to the present invention can be used as an optical waveguide device or a surface acoustic wave device.

上記の実施例におけるL i Nbo3焼結体の代りに
LiNb1−xTax03(0≦X≦1)の液晶をスパ
ッタターゲットとして使用した場合においてもLiNb
1−xTaXO3の良好な単結晶膜が得られることがわ
かった。
Even when a liquid crystal of LiNb1-xTax03 (0≦X≦1) is used as a sputtering target instead of the LiNbo3 sintered body in the above example, LiNb
It was found that a good single crystal film of 1-xTaXO3 could be obtained.

以上のように本発明によると安価なMgO単結晶基板が
使用でき、誘電体材料として優れた良好なL iN b
1−x T a xo 3単結晶膜が容易に得られる
As described above, according to the present invention, an inexpensive MgO single crystal substrate can be used, and a good L iN b that is excellent as a dielectric material can be used.
A 1-x T a xo 3 single crystal film is easily obtained.

このことは本発明が工業的に価値のあることを物語るも
のである。
This proves that the present invention is industrially valuable.

Claims (1)

【特許請求の範囲】[Claims] I LiNb4、TaXOs (ただしO≦X≦1)
単結晶薄膜を作成する方法において、酸化マグネシウム
(MgO)単結晶の(111)面を基板としてLiNb
I−XTaXO3のC面をエピタキシャル成長させるこ
とを特徴とするLiNb1−XTaXO3単結晶薄膜の
製造方法。
I LiNb4, TaXOs (O≦X≦1)
In a method for creating a single crystal thin film, LiNb is formed using a (111) plane of a magnesium oxide (MgO) single crystal as a substrate.
A method for producing a LiNb1-XTaXO3 single crystal thin film, which comprises epitaxially growing the C-plane of I-XTaXO3.
JP15110375A 1975-12-17 1975-12-17 LINB1-XTAX03 Expired JPS5829280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15110375A JPS5829280B2 (en) 1975-12-17 1975-12-17 LINB1-XTAX03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15110375A JPS5829280B2 (en) 1975-12-17 1975-12-17 LINB1-XTAX03

Publications (2)

Publication Number Publication Date
JPS5274600A JPS5274600A (en) 1977-06-22
JPS5829280B2 true JPS5829280B2 (en) 1983-06-21

Family

ID=15511399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15110375A Expired JPS5829280B2 (en) 1975-12-17 1975-12-17 LINB1-XTAX03

Country Status (1)

Country Link
JP (1) JPS5829280B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264426A1 (en) * 2021-06-18 2022-12-22 日本電信電話株式会社 Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264426A1 (en) * 2021-06-18 2022-12-22 日本電信電話株式会社 Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film

Also Published As

Publication number Publication date
JPS5274600A (en) 1977-06-22

Similar Documents

Publication Publication Date Title
JP3148896B2 (en) Lithium niobate single crystal thin film
Ballman et al. The growth of single crystalline waveguiding thin films of piezoelectric sillenites
US6544431B2 (en) Thin film lithium niobate structure and method of making the same
WO1993014439A1 (en) Waveguide type light directional coupler
JPS5829280B2 (en) LINB1-XTAX03
JP2001072498A (en) Oxide single crystal thin film and its processing
JPS595560B2 (en) LiNb↓1-xTaxo↓3 single crystal film manufacturing method
US3811912A (en) Method of making epitaxial film optical devices
JP2003066499A (en) Optical device and method of manufacturing the same
JPH01234398A (en) Production of thin oxide film
JPS63107900A (en) Material for magneto-optical element
JP2850045B2 (en) Method for producing lithium niobate single crystal thin film
JP3121361B2 (en) Ti-containing lithium niobate thin film and method for producing the same
JPH11116397A (en) Oriented perovskite type potassium niobate thin membrane, and surface acoustic wave element having the thin membrane
JP2838803B2 (en) Method for producing lithium niobate single crystal thin film
KR100439960B1 (en) PMN-PT optical waveguides by thermal diffusion and fabrication methods thereof
JP2860800B2 (en) Method for producing lithium niobate single crystal thin film
JPS62138396A (en) Magnetic garnet material for magneto-optical element
JP3152481B2 (en) Lithium niobate single crystal thin film and method for producing the same
JP2787324B2 (en) Method of manufacturing channel type optical waveguide
JPH0642026B2 (en) Magneto-optical element material
JP2966600B2 (en) Nonlinear optical material
JPH0637352B2 (en) Manufacturing method of lithium oxide single crystal thin film
JP2893212B2 (en) Lithium niobate single crystal thin film
JPH0794820A (en) Single-crystal thin film and solid laser element